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ABSTRACT 

 

Operations Research (OR) can be identified as the discipline that uses statistics, mathematics, 

computer-modelling and similar science methodology for decision making (Luss, Rosenwein, 

1997). OR, powered with statistics and models, is a high potential engine for use in many areas 

that require evidence-based or model-based decision making. One of the most promising areas is 

specifically the infection outbreak management. Surprisingly, very little OR/statistics research has 

been aimed at infection outbreak management; usually, other general epidemiology issues were 

tackled in models. However, OR/statistics models for use in the infection outbreak management 

exist and can be effectively used in public policy and outbreak management practice. Probably, 

key reasons for that little involvement of OR/statistics in the infection outbreaks management is 

low awareness among the specialist community of OR/statistics use and benefits for their decision 

making. Up to the moment, there is lack of contemporary review of OR/statistics-applied models 

used for the infection outbreak management decision making. The present paper aimed at filling 

that gap and providing two benefits to involved health care managers and academics: first, 

developing awareness on the use and benefits of OR/statistics models for the infection outbreak 

management decision making, and second, for plotting the current state of affairs to highlight 

research opportunities for developing the field by academics and epidemic control professionals. 
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INTRODUCTION 

 

perations Research (OR) can be identified as the discipline that uses statistics, mathematics, computer 

modelling and similar science methodology for decision making (Luss, Rosenwein, 1997). According 

to consensual views, OR was born during World War II to support military operations. Applications of 

those days were radar defence systems, anti-submarine systems, bombing strategies, etc. Upon the end of the war, 

OR was employed by leading industrial organizations to re-engineer and improve efficiency of business and 

manufacturing processes (Luss, Rosenwein, 1997). However, in the 1960s, a mathematical bias started to prevail in 

the discipline and that resulted in loss of authority in the society (Luss, Rosenwein, 1997). As a result of that focus 

migration to mathematics per se, many applied functions of OR were acquired by organizations. Nowadays, OR is in 

the process of recovering those identity crisis period losses (Luss, Rosenwein, 1997). In general, OR practitioners 

can be classified into three categories (Corbett, van Wassenhove 1993): 1) theoreticians (they develop new 

theoretical methodologies), 2) management consultants (apply existing tools to resolve practical problems), and 3) 

operations engineers (modify or extend use of existing techniques for industrial applications).  

 

 All three groups of OR research and practice are presented in health care management research. A newly 

emerged (but old demand-wise) discipline within health care management is disease outbreak management, or 

epidemics control, which deals with resource allocation at different stages in the epidemics process, from 

preparedness toward eradication (Brandeau, 2008). There is enough room for all three types of OR professionals in 

preventing, preparing for, and eradicating epidemics.  

O 
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 Reviews of OR/MS application in the “real world” provide an interesting collection of facts. For example, a 

short review of OR/MS research into disaster operations management is provided by Altay, Green (2006). However, 

there is a need for review of OR/MS research into epidemics preparations/management. From my best recollection, 

there is little done to provide a review of OR/MS applied research for use in epidemics control. That review will be 

welcomed by both OR/MS community and the epidemics control and management authority. Such a review will 

benefit both academia, public administration and the general public. 

 

 OR can address a number of problems facing epidemics management: 1) how to allocate resources among 

options to better control outbreak or spread of a disease within population(s), 2) what resources are needed to control 

a disease within population(s), 3) which resources should be employed for disease control interventions, etc. 

(Brandeau, 2008). 

 

 Resource allocation is a popular research topic in OR. However, epidemics management is complicated 

with non-linear nature of disease proliferation. Preventing just one individual from being infected provides an 

exponential growth of individuals saved in the future (Brandeau, 2008). The course of epidemics is extremely 

variable and individual, even among the same pathogen. 

 

 Conceptually, tackling the resource allocation for epidemics control and management involves several 

directions of research. Relatively simple and general analytical and computer epidemic models are used to plot and 

forecast epidemics. Quantitative analysis of advanced models is used for quantifying exposure and forecasting 

resources needed. Decision-making techniques are used to help decision and policy-makers in setting up policies 

and making decisions (Brandeau, 2008). 

 

 The basic model (Brandeau, 2008) used in epidemics modelling is  

 

dx(t)/dt  = -β(t)x(t)y(t) – u(t), 

dy(t)/dt  = β(t)x(t)y(t) –γ(t)y(t), 

dz(t)/dt  = γ(t)y(t) – u(t). 

 

 Here x(t) is the number of persons not infected at t time, y(t) is the number of infected persons at t time, z(t) 

is the number of persons taken away from infection outbreak, β(t) is the rate of getting infected at t time, u(t) is the 

immunization rate among susceptible persons at t time, and γ(t) is the removal from population rate at t time. The 

most important aspect in the model is the non-linear growth rate as a product of healthy and infected sub-

populations.  

 

 On the basis of that model, many other ones were developed, breaking down elements on smaller variables 

to address, in detail, various aspects of disease outbreaks.  

 

 If the goal is to identify the optimal immunization rate or treatment stockpile, controls can be introduced 

into the model, such as vaccination, treatment or removal of patients, limitation of contacts, etc. The cost of disease 

is assumed to be linear (a product of cost per patient and the number of patients). The same is applicable to the cost 

of the control (Brandeau, 2008). 

