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ABSTRACT1 
 
A key issue in exponential smoothing is the choice of the values of the smoothing constants used.  One approach that 
is becoming increasingly popular in introductory management science and operations management textbooks is the 
use of Solver, an Excel-based non-linear optimizer, to identify values of the smoothing constants that minimize a 
measure of forecast error like Mean Absolute Deviation (MAD) or Mean Squared Error (MSE).  We point out some 
difficulties with this approach and suggest an easy fix. We examine the impact of initial forecasts on the smoothing 
constants and the idea of optimizing the initial forecast along with the smoothing constants.  We make 
recommendations on the use of Solver in the context of the teaching of forecasting and suggest that there is a better 
method than Solver to identify the appropriate smoothing constants. 
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INTRODUCTION 
 

xponential smoothing is one of the most popular forecasting techniques.  It is easy to understand and 
easy to use.  Popular forecasting software products include it in their offerings.  All graduate and 
undergraduate business students are taught exponential smoothing at least once in an operations 

management or management science course.  Gardner (1985, 2006) provides a detailed review of exponential 
smoothing. 
 
Exponential smoothing techniques are usually discussed in the context of three situations characterized by 
increasing complexity.   
 
Simple Exponential Smoothing 
 
Here, demand is level with only random variations around some average.  The forecast Ft+1 for the upcoming period 
is the estimate of average level Lt at the end of period t. 
 

𝐹!!! = 𝐿! = 𝐹! + 𝛼 𝐷! − 𝐹! = 𝛼𝐷! + (1 − 𝛼)𝐹! (1) 
 
where α, the smoothing constant, is between 0 and 1.  We can interpret the new forecast as the old forecast adjusted 
by some fraction of the forecast error.  Equivalently, we can view the new estimate of level as a weighted average of 
Dt (the most recent information on average level) and Ft (our previous estimate of that level).   
 
Lt (and Ft+1 ) can be written recursively in terms of all previous demand as: 
 

𝐿! = 𝛼(1 − 𝛼)!!!𝐷!!
!!!  (2) 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This manuscript was original published in the American Journal of Business Education 6(3). Due to high download rates this manuscript has 
been reprinted. 
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Thus, Ft+1 is a weighted average of all previous demand with the weight on Di given by α(1-α)t-i where t is the period 
that just ended.   As t increases the sum of these weights tends to 1. 
 
Exponential Smoothing with Trend Adjustment (Holt’s Model) 
 
In this case, the time series exhibits a trend; in addition to the level component, the trend (slope) has to be estimated. 
 
The forecast, including trend for the upcoming period t+1, is given by 
 

𝐹!!! = 𝐿! + 𝑇! (3) 
 
Here, 𝐿! is the estimate of level made at the end of period t and is given by 
 

𝐿! = 𝛼𝐷! + 1 − 𝛼 𝐹! (4) 
 
𝑇! is the estimate of trend at the end of period t and is given by 
 

𝑇! = 𝛽 𝐹! − 𝐹!!! + (1 − 𝛽)𝑇!!! (5) 
 
β is also a smoothing constant between 0 and 1 and plays a role very similar to that of α. 
 
Exponential Smoothing with Trend and Seasonality (Winter’s Model) 
 
Here, the forecast for the upcoming period, t+1, is the sum of estimates of level and trend adjusted by a seasonality 
index for t+1.  The level and trend relationships are much the same as in Holt’s model, except that level calculations 
are now based on deseasonalized demand in period t and estimate of level for period t.  The seasonality index for the 
period just ended is revised on the basis of the observed demand and the most recent level estimate and used when 
the season comes around next time. 
 
Winter’s model is rarely covered in introductory treatments of forecasting.  As such, we will not discuss it in this 
paper.  The issues we want to explore can be addressed quite adequately with simple exponential smoothing and 
Holt’s model. 
 
THE SMOOTHING CONSTANTS 
 
The smoothing constants determine the sensitivity of forecasts to changes in demand.  Large values of α make 
forecasts more responsive to more recent levels, whereas smaller values have a damping effect.  Large values of β 
have a similar effect, emphasizing recent trend over older estimates of trend.   
 
