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ABSTRACT 

 

Many manufacturing and service activities can be modeled using queuing theory. The optimization of 

the long-run solution to imbalances between supply and demand is very important to established 

businesses. This paper presents a family of queuing models that minimize the expected total cost 

incurred when restoring equilibrium to a stochastic system that has become unstable due to changes in 

the environmental parameters affecting its behavior. Analytical expressions for the expected total cost 

in terms of a policy parameter are derived from which numerically-savvy users can obtain the policy 

that minimizes the expected total cost. To determine the model parameters that most affect the optimal 

policy and to facilitate the determination of near-optimal policies, exact solutions were found for a 

large number of scenarios and then used to fit a regression model. The resulting regression equation 

can be used by practitioners to find policy parameters that approximately minimize the expected total 

cost due to imbalances in supply and demand. 

 

Keywords:  Queuing systems; Markov chains; Double-Ended queue; steady state probabilities.  

 

 

INTRODUCTION 

 

n business organizations, the task of satisfying the demand without oversupplying is often a difficult one.  If 

the demand is higher than the supply, a policy maker has two choices:  1) increase the supply or 2) decrease 

the demand.  On the other hand, if the supply is higher than the demand, the policy maker may choose to 

lower the supply or promote more demand.  In either case, there is a cost associated with the balancing and the 

optimum decision then depends on the total cost which may be incurred as a result of selecting one of the above 

policies.  

 

Supply and demand of goods and services has been modeled by many researchers who analyzed and 

described their behavior and proposed various ways to control supply and demand imbalances.  In particular, double-

ended models with finite queues have been considered by Brant and Brandt (1999, 2004), Connolly (2002), Takahashi 

et al (2000), Kendall (1951), Parra and Gallego (1999), Perry and Stadje (1999), Sasieni (1961), and Zenios (1999). 

 

We present a double-ended queuing model for stochastic supply/demand systems where supply and demand 

queues have finite maximum possible lengths k’ and k”, respectively. We can describe the state of the system by a one-

dimensional index. Excess supply results in a positive index while excess demand results in a negative index.  If instant 

pairing off is assumed, the queue can be either positive or negative, but not both at the same time.  By associating costs 

per time unit due to a unit of excess of supply or demand, we can express a total cost due to imbalance of demand and 

supply. We examine the queuing behavior and how to minimize the above total cost by advanced planning aimed to 

hold imbalance costs at a minimum.  Mendoza and Sedaghat (1999) derived exact closed-form solutions for the case 

where k’ = k”. In this paper, we removed such restriction and found the exact analytical expression for the cost of 

restoring balance to the system. Finding the policy that minimizes the cost function requires familiarity with numerical 

optimization techniques. To facilitate the use of the proposed model by practitioners and to determine which of the 

model parameters are most important in the determination of the optimal policy, we generated a number of scenarios 

and for each we found the optimal policy factor. The results of the analyses of those scenarios were used to find 

regression equations that express the corresponding policy factor in terms of the most relevant model parameters.  

I 
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THE MODEL 

 

Initially, we consider a simple system with only one kind of commodity and many consumers.  Both supply 

and demand are assumed to take place one unit at a time.  When there is a demand of one unit, it will be satisfied by 

commodities in stock, and if there is no item in stock, the demand joins the queue in the demand side and will wait 

until the commodity becomes available.  On the other hand, when the commodity is available and there is no 

immediate demand for it, it will join the queue on the supply side and will wait until the arrival of the next demand.  

If a consumer (demand) arrives while k' consumers are already in the queue, it leaves the system.  Similarly, when 

k" units of the commodity (supply) are already in the queue, there will be no more supply to the system. 

 

Our model can be considered as a double queuing system consisting of the servers (supplier) and the 

arrivals (consumers).  In other words, there may be a queue of available suppliers waiting for a consumer or a queue 

of consumers each waiting to be satisfied by a supplier.  We assume that units of supply (of commodity, personnel, 

service, etc.) arrive according to a Poisson process with average rate  while units of demand of the same kind arrive 

according to a Poisson process with average rate . A unit of demand (supply) would be instantly paired off, at time 

of arrival, with a unit of supply (demand), provided that there is at least one unit of supply (demand) in the system 

waiting to be distributed.  Otherwise, that unit of demand (supply) would join the queue on the demand (supply) 

side.  The system is said to be in state "-m", m = 0, 1, …, k', if there are m units of excess demand in the queue, and 

in state "m", m = 1, 2, …, k", if there are m units of excess supply.  Both k' and k" are assumed to be finite. 