 

 A brief illustration of that model’s use is provided in this section for the purposes of pre-informing the 

direction of the more detailed review in the next section.  In this section, examples specify the method’s used, brief 

names, and outcomes. In the following section, examples contain a more detailed review of the modelling and 

methodological approach.  

 

 Lee & Pierskala (1988) developed a model to identify the best screening strategy for minimizing the 

number of patients. That strategy is a mass screening through certain time intervals. 

 

 May & Anderson (1984) considered allocation of a vaccine among various population subgroups to 

eradicate the disease. The model resulted in the optimal portion of each subgroup to be vaccinated. 
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 Richter et al. (2000) developed a model for optimal disease control within various populations to minimize 

the number of disease cases. 

 

 A different type of framework is to use quantitative analysis in more complex models (Brandeau, 2008). 

For example, Longini et al. (1978) developed a model for identifying the optimal distribution of vaccine among 

various age groups during an outbreak of flu type A. 

 

 Another method was proposed by Tan and Yakowitz (1996); i.e., the use of a machine-learning algorithm 

for a Markov decision process in identifying the optimal epidemics control policies. The main idea was to 

continuously reallocate limited resources between programs aimed at decreasing the number of contacts or at 

lowering infecting capacity of patients. By the course of time, the model reaches equilibrium, which is the optimal 

point.  

 

 Brandeau (2008) noted that simulation models so far provide no exciting results due to two constraints: 1) 

sophisticated nature of epidemics not captured by models and 2) simplistic policies incorporated into models. 

However, she indicates that numerical techniques harvest practically applicable results if their limitation - hardness 

to collect data for model development - is overcome. For practitioners, Kaplan (1997) suggested the use of a 

production function construct – a sort of return on investment indicator, where the return is the incremental number 

of treatment units obtained for each project if funds are invested in it.  

 

 These methods and models help develop an understanding of the dynamics and outcomes of an epidemic. 

That makes epidemics control authorities capable of planning and exercising anti-epidemics actions and manage 

resources.  

 

Review of currently employed models, methods and results 

 

 The epidemics control service deals with a number of issues addressing different stages and elements of 

epidemics control. Preparation and planning constitute first service activities. Monitoring and identifying the 

epidemic compliment those early stages. When an epidemic is detected, treatment and quarantine are in focus. That 

includes managing those affected, vaccinating still healthy population, and monitoring the outbreak development. 

Managing resources and addressing specific issues (such as the vector eradication, overlapping diseases, special 

population groups affected, etc.) are more examples of health care authority’s challenges. Minimizing consequences 

and off-setting losses of epidemics are other tasks of the authority. In that sequence, the review of OR/MS research 

is organized. Highlights of research questions, methodology and results are given in a more detailed presentation 

than in the review section. 

 

 For the public, an epidemic starts when the actual germ spreads out and infects the population. For 

epidemic control authorities, the work starts much earlier – in the preparation stage. In its research, OR can address 

important planning issues confronting health care authorities. 

 

 Khans & Ashford (2001) argued for a wider spread of scientific knowledge on disease prevention, planning 

and management. They provided examples of the 1997 Nile virus outbreak in New York City and built up an 

argument that a better competence in disease control preparation and management would be an asset in many 

instances, from specialized public authorities to municipal entities. Thus, OR/MS techniques, targeting disease 

control preparation and management, have large potential for implementation in the health care industry. 

 

 Pierskalla & Brailer (1994) supported the argument of large potential use of OR/MS in the health care 

environment. One example they quoted was the use of AIDSPLAN, a spreadsheet model for planning resources 

needed in HIV/AIDS health care services in the United Kingdom. The model helped in demand forecasting by 

patient categories, care protocols, and resource and budget requirements. Both local and federal levels of resources 

could be summarized. Although simple, the application is helpful in routine duties.  

 

 The preparation/planning application of OR/MS was illustrated by Arinaminpathy & McLean (2009). They 

researched into preparing for viral epidemics. The scope of the paper was to test what anti-viral 
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treatment/prophylactic approaches had produced better results for both treatment and prevention. Limited stockpile 

of anti-viral agents was under assumption to make the research more applicable to real life. Also, specific risk 

groups’ management strategy was researched. Specifically, the authors studied a scenario of response to a flu 

infection in the UK where 25% of the population could be treated with an anti-viral stockpile. What were the best 

treatment coverage strategies to reduce mortality and stop a disease outbreak? The compartmental model of 

homogeneous population was used first and then it was modified by inclusion of high risk groups in the population 

studied. The findings of the paper were leading to better effects of aggressive treatment/prophylactic, even if that 

exhausts the medicine stockpile early. In general, early and massive anti-viral treatment cut disease length in people 

and saved both finance and lives, and it also reduced the spread-out of epidemics. No matter if a stockpile is 

sufficient or not, results were the same. Peculiarities existed in addressing the needs of high risk groups, however. 

First, they benefited more if the drug was given to those who got better results, thus reducing transmission and the 

spread of disease. Second, enough stockpiles should have been held for those at particular risk. Overall, those 

findings supported aggressive anti-viral treatment should an epidemic emerge. 