Most textbooks provide general recommendations on the magnitude of the smoothing constants.  For example, both 
Schroeder, Rungtusanatham, & Goldstein (2013) and Jacobs & Chase (2013) suggest values of α between 0.1 and 
0.3.  Heizer & Render (2011) and Stevenson (2012) advocate a wider range: 0.05 to 0.50.  Chopra & Meindl (2013) 
prescribe α values no larger than 0.20. 
 
Most textbooks also recommend that smoothing constants be chosen so that forecasts are more accurate, with 
accuracy measured by Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Mean Absolute Percent Error 
(MAPE), or some other summary metric.  For example, Chopra & Meindl, while prescribing values of α no larger 
than 0.2, go on to say “in general, it is best to pick smoothing constants that minimize the error term that a manager 
is most comfortable with from among MAD, MSE, and MAPE.”  Of necessity, such a recommendation would have 
to be applied in an ex post fashion.  Different values of the smoothing constants would be tried out on past data; the 
best ones would minimize some chosen measure of error.  Paul (2011) demonstrates a trial-and-error approach to 
this problem.  The assumption is that these constants will continue to perform well in the future.  This procedure has 
a basis in theory - it is approximately equivalent to obtaining maximum likelihood estimates of the constants through 
the Kalman filter (Harvey, 1984).   
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As textbooks have integrated spreadsheets into their discussions and increasingly relied on EXCEL to deliver 
quantitative approaches and techniques, the selection of the smoothing constants has been turned into an 
optimization problem.  The decision variables are the constants and the objective to be minimized is the summary 
error function.  Conveniently, this optimization can be performed using Solver - EXCEL’s optimizer.  This approach 
is exemplified in recent textbooks like Chopra & Meindl (2013, Page 195, Chapter 7) and Balakrishnan, Render, & 
Stair (2013, Page 490, Chapter 11). 
 
In addition to the problem of selecting the smoothing constant(s), there is also the issue of a starting forecast F1.  In 
introductory textbooks, it is common to assume that the forecast for period 1 is equal to D1, the demand for period 1.  
But F1 could also be made a decision variable and optimized along with the smoothing constants to minimize an 
error function. 
 
The purpose of this paper is to examine from a teaching perspective this “Solver approach” to the determination of 
smoothing constants and initial forecast.  Is it reliable and transparent enough to use in a classroom?  There have 
been well-documented shortcomings in EXCEL’s implementation of various statistical and quantitative procedures, 
including nonlinear optimization through Solver. McCullough & Heiser (2008) performed tests on Excel and 
recommended that “… no statistical procedure be used unless Microsoft demonstrates that the procedure in question 
has been correctly programmed…”  They performed tests on Solver and found that for many of their problems, 
Solver did not find the correct solution.  They explicitly recommended that Solver not be used for solving non-linear 
least squares problems.  Since then, there have been new releases of Excel and Solver and it is possible that Solver’s 
shortcomings have been rectified and it is now safe to use.  This paper will go some way toward resolving this issue. 
 
Other researchers have looked at the problems of solving non-linear optimization problems with Solver.  Troxell 
(2002), for example, considers the impact of poor scaling and suggests ways of setting Solver options to get around 
the issue.  
 
We believe that the integration of spreadsheets into the teaching of operations management and management science 
is, pedagogically, a good development.  Through the investigation described in this paper, we hope to provide 
clearer guidance on the use of spreadsheet-based optimization in the context of the teaching of exponential 
smoothing. 
 

APPROACH 
 
For the purpose of this paper, we solved several end-of-chapter problems from Heizer & Render (2011), Chopra & 
Meindl (2013), and Balakrishnan, Render, & Stair (2013) involving simple exponential smoothing and exponential 
smoothing with trend (Holt’s method).  Problem size ranged from four periods of historic data to 44 periods.  The 
median number of periods of data was 9.  All problems involved making one-period forecasts.  Once a set of 
forecasts was made with a value of α (and β if necessary), both MAD and MSE were calculated.  Solver was used to 
identify the values of α and β that minimized MAD and MSE for each problem. 
 
Solver will solve linear and non-linear optimization problems once their objectives and constraints are implemented 
in a spreadsheet.  Solver provides for the specification of the objective (minimize, maximize, or make equal to some 
value), the decision variables (the changing variable cells), and constraints (including integer and binary).  It 
provides three “Solving Methods” – GRG Nonlinear, Simplex LP, and Evolutionary.  Solver’s guidelines for these 
different options are: 1) select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear, 2) select 
the LP Simplex engine for linear Solver problems, and 3) select the Evolutionary engine for Solver problems that are 
non-smooth.  The default method is GRG Nonlinear. 
 