 

Figure 1 illustrates the model with four supply units waiting for a demand unit to serve. To help visualizing 

the model imagine that randomly arriving taxis with a finite number of waiting spaces are available to serve 

randomly arriving passengers. 

 

 
Figure 1:  Model and Notation of Double-Ended Queue 
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ANALYTICAL FORMULATION AND SOLUTION 

 

 Bollapragada and Rao (2006) and Leeman (1964) considered the effects of managing supply. In this paper, 

we focus our attention to situations where supply is higher than demand, that is when  > μ. In these situations, either 

of two policies may be chosen; i.e.reducing the supply or increasing the demand. These two cases and their 

mathematical formulations are considered next. 

 

Case I:  Balance By Reducing Supply 

 

 Suppose that c' is the cost per time unit of one unit of excess demand in the queue, c" that of a unit of 

excess supply in the queue, α is supply reduction factor (α is applied to the given rate  of supply and the new 

supply rate becomes α, 0 < α < 1), and cα is the cost incurred per time unit in reducing the supply rate by one unit. 

Let Pm be the probability that the system is in state m, where m = -k’,…, 0,…, k".  If ρ = α/μ denotes the utilization 

factor, the expected total cost when a supply reduction factor is applied is 

 

               -1                          k" 

C(α) = c' Σ  (-m) Pm + c" Σ  m Pm   + cα (1 – α) (I) 

             m=-k'                  m=1 

 

where the first summation is the expected undersupply cost, the second is the expected oversupply cost, and the third is 

the expected cost of  reducing the supply rate from  to α.. 

 

 Our proposed model can be used to find stationary and transient probability distributions. In this paper we 

focus our attention on the stationary probabilities of being in a given state after the system is in operation long enough 

that all influences of the initial states have become negligible.   Let Pm now denote the steady-state probability that the 

system is in state m, where m = -k’,…, 0,…, k", it can be found using balance arguments that the balance equations for 

steady-state are 

 

         α P-k' = μ P-k'+1 

(α + μ) Pm = α Pm-1 + μ Pm+1 

      α Pk"-1 = μ Pk" (I-1) 

 

 The analytical solution to the above system of linear equations can be obtained based on balance arguments 

in Markov chains. See Stewart (1991, 1994). If ρ = (α)/μ, the solution is given by 

 

Pm = ρ 
m + k' 

(1 - ρ) / (1 - ρ 
k' + k" +1

) if ρ  1 (I-2) 

     = 1 / (k' + k" + 1) if ρ = 1. (I-3) 

 

 If above expressions for Pm are substituted in (I), the expected total cost to the system when a supply 

reduction factor is applied is given by: 

 

C(α)  = [c' k' (k' + 1) + c" k" (k" + 1)] / [2(k' + k"+ 1)] + cα   (1 - α) if ρ = 1 (I-4) 

         = f(ρ) / g(ρ) + cα  (1 – α) if ρ  1  (I-5) 

 

Where 

 

f(ρ) = - c’ (-k' + ρ + k' ρ – ρ
k' + 1

) + c”[ ρ 
k' + 1 

- (1 + k") ρ 
k' + k" + 1

 + k" ρ 
k' + k" + 2

 ] 

 

and 

 

g(ρ) = (1 - ρ) (1 - ρ 
k' +  k" + 1

) . 

 

 



International Business & Economics Research Journal – January 2009 Volume 8, Number 1 

94 

Case II:  Balance By Increasing Demand 

 

 Strategies to manage demand that control costs due to imbalance of supply and demand have been considered 

by DeCroix and Arriola-Risa (1998).  In our proposed model, when policy is the expansion of demand,  remains 

unchanged,  is replaced by  and the last term of (I) is replaced by c(-1), where  is the demand expansion factor 

(>1). If c denotes the cost incurred per time unit to increase the demand by one unit, the utilization factor is now ρ = 

/() and the expected cost when a demand expansion factor is applied becomes 

 

               -1                         k" 

C() = c' Σ  (-m) Pm + c" Σ  m Pm   + c μ ( - 1) (II) 

            m=-k'                  m=1 

 

 The first summation is the expected undersupply cost, the second is the expected oversupply cost, and the 

third is the expected cost of increasing the demand rate from  to . 