 

 The health care authority’s responsibility is to monitor infectious disease prevalence to recognize in time 

eruption of epidemics in order to commence appropriate actions. Delay of time for starting anti-epidemic actions can 

cost lives and substantial expenditures. An automated system can be used for recognizing the arrival of epidemics. 

The appropriate model should power that system. An approach to construct such a model was proposed by Rath et 

al. (2003). They developed a method for automatic, human-free, decision-making upon the start of an influenza 

outbreak. Their model is powered by the Hidden Markov Model technique, coupled with “an Exponential-Gaussian 

mixture, to characterize the non-epidemic and epidemic dynamics in a time series of influenza-like” cases. 

Validation of the method on actual data suggested reducing the incidence of wrong detections of epidemics 

compared to currently used approaches. Robustness of their method versus variability of epidemics scenarios was 

also higher.  

 

 Currently, the Serfling’s method of cyclical regression is used to measure proportions of mortality rate due 

to pneumonia and influenza, adjusted for seasonal effects. Delays are due to lead time required to observe and 

confirm a death. Some other techniques were developed; for instance, a ratio of influenza-like illness (ILI) among 

calls on doctors. That method is also based on cyclical regression and has to deal with a need for non-epidemic data 

to the model baseline distribution. Also, data is considered independent and identically distributed, which is never 

true. That makes the development of an automated system problematic.  

 

 Hidden Markov Model is a sequence of pairs of random variables - (Yt, St), t=1...n - that satisfy conditional 

independence assumptions. The use of the Hidden Markov Model enables utilization of historical time series for 

both epidemic and non-epidemic periods. Then this method assumes independence of observations contrary to 

marginal independence in the case of Serfling’s method. The change between Gaussian and exponential distributions 

enables omission of complete modelling of trends and makes predictions more accurate. Also, if modelling non-

epidemic rates with Gaussian distribution, a non-zero probability for negative rates is assumed. Thus, exponential 

distribution should be used for non-epidemic and Gaussian for epidemic periods in the model. According to Rath et 

al. (2003), the model proposed delivered better accuracy then previous ones and can function in automatic mode. 

 

 Another research and practical question OR can address is the way emerging epidemics will evolve. Will it 

die out or explode? The scenario is of crucial importance since resources involved in both of them are tremendously 

different in scale. The issue can be addressed through partially observed branching processes for stochastic 

epidemics (Panaretos, 2006). Branching processes are, for instance, death/birth or die-out/epidemic explosion. The 

author assumed that, quite often, observation of the epidemics had differed from reality (the measurement error). If 

so, the model developed could be wrong. Thus, deployment of controls and initialization of action plans could be 

missed or triggered for no actual reason. The model worked through analyzing the conditional probability of 

extinction of epidemics and the conditional time for that extinction from the point of knowing existing parameters of 

epidemics. Stochastic processes were used to model the construct. The author concluded that the use of randomness 

in partial observation for a given branching process could result in better stochastic models of epidemics. The 

technique used in the model was binomial thinning for introducing partial observations. The core of the model was 

making the infected and observed patients a Markov chain process. Transitional probabilities and conditional 

distributions were developed for and by the model too. The model described the probabilistic behaviour of the 
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epidemics and could be modified by the course of obtaining new data for initial stages. It could be used in policy 

making in cases of emerged epidemics – to launch anti-epidemic actions expecting outbreak of a disease - or wait 

until the epidemics die-out. 

 

 In simulating epidemic models, hierarchical networks could be of benefit (Quax et al., 2009). The essence 

of the method offered was parameterization of separate dynamics operators. The operators then were applied 

iteratively to the contact network (in this case, the epidemic model). That approach decreased the network’s 

generator computational complexity (Quax et al., 2009), increased cache efficiency, and parallelized the simulator 

(making it quicker and more powerful). The authors tested the approach on a data set of more than a million 

homosexual men to model HIV epidemics and found the model to be quicker and simple to use. The authors 

identified that the features (or parameters) of an epidemic be network properties (along with community structure, 

etc.).  Currently, standard mean-field approximations, or master equations, are used for modelling. The problem is to 

extend them for precise reflection of models. Hierarchical networks solve that problem. In their model called 

SEECN, Quax et al. (2009) organized nodes and edges hierarchically. They attributed arbitrary properties to nodes 

and edges, which rule the temporal evolution of the network (and epidemics). That evolution was managed by a 

complex of dynamics operators. Those could be parameterized independently and with regard to node and edge 

properties. The hierarchical organization reduced complexity of that dynamic system. Quax et al. (2009) showed 

that the running time for the model dropped by a factor of 2. Hence, hierarchical networks could offer flexibility and 

speed in simulating epidemic models compared to traditional mathematical models of epidemics. 

 

 Moreno et al. (2002) researched into out-breaking infections across complex population networks with 

acquired immunity. The issue of immunity is a powerful factor influencing the spread of infections. Acquired 

immunity could be due to previous exposure to the agent or immunization. Thus, the study added to the 

understanding and management of immunization and benefits/timing for vaccination. A new epidemics management 

framework was formed due to increasing incidences of outbreaks because of large connectivity fluctuations across 

those populations. The authors discovered that scale-free networks with diverging connectivity fluctuations and a 

large number of nodes limit produced a lower epidemic threshold and exhibited a finite portion of affected persons. 