For each problem, we performed the following steps: 
 

1. Set the starting value of α (and β, where relevant) to 0.  
2. Assume the forecast for period 1 is the same as the actual demand for period 1.   
3. Use the exponential smoothing formula to calculate forecasts for all the (past) periods for which 

demand data are available.   
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4. Calculate forecast error and then MAD and MSE excluding period 1.   
5. Invoke Solver. 
6. In the Set Objective field, specify the cell that contains the value of the MAD/MSE and click the 

Minimize button. 
7. In the By Changing Variable Cells field enter the cells that contain the smoothing constants. 
8. Constrain the smoothing constants to be between 0 and 1.   
9. Leave the Solving Method at its default - GRG Nonlinear. 
10. Click Solve to get the optimal values of the smoothing constants 
11. Tabulate values of MAD and MSE for different values of α (and β) using EXCEL’s Data Table (under 

Data/What-If Analysis).  This allows us to confirm Solver’s answers, and for simple exponential 
smoothing, actually graph the error functions. 

 
Steps 1-10 represent the standard set of instructions to students by textbooks that adopt the Solver approach. 
 

RESULTS 
 
Simple Exponential Smoothing 
 
Twenty-one end-of-chapter exercises were solved for the optimal value of α using Solver.  Detailed results are 
presented in Appendix 1.  Table 1 summarizes the results of these optimizations by MAD and MSE.  The numbers 
in the table represent the number of problems out of a total of 21. 
 

Table 1. Solver Results for Optimal α 

Solver Reported Optimal α 
Error Measure 

MAD MSE 
α = 0 4 4 
α = 1 5 8 
0 < α < 1 12 9 
Total 21 21 
 
The striking result is the number of problems for which Solver reported an optimal α value of 0 or 1.  When Solver 
minimized MAD, there were 9 (out of 21) problems for which the optimal value of α was either 0 or 1.   Similarly, 
when Solver minimized MSE, there were 12 problems for which optimal α was 0 or 1.   
 
Mindful of questions about the correctness of Solver’s solutions, we tabulated (using Excel’s Data Table feature) 
values of MAD and MSE for various values of α.  This allowed us to determine the correct optimal value of α and 
compare it with Solver’s answer.  Table 2 summarizes the number of correct and incorrect answers for the two 
summary error measures. 
 

Table 2. Correctness of Solver’s Optimal α 
Solver α MAD MSE 

Correct 18 18 
Incorrect 3 3 
Total 21 21 
 
Why were some of Solver’s solutions incorrect?  To try to understand these results, we examined the graphs of 
MAD and MSE as a function of α for each of these 21 problems.   
 
In 8 of the 21 problems, MAD was either an increasing or decreasing function of α throughout its [0,1] range.  
Similarly, in 11 of 21 problems, MSE was increasing or decreasing throughout in α.  For these cases, the optimal 
value of α is, trivially, 0 or 1 and Solver identified all of these solutions correctly. 
 
Solver also identified optimal α correctly where the error function was smoothly convex.  This happened in 7 of 21 
cases with MAD and 7 of 21 cases with MSE.   
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However, the cases where the optimal α value reported by Solver was incorrect happened in the kinds of situations 
described below and are illustrative of the difficulties Solver can encounter. 
As shown in Figure 1, Solver reported an optimal α of 0, whereas from the graph, it is obvious that the optimal value 
is 1.0. 
 

 
 
The reason for this is the starting value of α = 0 that we assumed.  From α=0 up to α=0.046 MAD increases and then 
starts decreasing.  Starting from α=0, Solver sees the objective function worsening as α increases.  Hence, α = 0 is 
reported as the optimal value. 
 
Figure 2 is another case.   
 

 
 
The true minimum of MSE occurs at α = 0.54.  However, Solver reports the optimal α as 0.  Once again, the 
problem is with the starting value of α = 0.  The initial rise in the MSE fools Solver into thinking that the optimal is 
at α = 0. 
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Figure 1: MAD - Problem 4 
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Figure 2: MSE - Problem 14 
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Figure 3 is a final example where the starting value of α results in an incorrect value of optimal α being returned. 
 