 

 If Pm now denotes the steady-state probability that the system is in state m, where m = -k’,…, 0,…, k", the 

balance equations for steady-state are 

 

             P-k' = μ P-k'+1 

( +  μ) Pm =  Pm-1 +  μ Pm+1 

          Pk"-1 =  μ Pk" (II-1) 

 

 The solution to equations (II-1) with ρ = /(μ) is given by 

 

Pm = ρ 
m + k' 

(1 - ρ) / (1 - ρ 
k' + k" + 1

) if ρ  1 (II-2) 

     = 1 / (k' + k" + 1) if ρ = 1. (II-3) 

 

 If above expressions for Pm are substituted in (II), the expected total cost to the system when a demand 

expansion factor is applied is given by: 

 

C()  = [c' k' (k' + 1) + c" k" (k" + 1)] / [2(k' + k"+ 1)] + c  ( -1) if ρ = 1 (II-4) 

         = f(ρ) / g(ρ) + c  ( -1) if ρ  1 (II-5) 

 

Where 

 

f(ρ) = - c’ (-k' + ρ + k' ρ – ρ 
k' + 1

) + c”[ρ 
k' + 1 

- (1 + k") ρ
k' +  k" + 1

 + k" ρ 
k' + k" +  2

] 

 

and  

 

g(ρ) = (1 - ρ) (1 - ρ 
k' + k" + 1

). 

 

EXACT OPTIMAL POLICIES FOR A SET OF SCENARIOS  

 

 The analytical expressions for C(α) in (I-4, I-5) and C() in (II-4, II-5) in the previous section can be used by 

numerically-savvy users to find  the policy value, α or ,  that minimizes the corresponding expected total cost. 

 

 To determine the model parameters that most affect the optimal  and  and to find easy-to-use formulas to 

get approximate optimal values for  and  and corresponding expected total costs, exact optimal values of  and  

were found for a number of combinations of the model parameters. 
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Table 1: Parameter Values Used to Generate 1,440 Scenarios 

 

 

 We use the term “scenario” to describe a fixed set of environmental parameters in the model under 

consideration.  We generated the scenarios using the parameter values obtained from the initial, increment and final 

values in Table 1. From the 3 x 3 x 7 x 2 x 1 x 4 x 4 = 2016 potential scenarios, only 1440 scenarios correspond to 

excess supply (  > μ.)  Unitary costs c” and cα (c in Case II below) are given as multiples of c’. Consequently, total 

costs are all expressed in c’ units. The optimal policy depends on the relative costs c”/c’ and cα/c’ but not on c’. 

However, to remind readers that all costs are in c’ units, we keep in the table c’ = 1 for all scenarios.  

 

 As mentioned in the Illustration above, the exact values of α and  that minimize such expected losses were 

found by iteration using procedure NLP in SAS.  A discussion and summary of such exact numerical results for Cases 

I and II are presented below. 

 

Case I:  Balance By Reducing Supply  

 

 For each scenario, the value of α that minimizes C(α) was found. We focus our discussion on the 1354 

“feasible” scenarios where the value of α that minimizes C(α) lies between 0 and 1. Figures (I-1), (I-2) and (I-3) 

illustrate typical shapes of the relationship between the minimum expected total cost C(α) and the supply reduction 

factor α.  Figure (I-1) illustrates the approximately 93% of scenarios where C(α) has two inflection points and its 

minimum occurs at a value of α between 0 and 1 where the derivative of C(α) is zero. Figure (I-2) illustrates the 

approximately 1% of scenarios where C(α) has one inflection point and its minimum occurs at a value of α close to 1, 

say greater than .90, where the derivative of C(α) is zero and where C(1) is slightly higher than the minimum. Finally, 

Figure (I-3) illustrates the approximately 6% of scenarios where cα is large relative to c’ so that C(α) is monotonically 

decreasing between 0 and 1 and its minimum occurs at α = 1. 