That issue resulted in a high variance of response from systems upon introduction of infected individuals with 

various connectivities. The model added to understanding the spread of epidemics across complex heterogeneous 

networks. Examples of those systems could be populations with sexually transmitted diseases, such as AIDS, or 

respiratory diseases, such as flu or SARS. In those systems, the number of contacts per infected individual varied 

and created hardness in modelling epidemics. Scale-free (SF) networks were those where connectivity fluctuations 

were diverging, which were cases of heterogeneity. The spread-out of infections, hence, was much bigger in those 

systems. In practice, that meant that those systems were virtually never below the epidemic threshold and ever 

produced risk of an outbreak. That research shifted understanding of sexually transmitted and respiratory diseases 

toward treating them as in an ever-in-dangerous state. The way of eradication was to limit contacts for infected 

individuals which supported immunization, quarantine, etc. 

 

 Eames et al. (2009) addressed the issue of the contact network’s use in epidemiological research. Many 

models used contact networks as a general approach. However, in actual epidemics, it is important to know the 

direction of interaction - who interacts and the effect of strengths for those interactions. The authors constructed a 

weighted interaction network, which reflected those factors mentioned above. Weights indicated the amount of time 

the individual spent in contact or proximity of contacts. Those were factors influencing the infective potential of a 

person and were used in assessing travel flow infectious properties. That allowed switching from idealized plain 

networks to more realistic weighted ones. Then the SIR stochastic model was constructed. The new model was used 

to assess effectiveness of intervention strategies. The principle was to assess the influence of each individual 

(element of the network) on the dynamics of epidemic which would allow making an informed decision on what 

path to take for prevention; for instance, in assessing effectiveness of vaccination for preventing an outbreak, etc. A 

novel and interesting development was incorporation of a diary study’s results on social mixing behaviour for 

modelling patterns of individuals’ interaction during epidemics. The authors came out with a practical 

recommendation on the circle of first-priority contacts for vaccination to suppress the outbreak. The authors justified 

incorporation of social behaviour data into models for vaccination effectiveness assessment. Among possible 

improvements coming from future research, the authors highlighted two. First, a way to incorporate the individual’s 
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response to the disease would improve weights in the network. Second, collection of behavioural and 

epidemiological data during actual epidemics would improve predictive capacity of the model.  

 

 Yan et al. (2008) added to studies of scale-free weighted networks with asymmetric infection while 

focusing on both the epidemic threshold and critical behaviours. The study demonstrated that asymmetry could be 

redistributed across parameters influencing the spread-out of the infection, and the threshold could be recovered to 

make the infection more manageable. That finding was practically important. On the other hand, authors developed 

an argument that lack of threshold could mean a slow growth in prevalence. That argument sounded a bit 

questionable in epidemics management, since uncertainty could mean both low and high potential for an outbreak. 

The authors detailed on the role of airlines in the spread-out asymmetric rate, which was an interesting development 

in the research. That meant infecting probability from a node to its neighbours was not homogeneous and it was 

different to each direction from the node. The assumption was important since asymmetry of the infection spread 

complicated outbreak management in real life. Although both simulation and analysis were performed, the model 

was abstract and further research could yield more practical findings. 

 

 Rao and Kakehashi (2004) developed a non-linear dynamical method for modelling an epidemic. Various 

statistical distributions were tested. The model developed was robust as enough given inputs were accurate. 

Measurement errors affected capacity of the model significantly, which highlighted the importance of accurate and 

timely data collection on epidemics. The authors built up on the approach of convoluting statistical functions and 

likelihood estimation. The value of the method was high if information about early stages of epidemics development 

was not available. That is, for instance, the case of highly dangerous “imported” infections, such as Denge fever, 

West Nile fever, Ebola fever, etc. In such cases, the method could provide a viable estimate of risk (a product of 

uncertainty and consequences). A drawback was the method’s pure mathematical nature, not taking into account 

biology of the agent and spread-out (such as weather, demographics, etc.). This method combined a mathematical 

model with statistical estimation of variable, which was new to epidemiology and enabled to recover missing pieces 

of information while forecasting or planning anti-epidemics measures. 

 

 Coutinho et al. (2006) addressed the outbreak of diseases transmitted by mosquitoes. They developed a 

non-autonomous dynamic model which incorporated seasonal fluctuations in mosquito population. That model 

aimed at explaining Dengue fever’s seasonal pattern. The authors introduced a time-dependant threshold R(t). The 

model assumed Dengue outbreak when the mean R(t) was more than 1 and no outbreak if below 1. The model 

explained the gap between the peak in mosquito population and the Dengue fever outbreak.  The Dengue fever re-

appeared worldwide as a major health care challenge in the 1990s, after decades of relatively local episodes of 

disease. The pattern of Dengue is at its peak in the wet season (3-4 months after the rains start) and drops to almost 

nothing in the dry season due to the mosquito population fluctuation. An interesting research question, which 

surprisingly the model provided insight on, was how the virus survived the dry season. According to the model, the 

virus survived in some mosquitoes alive and in their eggs – the pattern of mosquito population matched the 

mosquito number and hatching time. The egg reservoir seemed to be more plausible. The model in itself consisted of 

three components to incorporate all major locations of the virus – in people, mosquitoes, and their eggs. The model 

differed from the previously used time-independent threshold for vector-dependant epidemics that was developed by 

McDonald (1952). The model stipulated that the delay of epidemics, peak versus peak in mosquito population, was 

due to two factors – immunity of population and increase in number of infected mosquito bites (it takes time to get 

mosquito-infected from infected individuals). The extinction of disease outbreak was explained through the 

immunity parameter growth by the course of epidemics and a seasonal decrease in mosquito population. The model 

was an interesting application of OR techniques in tropical epidemiology. 