 
 
The optimal value returned is α = 0.06, whereas the true optimal value is α = 0.32.  Starting from 0, Solver reports 
the first minimum it encounters as the true minimum MAD and the corresponding α as the optimal value. 
 
These examples show that Solver is sensitive to the starting value of α.  With the default GRG Nonlinear solving 
method, Solver will return a local minimum if one is encountered within a few iterations of the starting value.  This 
was not at all obvious in earlier versions of Solver.  Even in the Excel 2010 version of Solver, we have to read the 
fine print in the Solver Results pane to understand what is being reported.  Despite the message that all constraints 
and optimality conditions are satisfied, what we are getting is a local optimal solution (see Figure 4). 
 

Figure 4. Solver Results Pane 
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Figure 3: MAD - Problem 14 
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The obvious way of dealing with the issue of starting value is by picking different starting values.  If this had to be 
done manually, it would be tedious.  Fortunately, Solver provides a Multistart option.  This is accessed by clicking 
on the Options button, and then from the GRG Nonlinear tab, checking the Use Multistart box.  Now when Solver 
returns the optimal solution it will report: “Solver converged in probability to a global solution.”  In all 21 problems, 
using the Multistart option with the GRG-Nonlinear engine gave us the correct values of α that minimized 
MAD/MSE. 
 
Another option is to use Solver’s Evolutionary engine - one of the three solving methods that Solver now provides in 
standard Excel.  This method is based on genetic algorithms and Solver recommends it for non-smooth functions 
(expressions that include functions like IF, COUNTIF, MAX, MIN, etc.).  There is no guarantee that an optimal 
solution will be found, but this should not be a difficulty in the simple one or two variable optimization problem we 
are dealing with here.  For each of the textbook-type problems examined in this paper, the Evolutionary engine 
correctly identified the optimal values of the smoothing constants.  However, it does take much longer than GRG-
Nonlinear with the Multistart option to report its final solution.  This makes it the less desirable approach. 
 
Exponential Smoothing with Trend Adjustment (Holt’s Method) 
 
We solved 11 problems involving exponential smoothing with trend (Holt’s Method) from the same three sources.  
We created two-dimensional data tables that allowed us to identify the optimal combination of (α, β).  Detailed 
results are presented in Appendix 2. 
 
The results were similar to what we saw in the case of simple exponential smoothing.  With starting values of both 
constants set to zero, Solver (Nonlinear Engine without the Multistart option) reported optimal values of α that were 
correct for 8 of the 11 problems (with an MSE objective) and for only 5 of the 11 problems (with a MAD objective).  
Similar figures for β were much poorer:  4 out of 11 (MSE objective) and 3 out of 11 (MAD objective).  Table 3 
summarizes this situation. 
 

Table 3. Correctness of Solver’s Optimal α and β 
Solver Reported α and β MSE MAD 

Both α and β correct 4 3 
Only α correct 4 2 
Only β correct 0 0 
Both incorrect 3 6 
Total 11 11 
 
Overall, Solver’s performance was worse than with simple exponential smoothing and the reason for the poor 
performance is the same as before – sensitivity to starting values and the tendency to stop the search at a local 
minimum.   
 
Using Multistart with the Nonlinear Engine allowed Solver to return the correct optimal values of α and β in all 
cases.  This was confirmed using the tabulations of MSE and MAD in the data tables. 
 
Once again, there is a large number of problems with 0 and 1 as optimal values for α and β.  For example, when we 
minimize MSE, 8 of the 11 problems have at least one of α or β at an extreme value (0 or 1).  We see similar 
numbers with MAD.   
 

OPTIMIZING STARTING FORECASTS 
 
Researchers like Bermudez, Segura, & Vercher (2006) have suggested that in addition to the smoothing constants, 
the starting forecast should also be selected to minimize some error function like MAD or MSE.  Textbooks like 
Chopra & Meindl (2013) have discussed this suggestion in their coverage.  We implemented this for each of our 21 
simple exponential smoothing textbook problems as well as the 11 exponential smoothing with trend problems.  The 
results for simple exponential smoothing (detailed in Appendix 3) were very similar to the earlier ones, with over 
50% of the problems having α = 0 or α = 1 solutions.  But the number of problems with optimal α = 0 more than 
doubled.  With two decision variables, Solver slowed down considerably with solution times for some problems in 
minutes rather than seconds. 
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For the problems with trend, we had to determine α and β as well as starting estimates of level and trend that 
minimized MAD or MSE.  With four decision variables Solver became extremely slow and erratic.  Some small 
problems took hours, while some larger problems were solved in a few minutes.  It helped to provide bounds on the 
starting level and trend estimates.  Once again, for most cases, the optimal values of α and β tended to be 0 or 1, 
regardless of whether MAD or MSE was being minimized.  However, when the initial level and trend were also 
optimized, 9 of the 11 problems had optimal α = 0 (Appendix 4).  
 

