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ABSTRACT 

 

Many bandpass signals can be sampled at rates lower than the Nyquist rate, allowing significant 

practical advantages.  Illustrating this phenomenon after discussing (and proving) Shannon’s 

sampling theorem provides a valuable opportunity for an instructor to reinforce the principle that 

innovation is possible when students strive to have a complete understanding of physical 

processes and mathematical models. 

 

 

INTRODUCTION 

 

ost engineering students are introduced to Shannon’s sampling theorem [1] when they take a 

course in Signals and Systems, Signal Processing, or Instrumentation.  The theorem states: 

     

 

If a band-limited analog signal s(t) with a maximum frequency fmax Hz is uniformly sampled at a rate of fs 

samples/sec, then s(t) can be reconstructed without distortion from the samples provided that the sampling rate fs > 

2fmax.   

 

The proof of this theorem is simple and elegant, offering the instructor an opportunity to impress upon 

students the value of using frequency domain mathematics and of being able to envision a signal both in the time 

domain and the frequency domain.  Unfortunately, after completing the proof, many instructors miss a valuable 

opportunity to show students how the analysis can be taken one step further to reveal cases where certain bandpass 

signals can be reconstructed without distortion using a sampling rate significantly below 2fmax.  The lower sampling 

rate has many practical advantages (less expensive samplers, less required storage, lower transmission speeds) and it 

also serves to reinforce to students that innovation is possible when students strive to have a complete understanding 

of physical processes and mathematical models.  This paper presents the “extra step” of bandpass sampling and 

discusses its educational significance. 

  

REVIEW OF SHANNON’S SAMPLING THEOREM 

     

Let’s begin by considering the bandlimited periodic signal s(t) shown in Figure 1(a).  This signal is the sum 

of three cosine terms and has the magnitude spectrum shown in Figure 1(b). 
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Figure 1a  Bandlimited signal s(t) 
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Figure 1b  Magnitude Spectrum of s(t) 

 

 

Representing the sampling process as the product of the analog signal s(t) and a series of impulses, we can 

represent the sampled signal as 
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where Ts represents the time between samples, which is the inverse of the sampling rate fs.  Expressing the signal in 

the frequency domain yields 
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and the magnitude spectrum of the sampled signal is shown in Figure 2 (sampling rate fs is arbitrarily set at 8000 

samples/sec). 

 

 

 

 

 

 

 

 
 

Figure 2  Magnitude Spectrum of ss(t) with fs = 8000 samples/sec 

 

 

Comparing Figure 2 to Figure 1 shows that the spectrum of the sampled signal contains the spectrum of the 

original signal plus extra copies of the spectrum of the original signal (known as aliases), centered at integral 

multiples of the sampling frequency.  The original spectrum can be recovered without the aliases by using a lowpass 

filter with a cutoff frequency of fmax , provided that the spectra of none of the aliases overlap the spectrum of the 

original signal.  This condition is equivalent to saying that the lowest frequency in the spectrum of the alias closest 

to original signal (fs – fmax) is greater than the maximum frequency in the spectrum of the original signal (fmax), or, 

equivalently, fs > 2fmax.  The value 2fmax is often known as the Nyquist rate.  At this point the sampling theorem is 

proven and practical considerations can be discussed, such as anti-alias filtering and sampling at higher rates to 

create guardbands between aliases to compensate for nonideal frequency response of the reconstruction filter.  In 

many courses, the subject of sampling is concluded at this point and the students dutifully memorize the Nyquist rate 

and its application to sampling. 

 

BANDPASS SAMPLING  

 

      The instructor can, however, take the lesson one step further, showing students how a complete understanding 

of the sampling process can lead to innovation and a significantly improved system design.  The instructor can create 

an example showing students a bandpass signal x(t) with all of its frequency components lying in the band of, say, 80 

kHz - 100kHz.  Bandpass signals are common in many types of sensors and in systems using modulated signals.  The 

instructor can then ask students the minimum sampling rate required to allow distortionless reconstruction.  Applying 
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the Nyquist rate produces a minimum of 200,000 samples/sec, and if 16 bits of quantization are required for each 

sample, then 3.2 Mbits/sec are required to store the sampled signal or to transmit it in a digital stream.  Practical 

considerations (sampling at higher rates to compensate for nonideal filters) make the required transmission or storage 

rate even higher.              