 

 Another application of OR in managing dangerous tropical epidemics of the Dengue and Chikungunya 

viruses came from Seyler et al. (2009). The researchers investigated the risk of import and outbreak of those 

diseases in Europe. The authors used a stochastic Monte-Carlo simulation model to assess the arrival of infected 

individuals and mosquitoes in Europe, particularly in those regions where the Aedes albopictus (the transmitter 

vector of those viruses) resided (Greece, Albania, Montenegro, Croatia, Italy, France, and Spain). For the 

simulation, researchers selected the following inputs: 1) incidence-based probability of Dengue and Chikungunya in 

those areas, 2) air traffic arrivals from endemic areas to Europe, 3) duration of viremia, 4) probability of being 

infected upon arrival, 5) distribution, and 6) period of the mosquito (vector) activity in those European countries. An 
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interesting development was building a model due to limited data for the Chikungunya virus. The authors came out 

with quantitatively defined results - a specified number of the median Dengue viremic person-days across countries 

(most of that in Italy).  The most potentially dangerous traffic came from Asia and the most potentially vulnerable 

season was quarter 3. For the Chikungunya fever disease, exposure was much lower and all of them were estimated 

to arrive from India to Italy. The paper gave a good example of concrete outcomes that could be used by epidemic 

control authorities. 

 

 Hartemink et al. (2009) investigated the bluetongue virus basic reproduction number. The bluetongue virus 

is a dangerous infection agent. It had a history of outbreaks in Europe, such as Belgium-Netherlands-Luxemburg-

Germany outbreak as of August, 2006. That particular strain (BTV-8) was traced to come from Africa, though the 

virus was present in other hot climate places like Asia and America. Usually the virus affected cattle, but it can bite 

humans. The vector for that agent could be a number of European resident mosquito species. The basic reproduction 

number (R0) was the expected number of secondary infection cases due to the single infected person who entered a 

healthy population. That model could be used in assessing the potential of and consequences after the arrival of an 

infected person from overseas to the host country. It draws an insight on the spread-out of the infection within the 

population. The study developed maps of R0 for better utility in health care and epidemics control practice. Such 

maps help identify areas of higher epidemic risk and pre-plan for epidemic outbreaks. The method incorporated 

effects of the environment on the agent proliferation into the model. The technique was based on integrating vector-

abundance data along with statistical analysis to forecast abundance from satellite visualization. Biologically 

mechanistic modeling to underlie R0 was also employed in the model. The test of the model was performed in three 

dimensions with the bluetongue virus in the Netherlands.  First, the authors developed a map of situation for 

09/2006. Second, they developed species-specific basic reproduction number maps as a result of satellite-backed 

forecasts. Third, they plotted monthly maps for the year around. The novelty of their paper and approach was in 

combining the mathematical modeling with GIS (Geographic Information System). The value of GIS for epidemics 

control in the case of vector-related infections (transmitted by mosquitoes and other biological species) was in 

incorporating climate parameters, geographic details, human-influenced land use parameters, other anti-epidemics, 

and industrial factors into the method then available to epidemic control authorities. The methodology developed by 

Hartemink et al. (2009) seemed to be one of the most applicable and comprehensive for present times. The method 

merged various knowledge sources and control techniques, and its application generated cooperation of federal and 

local authorities, epidemics control and land use agencies, etc.  

 

 Townsend-Peterson et al. (2009) addressed the spread-out of bird-moderated viral diseases over the last 20 

years (such as avian flu, H5N1, etc.). A part of that problem was migratory movement of birds. Those movements 

could cause quick and extensive outbreaks of epidemics along the migration route. The authors researched into 

seasonal (over-wintering and breeding periods) dispersion of birds across North America (392 species researched), 

which could play a role in disseminating the virus. On the grounds of information available, the authors built a 

model to show forecasted patterns and parameters of bird-transmitted diseases due to the birds’ migratory 

movements. Due to fragmented and incomplete information from bird migration maps, the methodology employed 

was ecological niche modelling (ENM). That technique used environmental information to educate interpolations 

between registered locations where birds showed up (Townsend-Peterson, 2009). The inputs for the model were 

birds – species and numbers – and environment types. The evolutionary computing environment calculated, in 

ENM, a forecasted spread-out of bird species. That forecast then was analyzed and corrected on the basis of colony-

forming probabilities to come out with a more realistic data set (Townsend-Peterson, 2009). The bird species 

selection was dominated by their epidemiological potential threat as vectors for pathogenic viruses. Environment 

parameters were selected as those contributing to appearance/lack of nesting birds in that particular neighbourhood. 