DISCUSSION 
 
The results have important implications for the use of Solver in finding the optimal values of smoothing constants in 
exponential smoothing.  As our examples demonstrate, naïve use of Solver to address this problem can lead to 
results that can be wrong.  Solver’s Nonlinear engine only looks for local optima and can be misled by the starting 
value in problems where the error function is non-convex, discontinuous, or has local minima.  It is not possible a 
priori to determine what kind of function one is dealing with and when Solver will be wrong.  Fortunately, Solver 
itself provides a convenient solution through the Multistart option.  Forecasting researchers have been aware of the 
nonlinearity of the MSE and MAD functions and the possibility of local minima, and recommended the use of 
multiple starting values (see, for example, Bermudez, Segura, & Vercher (2006)). But textbooks that discuss the 
optimization approach have ignored these issues.  They should revise their treatment to include the Multistart 
recommendation.   
 
Once we chose the Multistart option, we found no deficiencies in Solver, except that it was slow.  We compared 
Solver’s answers with actual values of MAD and MSE for different values of α and β and were able to confirm that 
Solver had indeed found the right optimal values.  It is likely that the shortcomings of Solver discussed in 
McCullough & Heiser (2008) have been addressed.  However, Microsoft should clearly highlight what Solver means 
when it claims to have found a solution. 
 
While the Solver approach can be made to work, we believe it is best used when students have already had some 
exposure to non-linear programming.  Concepts like gradients, starting values, local optima, and scaling will then 
make much more sense.  Typical business curricula do not include non-linear programming.  The optimization 
approach using Solver becomes a black-box; students are asked to use some options and ignore others without 
knowing why.   
 
With business students, a much more transparent approach to finding optimal smoothing constants is to tabulate 
MAD or MSE for different values of the constants using Excel’s Data Table feature.  This way students know 
exactly what they are doing – creating a table.  This is what we did in this paper to get the correct answers to our test 
problems (to our knowledge, there are no documented issues with the Data Table feature).  The obvious drawback is 
that the approach is limited to two dimensions.  We would not be able to find the best value of a third smoothing 
constant or of the starting forecast.  However, Winter’s model is rarely covered in introductory discussions of 
forecasting and Solver, given its slowness with three or more variables, is not our recommended approach to finding 
a starting forecast.   
 
Aside from the correctness of Solver’s solutions, our results highlight a more basic issue - the number of problems 
for which the optimal values of α and β are 0 or 1.   
 
These extreme values of optimal α and β need discussion.  A value of α=1 implies that this period’s demand is next 
month’s forecast (or level estimate) – the so-called naïve forecasting method.  A value of α = 0 implies that the 
demand in a given period is irrelevant to the forecast for the next period: Ft+1 = Ft for all t.  In other words, the initial 
forecast is the forecast for all subsequent periods.  This can happen if the initial forecast is close to the average of the 
series.  If the data has no trend, MSE is minimized if each forecast is close to the average of the data.  This is 
achieved by making minimal changes to the initial forecast; i.e., making α small or even 0.  Larger values of α will 
be necessary if the initial forecast is not comparable with the data.  By favoring actual demand larger α will bring 
future forecasts into line with the data.   The same logic holds good with MAD.   
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The issue of β can also be explained.  If β is 0, the initial trend component, T0, is the trend component for all periods; 
it is never revised.  This might be the case if T0 is a good estimate based, for example, on a linear regression.  If β is 
1, trend is estimated as the difference between the two most recent demands.   
 