 

 

Case I, Scenario 23: k'=5, k”=5, lambda=2, mu=1, c’=1, 

c”=2, cα=1.5

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Alpha

 
Figure I-1 

Minimum at (Alpha, Total Cost) = (0.42126, 5.29315) 

 Initial Increment Final 

k’ 5 10 25 

k” 5 10 25 

 1 0.5 4 

 1 1 2 

c’ 1 1 1 

c” 1 1 4 

cα 0.5 0.5 2 
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Case I, Scenario 482: k'=15, k”=5, lambda=1.5, mu=1, 

c’=1, c”=1, cα=1
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Alpha
 

Figure I-2 

Minimum at (Alpha, Total Cost) = (0.95299, 3.51410) 

 

 

Case I, Scenario 628: k'=15, k”=5, lambda=4, mu=2, 

c’=1, c”=1, cα=2
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Figure I-3 

Minimum at (Alpha, Total Cost) = (1.00, 4.06249) 

 

 

Case II:  Balance By Increasing Demand  

 

 For each scenario, the value of  that minimizes C() was found. We focus our discussion on the 1360 

“feasible” scenarios where the value of  that minimizes C() is greater than 1. Figures (II-1), (II-2) and (II-3) 

correspond to the same three scenarios displayed before for Case I (with c instead of cα,) and illustrate typical shapes 

of the relationship between the minimum Expected Total Cost C() and the demand expansion factor . Figure (II-1) 

illustrates the approximately 93% of scenarios where C() has two inflection points and its minimum occurs at a  

value greater than 1 where the derivative of C() is zero. Figure (II-2) illustrates the approximately 1% of scenarios 

where C() has one inflection point and its minimum occurs at a value of  close to 1, say less than 1.1, where C’() is 

zero and where C(1) is slightly higher than the minimum. Finally, Figure (II-3) illustrates the approximately 6% of 

scenarios where c, the cost incurred per time unit to increase the demand by one unit, is large relative to c’ so that 

C() is increasing for  > 1 and its minimum occurs at  = 1. 
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Case II, Scenario 23: k'=5, k”=5, lambda=2, mu=1, 

c’=1, c”=2, cb=1.5
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Figure II-1 

Minimum at (Beta, Total Cost) = (2.16545, 5.51008) 

 

 

Case II, Scenario 482: k'=15, k”=5, lambda=1.5, mu=1, 

c’=1, c”=1, cb=1
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Figure II-2 

Minimum at (Beta, Total Cost) = (1.07469, 3.48814) 
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 Case II, Scenario 628: k'=15, k”=5, lambda=4, mu=2, 

c’=1, c”=1, cb=2
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Beta

 
Figure II-3 

Minimum at (Beta, Total Cost) = (1.00000, 4.06249) 

 

 

REGRESSION APPROXIMATIONS TO OPTIMAL POLICIES 

 

 As indicated before, to determine the model parameters that most affect the optimal  and , and to find 

easy-to-use formulas to get approximate optimal values for  and  and the corresponding expected total costs, the 

exact optimal values found for  and  were regressed on the environmental model parameters.  

 

Case I:  Balance By Reducing Supply  

 

 In 1,354 of the original 1,440 scenarios, the value of  that minimizes C(α) was between 0 and 1. Regressions 

based on these 1,354 scenarios lead to the following best estimate for the optimal  in terms of the model parameters: 

 

-hat = 1.289746 + (-0.534105) * (/) + 0.008112 * k' + 0.070196 * (/)
2
 + (-0.005705) * k"

 

   
[0.01409]       [0.01111]                [0.00017]           [0.00212]                   [0.00017]

 

 

 
+ (-0.026132) * c” (5.1) 

  [0.00124]  

 

with coefficient of determination R
2 

 = 0.9251 and standard error of estimate se = 0.0498. The figures in square 

parentheses are the regression coefficients’ standard errors. The equation identifies (/), k', (/)
2
,
 
k”, and c”, the cost 

per time unit of one unit of excess supply in the queue, as the most important regressors in determining the optimal α. 