The whole data set was divided on three groups for validation purposes: 1) training data (25%), 2) intrinsic test data 

(25%), and 3) extrinsic test data (50% for model validation). As a result, the model achieved better explanatory 

capacity on bird-powered spread-out of epidemics in North America.  New bird migration maps were introduced for 

use by epidemics control authorities. Another interesting, but to some extent, hardly believable, use of the model 

was suggested to be bio-terrorism investigation – theoretically, migrating birds can be targeted as a means of 

transporting viruses to the host country from over-wintering locations. The work in that direction could yield 

substantial applicable results when more information is available for modelling the migratory trajectories of birds. 
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 Koelle et al. (2009) addressed the issue of pathogen mutation influence on the epidemics development, 

spread-out, and dynamics. That aspect is of contemporary focal attention. For instance, it deals with the evolution of 

the flu viruses, such as H5N1, H1N1, etc. Rapid genetic changes in viruses could substantially change models of 

disease emergence, progress, and dying-out which could result in significant variations and shortages in resource 

preparation, allocation, and logistics. As a result, quality of service could degrade and even health threats could 

emerge. Usually, models for rapidly-mutating pathogens faced two problems. Generated complexity of the model 

masked the models’ numerical predictive capacity and opportunity to statistically estimate parameters. Then, 

detailing level limited generalizability of those models if a pathogen demonstrated variations in its properties. The 

model of Koelle et al. (2009) addressed those two problems and attempted to overcome them. The principal 

difference between the previous (multi-strain and SIRS) models and this one was simulating the tempo of the 

antigenic change instead of genetic changes in viruses. SIRS models had to deal with a complicated assumption of 

change in the host’s immunity over the course of time. Multi-strain models had to incorporate parameters of many 

strains. The benefit of the Koelle et al. approach was the reduction in computational complexity. The second benefit 

was the avoidance of sticking to a particular virogenetic hypothesis. The new model fit them all.  

 

 Testing of the antigenic tempo model was performed in the influenza virus. Numerical results obtained 

matched findings from traditional models of the same viral epidemics in general. The difference was the 

substantially lower computational complexity of the new model. Hence, it was more reproducible in industry and 

public service by epidemics control practitioners.  

 

 For academia and epidemics researchers, the approach of antigenic modelling allowed for incorporation of 

spatial influences (such as geographic spread, etc.), extrinsic factors (such as humidity, temperature, etc.), 

immunologic hypotheses, and even some statistical inferences. 

 

 Handel et al. (2009) addressed the issue of infections overlap. SIR linear model type was used. An 

influenza epidemic often provoked the outbreak of complementary viral and bacterial infections, which inflated 

morbidity and mortality during the epidemics. The authors developed a model to estimate consequences and 

management strategies for those superposition outbreaks. Dimensions of the infections’ interaction were spread-out 

of the epidemics’ morbidity/mortality rates. The findings from the model showed that antibacterial interventions 

during viral epidemics could decrease the number of cases (incidences) and mortality. The value of the findings was 

in providing a quantitative framework to elaborate scenarios and support allocation of resources for those 

interventions (both prophylactic and therapeutic). Also, the authors supported the notion of developing preparedness 

for antibacterial interventions as a part of anti-epidemic plans. Collection of data was the major problem associated 

with the model development. Insufficient data available caused deviations in the model’s outcome. The study made 

a first step in that area of research. Further models might wish to address heterogeneity of population issue and 

asymptotic infections. 

 

 Boys and Giles (2007) advanced the use of SEIR (susceptible – exposed – infected – removed) stochastic 

compartmental models for forecasting epidemics outbreak dynamics with only partially known data (if only removal 

time is available). The model worked in the following way: those compartments (or stages) were common for 

population members in many epidemics. The statistical and modelling component was included through 

probabilities of transfer from one compartment to another. Those probabilities were usually derived from rates of 

contact, getting infected, etc. The authors stipulated that constant removal parameters were not applicable to many 

outbreaks. Thus, they developed a model with time-dependent function for the removal time/rate. The technique 

used was the reversible jump MCMC (Markov Chain Monte Carlo) algorithm. Gamma distribution was used. It 

allowed to incorporate Bayesian inference in the model through the use of model parameters associated with the step 

function. Validation of the model was performed on a smallpox outbreak and a respiratory infection epidemic. 

According to the authors, an important finding was the need to introduce time dependence by contrasting the 

predictive distributions of removal times. Then they might be compared to actual times. Should those estimated 

parameters be derived accurately enough, it would enable the model to predict epidemics’ course and plan according 

to epidemics control and health management strategies. An interesting solution was to use the MCMC model and the 

reversible jump MCMC algorithm jointly to fit the model to actual data and make it more precise and applicable. 

Interestingly, that only one parameter available – the removal times of the infective individuals – enabled the model 

to develop posterior distributions for both the number and the position for removal rate changes. Boys and Giles 



International Business & Economics Research Journal – February 2011 Volume 10, Number 2 

© 2011 The Clute Institute  139 

(2007) indicated that further research could yield an application of the same MCMC - the reversible jump MCMC 

joint use technique for studying and predicting infection and other rates. 