When α is 0, equation (4) may be written as: 
 

𝐿! = 𝛼𝐷! + 1 − 𝛼 𝐹! = 𝐹! = 𝐿!!! + 𝑇!!! (6) 
 
and equation (5) as: 
 

𝑇! = 𝛽 𝐿! − 𝐿!!! + 1 − 𝛽 𝑇!!! = 𝑇!!! (7) 
 
Thus, the actual value of β is irrelevant and the initial trend estimate is the estimate for every period thereafter.  
When α is 0, both the initial level and trend components are retained for every period and never revised.  When we 
used Solver to optimize L0 and T0, we got optimal α value of 0 for 9 of the 11 problems.   Optimization gave us 
initial values that modeled the data well enough to never need any revision through the smoothing constants. 
 
Most of the textbook problems we examined had only a few periods of past data – typically 9 periods.  It is difficult 
to see a trend, let alone changes in this trend, with such a small number of periods.  It is relatively easy to find initial 
forecasts that are compatible with the entire data.  This is perhaps the reason for the large number of α= 0 solutions 
when the initial forecast is optimized.  However, with a larger number of periods of past data, the likelihood is high 
that the trend in the data will change making the initial forecast incompatible with at least some portion of the data.  
This will require smoothing constants that will assign significant weight to both the data and the forecast.  Thus, 
optimal values of α and β that are 0 or 1 should arise less frequently.   
 
While it is a good idea to determine the initial forecast also through optimization along with the smoothing 
constants, the deterioration in Solver’s solution times makes it impractical in a classroom setting.  A better idea is to 
use an initial forecast that is close to the demand values of the initial periods or to estimate it through a technique 
such as regression.  Regression can also be used to determine starting values for trend. 
 
The extreme values of α and β that result from optimization conflict with the recommendation of most introductory 
textbooks to keep smoothing constants small, no more than 0.50.  The basis for this recommendation, theoretical or 
empirical, is not clear.  Gardner (1985), in his review of exponential smoothing, concludes “… there is no evidence 
to support such a restricted range of parameters.”  He adds, “it is dangerous to guess at values of the smoothing 
parameters.  The parameters should be estimated from the data.”   
 
In any case, it cannot be assumed that the underlying demand generation process will stay the same in the future.  It 
seems prudent to continuously monitor forecasts using MAD, MSE, MAPE, or some other measures of forecast 
error and use values of α and β that keep these measures within acceptable limits.   
 
In summary, the results of this paper show: 
 

• Solver, in its default mode using the Nonlinear Engine, might provide incorrect optimal smoothing 
constants.  This can happen when there is a local optimum near the starting solution. 

• Solver, with the Multistart option, provides a convenient and reliable way of determining the optimal 
values of the smoothing constants used in exponential smoothing.  Textbooks that present the 
optimization approach to the smoothing constants should emphasize the Multistart option. 

• Some background in basic non-linear programming would make students better users of Solver.   
• Often the optimal values of the smoothing constants are outside the range of values traditionally 

recommended by business textbooks.  For the purposes of selecting smoothing constants to start a set 
of new forecasts, we believe that the traditional guidelines should be ignored. 

• These results are true whether we minimize MAD or MSE and whether we assume a starting forecast 
or determine optimal values of the starting forecast from the data along with the smoothing constants. 

• In principle, optimization is a good way of determining initial forecasts.  However with more decision 
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variables to be optimized, Solver becomes so unpredictable and slow that it is not appropriate for use 
in the classroom.  It is better to find a starting forecast through averaging or regression. 

• An easier and more transparent approach to the issue of determining smoothing constants is through 
Excel’s Data Table.  No special knowledge is needed on the part of the student and it always provides 
the right answers at the level of precision needed for the problem.  It completely avoids all the issues 
associated with Solver. 

 
FURTHER RESEARCH 

 
An obvious area for further research is to extend this investigation to forecasting situations involving data sets that 
are larger than the textbook problems that we used in this paper.   This would allow us to confirm the hypothesis that 
with a larger number of past periods of data, we would see fewer instances where the optimal smoothing constants 
are 0 or 1. 
 