It is interesting that cα, the cost incurred per time unit in reducing the supply rate by one unit, is not a major 

predictor of the optimal α.  The fitted regression equation allows a user to get approximate values of α and the 

corresponding expected total cost for the parameter values that he or she has, while the standard errors of the 

coefficients indicate how sensitive α-hat is to errors in estimating these regressors. If (5.1) leads to an estimated 

supply reduction factor greater than 1, use -hat = 1.  Remember that when using (5.1), c” should be expressed in c’ 

units. 
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 The absolute percentage error (APE) when estimating α using (α-hat) ranges from 0 to 58 and has a mean 

average percentage error (MAPE) of 9.7. The corresponding APE of the estimated minimum total cost ranges from 0 

to 110 with a MAPE of 8.7. It should be noted that these errors are inflated by scenarios where / > 3. These 

scenarios are unlikely in practice as they would indicate that management waited too long to control imbalance 

allowing the supply rate to become more than three times the demand rate. If these scenarios are omitted, APEs of the 

estimated minimum total cost range from 0 to 53 with a MAPE of just 7.2.  Even a better MAPE would be obtained if 

the regression to obtain -hat is based only on scenarios with / ≤ 3.  For the sake of greater parameter coverage, we 

report the regression fitted using all 1,354 scenarios. 

 

Case II:  Balance By Increasing Demand  

 

 As in Case I, the exact optimal values found for  were regressed on the environmental model parameters. 

The fitted regression equation allows a user to get approximate values of the optimal   and the corresponding 

expected total cost for the parameter values that he or she has.  

 

 In 1,360 of the original 1,440 scenarios the value of  that minimizes C() was greater than 1. As in Case I, 

we report the regression fitted using all 1,360 feasible scenarios. 

 

    -hat = -0.22300 + 1.09590 * (/) + (-0.03959) * k' + (0.03052) * k" + 0.13979 * c” 

   [0.03072]   [0.00766]               [0.00082]            [0.00084]            [0.00613]  (5.2) 

 

with coefficient of determination R
2 
 = 0.9476 and standard error of estimate se = 0.2461. It identifies (/), k', k”, and 

c”, the cost per time unit of one unit of excess supply in the queue, as the most important regressors in determining 

the optimal . However, c , the cost incurred per time unit to increase the demand by one unit, is not an important 

predictor of the optimal . The fitted regression equation allows a user to get approximate values of the optimal  and 

the corresponding expected total cost for the parameter values that he or she has. The standard errors of the 

coefficients indicate how sensitive -hat is to errors in estimating these regressors. If (5.2) leads to an estimated 

demand expansion factor less than 1, use -hat  = 1.  Again, remember than when using (5.2), c” should be 

expressed as a multiple of c’. 

 

 The absolute percentage error (APE) when estimating  using (-hat) ranges from 0 to 41 and has a mean 

average percentage error (MAPE) of 8.0. The corresponding APE of the estimated minimum total cost ranges from 0 

to 27 with a MAPE of 3.2. 

 

MODEL ILLUSTRATIONS 

 

An Illustration Of Exact And Approximate Solutions 

 

 Consider an educational job training/hiring system that specializes in training/placing data managers. As 

soon as a trainee completes his/her training, he/she is entered in the supply side of a centralized database. If there is 

one opening and there is no other registrant ahead of him/her, he/she will be given the job. Otherwise, he/she will 

join the supply queue. We assume that the arrivals of those who go through the training program follow a Poisson 

process with supply rate  per unit time. On the demand side, we assume that a company A which needs a data 

manager will be entered to the demand side of the database. Again, if there is at least one registrant waiting for a 

position and no other company had registered ahead of company A, then the registrant waiting in the line will be 

hired by company A. Otherwise, company A would have to join the queue for those companies waiting to hire 

trainees who have completed their training. We assume that the company requests coming to the registration office 

looking for available data managers follow a Poisson process with demand rate µ.  When there are data managers 

waiting to be hired, the queue is of positive length. When there are companies waiting to hire data managers, the 

queue is of negative length.  