      

Stressing that students should go back to a fundamental understanding of the sampling process, the 

instructor can provide a magnitude spectrum for the bandpass signal, such as Figure 3, and then ask students to draw 

the spectrum of the sampled signal using the Nyquist rate of 200,000 samples/sec.  Figure 4 shows such a spectrum 

with the various aliases represented by different shadings. 

 

 

 

   

 

 

 

 
 

Figure 3  Magnitude Spectrum of Bandpass Signal x(t) 

 

 

       

 

  

 

 

 

 
 

Figure 4  Magnitude Spectrum of Sampled Bandpass Signal xs(t), fs =  200,000 samples/sec 

 

 

      Examining Figure 4, the original signal can be reconstructed using a baseband filter with a 100 kHz cutoff 

frequency (as before, a higher sampling rate will compensate for a nonideal frequency response of the filter).  At this 

point, the instructor should note that there is significant open space in the spectrum of the sampled signal.  

Reminding the students of the fundamentals (that sampling creates aliases whose spectra are centered at integral 

multiples of the sampling rate) the instructor can now ask the students what will happen if the sampling rate is 

reduced below the Nyquist rate of 200,000 samples/sec.  The answer, of course, is that a slight reduction will cause 

the aliases closest to the spectrum of the original signal to overlap the spectrum of the original signal, but as the 

sampling rate is further reduced the overlap will disappear as one side of the alias spectrum slides completely to 

frequencies below the spectrum of the original signal.  The original signal can still be reconstructed from the 

sampled signal as long as there is no overlap – all that is necessary is a bandpass reconstruction filter with 

appropriate cutoff frequencies instead of a baseband reconstruction filter.  Figure 5 shows the case of sampling at 

70,000 samples/sec (only slightly more than 1/3 of the 200,000 sample/sec Nyquist rate).  The aliases do not overlap 

the spectrum of the original signal and the reduction in sampling rate means that the system requires only 35% of the 

storage (or streaming transmission speed) required by sampling at the Nyquist rate.     
 

 

 

 

 

 

 

 
 

Figure 5  Magnitude Spectrum of Sampled Bandpass Signal xs(t), fs =  70,000 samples/sec 
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Reviewing the bandpass sampling process, one can see that the degree of reduction of sampling rate 

depends on the bandwidth of the signal and the values of the signal’s minimum and maximum frequencies (called f1 

and f2, respectively).  In order to achieve any reduction, the bandwidth of the signal must be less than f1.  In best-

case situations, the sampling rate can be reduced toward a lower limit of twice the signal’s bandwidth.  Reference [2] 

provides mathematical formalae and plots to show how much of a reduction in sampling rate can be achieved for 

various values of signal bandwidth, f1, and f2; however, the conceptual understanding of the process is reinforced if, 

instead, students draw the spectrum of the sampled signal for various sampling rates and solve the problem 

geometrically [3]. 

 

      The instructor can now stress a point much broader than bandpass sampling by discussing how the reduced 

sampling rate would not have been “discovered” if students merely memorized the Nyquist rate and its proof.  

Rather, the innovation was “revealed” through a thorough understanding of the sampling process and its associated 

mathematical models.  In our highly competitive global economy, successful engineers will need to be innovators in 

all aspects of their job, and innovation requires deep understanding of physical processes and the mathematics 

involved in modeling the processes.    

 

CONCLUSIONS 

 

      As engineering educators, we know that in order for students to succeed as technological innovators they 

need a thorough understanding of the physical processes and mathematical models of various engineering 

phenomena.  Unfortunately, the rapid pace and large quantity of material being taught in typical courses causes 

students to often lose sight of the importance of developing in-depth understanding.  As instructors, we should 

embrace opportunities to practically reinforce the value of a thorough understanding.  When teaching a Signals and 

Systems, DSP, or Instrumentation course, bandpass sampling provides such an opportunity.   
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