Further, for the sake of completeness, we should also look at time series with seasonality and the optimization of the 
smoothing constants in Winter’s model using Solver. 
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APPENDIX 1.  SOLVER OPTIMAL α – SIMPLE EXPONENTIAL SMOOTHING 
 
Starting forecast F1 = Period 1 demand, D1   
Reported α: Nonlinear Engine (without Multistart option)   
Actual α from Data table computation; confirmed with Multistart 
 

 
  

Function	
  Type Solver	
  α Actual	
  α Correct? Function	
  Type Solver	
  α Actual	
  α Correct?
1 6 Decreasing 1.00 1.00 Yes Mostly	
  Convex 0.30 0.30 Yes
2 11 Convex 0.31 0.31 Yes Convex 0.13 0.13 Yes
3 5 Convex 0.54 0.54 Yes Convex 0.49 0.49 Yes
4 12 Decreasing 1.00 1.00 Yes Concave 0.00 1.00 No
5 12 Mixed 0.09 1.00 No Mostly	
  Convex 0.77 0.77 Yes
6 11 Decreasing 1.00 1.00 Yes Convex 0.69 0.69 Yes
7 4 Decreasing 1.00 1.00 Yes Decreasing 1.00 1.00 Yes
8 5 Decreasing 1.00 1.00 Yes Decreasing 1.00 1.00 Yes
9 5 Decreasing 1.00 1.00 Yes Decreasing 1.00 1.00 Yes
10 4 Increasing 0.00 0.00 Yes Increasing 0.00 0.00 Yes
11 24 Convex 0.34 0.34 Yes Mostly	
  Convex 0.21 0.21 Yes
12 44 Decreasing 1.00 1.00 Yes Decreasing 1.00 1.00 Yes
13 12 Increasing 0.34 0.34 Yes Increasing 0.30 0.30 Yes
14 10 Mostly	
  Convex 0.00 0.54 No Mostly	
  Convex 0.06 0.32 No
15 12 Mostly	
  Convex 0.00 0.31 No Mostly	
  Convex 0.00 0.58 No
16 16 Convex 0.71 0.71 Yes Convex 0.63 0.63 Yes
17 9 Convex 0.45 0.45 Yes Convex 0.69 0.69 Yes
18 10 Increasing 0.00 0.00 Yes Increasing 0.00 0.00 Yes
19 12 Convex 0.14 0.14 Yes Convex 0.26 0.26 Yes
20 5 Decreasing 1.00 1.00 Yes Decreasing 1.00 1.00 Yes
21 12 Convex 0.43 0.43 Yes Convex 0.41 0.41 Yes

MSE MAD
nProblem	
  #
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APPENDIX 2. SOLVER OPTIMAL α AND β – EXPONENTIAL SMOOTHING  
WITH TREND ADJUSTMENT (HOLT’S MODEL) 

 
Level estimate L0 = Period 1 demand D1.  Trend adjustment T0 = 0.  F1 = L0 + T0 
Reported α, β: Nonlinear Engine (without Multistart option)   
Actual α and β from data table computation; confirmed with Multistart 
 

 
  

Reported Actual Correct? Reported Actual Correct?
alpha 0.00 0.000 Yes 0.00 0.000 Yes
beta 0.00 0.225 no 0.00 0.612 no
alpha 0.00 0.255 no 0.00 0.274 no
beta 0.00 1.000 no 0.00 1.000 no
alpha 0.00 0.310 no 0.00 0.202 no
beta 0.00 0.166 no 0.00 0.258 no
alpha 0.00 0.70 no 0.00 0.67 no
beta 0.00 0.44 no 0.00 0.45 no
alpha 0.00 0.00 Yes 0.00 0.00 Yes
beta 0.00 0.30 no 0.00 0.00 Yes
alpha 0.00 0.00 Yes 0.00 0.00 Yes
beta 0.00 0.03 no 0.00 0.20 no
alpha 0.55 0.55 Yes 0.45 0.45 Yes
beta 0.08 0.08 Yes 0.00 0.00 Yes
alpha 0.00 0.00 Yes 0.00 0.19 no
beta 0.00 0.05 no 0.00 0.88 no
alpha 0.06 0.06 Yes 0.79 0.05 no
beta 1.00 1.00 Yes 0.00 1.00 no
alpha 0.76 0.76 Yes 1.00 0.76 no
beta 1.00 1.00 Yes 0.51 1.00 no
alpha 0.11 0.11 Yes 0.13 0.13 Yes
beta 1.00 1.00 Yes 1.00 1.00 Yes

9

10

11

6

9

24

44

12

16

9

10

12

5

12

4

5

6

7

8

MSE MAD

1

2

3

Problem	
  # n Constant
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APPENDIX 3.  COMPARISON OF OPTIMAL α FROM SOLVER – INITIAL  
FORECAST ASSUMED VERSUS INITIAL FORECAST OPTIMIZED 