 

 Schwartz (1992) addressed an interesting issue - epidemics in children and predictability of small 

amplitude epidemics (which still could be dangerous and costly). The general method that was used employed SEIR 

modelling with seasonal forcing. That method was capable to forecast the outbreak of seasonal and unexpected 

epidemics based on children’s disease parameters. The problem with that technique was a must of a large population 

size for that model. Should the population size be smaller, the solutions lost in quality. Schwartz (1992) 

experimented with relaxing assumptions of homogeneity in the arrival of susceptibilility into the model. The finding 

was that the model predicts reasonably well “stable long period oscillatory epidemics having small amplitude”. The 

problem could come from the least expected direction: the disease with which the population of children were 

immunized against could outbreak time-to-time and cause major health threat and costs. It was hardly possible to 

predict such events or forecast their spread and population affect. Scwartz (1992) used the coupled population model 

(i.e., the population size is identified by the sort of epidemic outbreak it produces). He showed that softening the 

susceptibilility input rate into the small population homogeneity assumption could explain long period outbreaks not 

limited by population. The magnitude of those outbreaks, according to the model, was the same as “a small 

amplitude period 1 outbreak”. In other words, adjustment in the rate of susceptibility introduction into the 

population could create a model explaining small amplitude outbreaks. That unveiled the course of hard-to-predict 

sub-type of epidemics. The model enabled the health care authority to better forecast and proactively manage the 

outbreaks.  

 

 Roberts (1982) developed a model for studying epidemics of parasite diseases with two hosts. An example 

of that could be larval cestodes in sheep. The author argued that the intermediate host, after contact with a parasite, 

could be infective or immune, or stay susceptible if no certainty. More complexity came from a possible outcome 

upon recovery - yes/no immunity - and the immunity duration could be short. Based on those assumptions, the 

authors used the SIRS model along with differential equation methods. That type of model could be useful for 

epidemics control practitioners. The model enabled the forecasting and understanding of dynamics and outcomes of 

parasite diseases. That alleviated anti-parasite plan development and resource justification and allocation. The 

significance of the paper extended over the limits of health care to agriculture. 

 

 The course of the outbreak and probability of extinction of an epidemic at the end of a large outbreak was 

researched by van Herwaarden (1997). The author developed an asymptotic model for identifying a probability 

value for extinction of an infection at the end of a large outbreak. The model used was a stochastic SIR model 

(where S stands for “susceptible”, I stands for “infected”, and R stands for “removed”). The researcher built local 

asymptotic expansions for plotting deterministic trajectories of the systems. The method applied was the Fokker-

Plank equation for the stochastic system, used for asymptotical solution of a boundary value problem. The paper 

addressed the important issue of the population exposed (“susceptible”) renewal rate. That scenario was common in 

case of active anti-epidemic measures. Thus, the model enabled to assess probability of success in eradicating the 

disease after an outbreak had happened and strong efforts made to combat it. If that rate was large, the outbreak 

would end up endemic. If the rate was not large, the probability of extinction was high. However, the study 

addressed the intermediate scenario too. That poly-scenario approach made the paper practically useful in epidemics 

control agencies and health care authorities’ practice. It will help justify expenditures for active anti-epidemic efforts 

and determine health care economics of epidemics control. 

 

 Davies et al. (2003) addressed another important issue in modelling disease outbreak and dynamics. They 

focused on consequences of decision-making in planning for and combating epidemics - how to flexibly keep those 

expenditures minimal. For that, the authors argued, the policy-maker should be aware of alternative options in 

treatment that produce various outcomes. Based on scenario analysis, the decision-maker could choose the most 

efficient option. For so doing, the modeller might incorporate disease dynamics and various response options. That 

made a model more complicated theoretically, structurally, and computationally. Different modelling techniques 

would produce different results if applied to such dynamic and unstable problem conditions. The way to incorporate 

treatment plans and epidemics dynamics, according to Davies et al., was the time for transition from one state to 

another. However, that data could contain a substantial extent measurement error. The authors advised to check for 

guidelines and procedures to compare compatibility of inputs. On the basis of their own model developed for 
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various pathologies, the authors analyzed how a model type choice affected the results. For example, a Helicobacter 

pylori spread-out (causing stomach ulcer disease) was considered an epidemic, though not like the flu or fever. 

Meanwhile, the nature and properties of the disease fit epidemics traits. Early models were based on decision trees 

to address screening decisions. Then Markovian models were developed. The authors developed their own discrete 

event simulation model and came out with results different from previous models. In that model, individuals with 

attributes (entities) progress from one event to another in a timely manner (Davies et al., 2003). Those attributes 

could be diverse in nature to reflect features of individuals. Time transition intervals and passes were developed 

from sampling data. The attributes affected distribution parameters and brought flexibility into the model. 

Assumptions of the model dealt with the cohort and incidence patients (a single fixed incidence cohort was used), 

the base scenario (usually assuming no management measures were taken), system boundaries (what population and 

environment to include, etc.), and data compatibility. Results included lives saved, life years saved, quality adjusted 

life years, costs, NPV of savings, efficiency, etc. The main advantage of their technique was the ability to 

incorporate various patient-type parameters (co-morbidities, etc.) into the model without exponentially enlarging the 

number of states (contrary to that, previous models had some 5,400 states). Stochastic processes were behind 

simulation and need of operational researchers in better development and understanding. Then, many values needed 

were of statistical samples and origin; thus, statistics expertise was required. Also, results came from different points 

in time. Since systems changed, it was difficult to compare results from previous outbreaks. However, advantages of 

using discrete simulation models outweighed their disadvantages. The variance between old models’ results and the 

new ones affected screening cost/need decision, length of disease, etc. 

 

 Abramson (2004) described an applied set of software (WINPEPI) developed to help epidemiologists in 

researching and planning epidemic control measures. That software was a good example of building a user-friendly 

application based on both statistics (mainly) and OR techniques (some of them included). WINPEPI consists of 

DESCRIBE (used in descriptive epidemiology), COMPARE2 (used for comparing two independent groups or 

samples in epidemiology, including an option to compare odds ratios for two samples), PAIRSetc (to compare 

paired and other matched observations), and WHATIS (a utility program for modelling epidemiologic challenges). 

Those programs together have 75 modules and can be used for alleviating the epidemiology practitioner’s life in 

regard to statistical and modelling issues. 

 

FUTURE RESEARCH OPPORTUNITIES 

 

 The methods and models developed are not perfect and still need improvement. It is important to analyze 

drawbacks and gaps. Nishiura (2007) investigated the inappropriate predictive capacity of models used for 

forecasting the spread of AIDS (as an example) in the US and Japan. The author identified problems with underlying 

assumptions used for forecasting. Among those, the author highlights a normal distribution of the epidemic curve in 

the USA and the coverage ratio of previously diagnosed/undiagnosed cases in Japan. Also, lack of understanding the 

fundamentals of the disease played a big role in those failures. Reporting system changes enhanced biases too. The 

back-calculation method was impossible to be applied. Then the author built on those model properties and pieces of 

information that might be available and accurate. Among those, the author highlighted transmission parameters in 

vivo and as probabilities in models (sample:  population generalizability issue, consistency with assumptions across 

models to make them comparable, interpretability of models for those involved in health care, and epidemics policy 

making and management). The research was of rare generalizing (methodological) style and aimed at assessing a 

spectrum of models from their outcome from a health care point of view. That approach differed from a usually 

narrow technique-specific stance of most publications. A more conceptual paper was useful for understanding key 

elements for developing the theory of a model. Nevertheless, the paper was not of use directly for epidemics 

managers; it contributed to improvements in the model building stage. Those improvements made the paper 

influential among epidemiology practitioners. 

 

 That paper, in particular, and future research sections from all papers mentioned, indicated several 

directions of future research: 

 

 First, the multidisciplinary approach to the epidemics modelling/forecasting research:  The OR/Statistics 

researchers will receive a complimentary benefit from teaming up with epidemiologists, managers, 
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physicians, etc. That combination of expertise will help better understand the nature of epidemics and, 

more exactly, reflect that nature in models. 

 Second, the customization of OR/Statistics research for use in epidemiology:  Diseases are various and 

numerous. They all have certain peculiarities that provide variance into the models. Thus, developing 

disease-customized models will help epidemics control practitioners withstand and better manage 

outbreaks. 

 Third, the use of cutting-edge methods in the epidemics outbreak management research:  OR/Statistics is 

strong in theoretical development of research quantitative methods. Active attempts to try new methods in 

epidemics control can produce substantial humanitarian, financial, and scholar results. 

 Fourth, the resource management in the epidemics outbreak management research:  Most of OR/Statistics 

research focuses on building models of outbreaks. Few studies address the unique nature of resources used 

in epidemics control and their use. Research in that direction will be warmly welcomed by the health care 

field. 

 Fifth, the involvement of public sector in the epidemics outbreak management research:  At present, cross-

disciplinary involvement brings together professionals with expertise in specific scientific disciplines - 

biologists, virusologists, logistics managers, etc.  Not enough OR/statistics research has studied and 

modeled issues facing disease control administrators.  Examples are financial models of epidemics - direct 

expenditures and potential economy losses. Those models would help public administrators better 

understand epidemics complexity and better communicate the importance of proper proactive measures that 

save lives. 

 

 Thus, there are at least five large opportunity areas in OR/Statistics research toward epidemics control. 

Developments in that research are both rigorous scholarly and valuable socially. Developments in those research 

areas will boost OR/Statistics reputation in the society. 

 

CONCLUSION 

 

 Operations Research (OR), powered with statistics and models, is a high potential engine for use in many 

areas that require evidence-based or model-based decision-making. One of the most promising areas is specifically 

the infection outbreak management. Given the complexity of and high value at stake in that field, a number of 

stakeholders and interested participants, such as academia, public policy-makers and practitioners, might be 

interested in obtaining a review of literature on OR-backed methods and techniques to manage the epidemics 

outbreak. The paper aimed to contribute the OR in three ways:  1) provide contemporary literature review along with 

summary of methods/techniques/models used in epidemics outbreak management, 2) improve awareness among the 

specialist community of OR/statistics use and benefits in their decision-making for epidemics outbreak management, 

and 3) highlight research opportunities for developing the field by academics and epidemics outbreak management 

professionals.  

 

 Key findings indicated that there were a number of instruments OR could offer to the epidemics control 

field. The models/techniques could be deployed by practitioners and contribute to the health care. Review of the 

field would also help OR academics identify prospective research streams and projects to pursue.   
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