 

 
 
  

MSE MAD MSE MAD
1 1.00 0.30 0.00 0.00
2 0.305 0.133 0.00 0.00
3 0.54 0.49 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 0.77 0.93 0.92
6 1.00 0.69 0.92 0.88
7 1.00 1.00 0.00 0.00
8 1.00 1.00 0.74 0.67
9 1.00 1.00 0.81 0.70
10 0.00 0.00 0.00 0.00
11 0.34 0.21 0.27 0.27
12 1.00 1.00 1.00 1.00
13 0.00 0.00 0.00 0.00
14 0.54 0.32 0.56 0.33
15 0.31 0.58 0.36 0.46
16 0.71 0.63 0.71 0.65
17 0.45 0.69 0.00 0.67
18 0.00 0.00 0.00 0.00
19 0.14 0.26 0.00 0.00
20 1.00 1.00 0.82 0.68
21 0.43 0.41 0.00 0.00

Assumed	
  Initial	
  
Forecast	
  

Optimized	
  Initial	
  
Forecast

Problem	
  #
Assumed	
  Initial	
  Forecast:	
  F1=	
  D1	
  

Optimized	
  Initial	
  Forecast:	
  Solver	
  
determines	
  F1	
  in	
  addition	
  to	
  α	
  such	
  
that	
  MAD/MSE	
  is	
  minimized.	
  

With	
  optimized	
  initial	
  forecast,	
  we	
  
see	
  many	
  more	
  cases	
  of	
  optimal	
  α	
  =	
  
0.	
  	
  The	
  initial	
  forecast	
  is	
  good	
  enough	
  
to	
  make	
  further	
  adjustment	
  
unnecessary.	
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APPENDIX 4.  EXPONENTIAL SMOOTHING WITH TREND  
(HOLT’S MODEL) COMPARISON OF OPTIMAL α AND β FROM SOLVER  
– INITIAL L0 AND T0 ASSUMED VERSUS INITIAL L0 AND T0 OPTIMIZED 

 

 
 
 

MAD MSE MAD MSE
alpha 0.00 0.00 0.12 0.12
beta 0.61 0.23 1.00 1.00
alpha 0.27 0.26 0.00 0.00
beta 1.00 1.00 0.03 0.05
alpha 0.20 0.31 0.00 0.00
beta 0.26 0.17 0.45 1.00
alpha 0.67 0.70 0.67 0.70
beta 0.45 0.44 0.45 0.44
alpha 0.00 0.00 0.00 0.00
beta 0.00 0.30 0.00 0.15
alpha 0.00 0.00 0.00 0.00
beta 0.20 0.03 0.55 0.21
alpha 0.45 0.55 0.00 0.00
beta 0.00 0.08 0.09 0.47
alpha 0.19 0.00 0.00 0.00
beta 0.88 0.05 0.32 0.32
alpha 0.05 0.06 0.00 0.00
beta 1.00 1.00 0.11 0.30
alpha 0.76 0.76 0.00 0.00
beta 1.00 1.00 0.41 0.25
alpha 0.13 0.11 0.00 0.00
beta 1.00 1.00 0.50 0.51

Assumed	
  L0	
  and	
  To Optimized	
  L0	
  and	
  T0

6

7

8

9

10

11

Constant

1

2

3

4

5

Problem	
  #

Assumed	
  L0	
  and	
  T0:	
  L0	
  is	
  
assumed	
  to	
  be	
  equal	
  to	
  D1;	
  T0	
  is	
  
assumed	
  to	
  be	
  0.	
  

Optimized	
  L0	
  and	
  T0:	
  Solver	
  
optimizes	
  the	
  values	
  of	
  L0	
  and	
  T0	
  
along	
  with	
  α	
  and	
  β	
  to	
  minimize	
  
MAD/MSE.	
  	
  In	
  this	
  case,	
  9	
  of	
  11	
  
problems	
  have	
  optimal	
  α	
  =	
  0.	
  	
  
This	
  means	
  that	
  the	
  optimized	
  
initial	
  level	
  and	
  trend	
  values	
  
never	
  need	
  to	
  be	
  revised	
  in	
  
subsequent	
  periods.	
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