 

 Suppose that  = 1080 trainees per year, μ = 720 positions per year, and k’ = k” = 15. Further, assume that 

the annual cost of a unit of excess demand in the queue (not having a trained data manager to fill an available 
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position) is c’ = $5000 (company fee), the net annual cost of a unit of excess supply in the queue (a non-hired data 

manager) is c” = $20000 (to cover advertising, screening, selection, and training costs), the annual cost of reducing 

the supply rate by one data manager is cα = $5000 (marginal cost of unused training resources), and the annual cost 

of reducing the demand rate by one position is c = $5000 (forgone fee).  Assuming for ease 360 days in a year, on a 

per day basis   = 1080/360 = 3 trainees/day, μ = 720/360 = 2 positions/ day, c’ = 5000/360, c” = 20000/360, cα = 

5000/360, and c =20000/360.  

 

Solution By Reducing Supply 

 

 The exact value of α that minimizes the total expected cost C(α) in (I-5) can be found numerically by 

iteration techniques such as procedure NLP in SAS. For information about NLP visit the Website: 

http://support.sas.com/rnd/app/index.html. For k’ = 15, k” = 15,   = 3, μ = 2, and relative unitary costs c”/c’ = 4, 

and cα/c’ = 1, the supply reduction factor that minimizes the total expected is α = 0.57089 with C(α) = 12.6121 (in c’ 

units). That is, we would reduce the annual number of trainees from 1080 to 1080*0.57089 = 617 leading to an 

annual expected total cost due to unbalance of 12.6121* c’ = 12.6121*5000 = $63,060.50. 

 

Solution By Increasing Demand 

 

 As before, the exact value of  that minimizes the total expected cost C() in (II-5) can be found by 

iteration. For k’ = 15, k” = 15,  = 3, μ = 2, c”/c’ = 4, and c/c’ = 1, the demand expansion factor that minimizes the 

total expected cost is  = 1.74155 with C() = 12.8228 (in c’ units). That is, we would increase the annual number 

of company requests from 720 to 720*1.74155 = 1254 leading to an annual expected total cost due to unbalance of 

12.8228* c’ = 12.8228*5000 = $64,114.00. 

 

 Comparing the expected total costs of the two approaches, we conclude that the best policy is to reduce the 

annual number of trainees from 1080 to 617. It is interesting to compare this policy with the “naïve” approach of 

simply reducing the annual number of trainees from 1080 to 1018*(2/3) = 720 to exactly match the demand for data 

managers. It can be found that following such a policy would lead to an annual expected total cost of 20.176*5000 = 

$100,880. Consequently, the trainee-reduction policy results in annual savings of $37,819.50. 

 

 For completeness, we report the estimated policy values obtained using equations (5.1), (I-5), (5.2) and (II-

5): -hat =  0.578107, C(-hat ) = 12.636736, -hat = 1.84396 and C(-hat ) =13.196226. Since C(-hat) is less than 

C(-hat), the approximate optimal solution would be to reduce the annual number of trainees from 1080 to 

1080*.578107=624 which is very close to 617, the exact solution. 

 

Numerical Comparisons Of Three Policies 

 

 We will compare for each of three selected scenarios the efficiency of the following three policies: 

 

(a) Reduction [expansion] factor found exactly by minimizing C() [C()] 

(b) Reduction [expansion] factor estimated using the regression equation (5-1) [5-2] 

(c) Reduction [expansion] factor found ignoring the stochastic nature of the model and setting the utilization 

factor ρ equal to 1 (leading to α = μ/ for Case I, and  = / for Case II) 

 

 Table 2 tabulates factors and their minimum expected costs under the three policies under consideration. 

Comparing figures for scenarios 23 and 482 for Cases I and II reveals that when solutions occur at points with zero 

slopes Case I solutions are neither uniformly superior nor inferior to corresponding Case II solutions. However, the 

optimal minimum total costs are close. Comparing figures (I-3) and (II-3) for Scenario 628, where solutions occur at 

boundary values for  and , Cases I and II both lead to exactly the same minimum expected total cost. 

 

 To simplify comparisons on whether to reduce supply (Case I) or expand demand (Case II), we will assume 

that cα = c for each of the three scenarios being discussed. For Scenario 23, the overall best policy is to reduce supply 

by a factor 
*
 =

 
0.42126 leading to a minimum expected total cost of 5.29315. The next best is to use -hat = 0.46209 

http://support.sas.com/rnd/app/index.html
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with total cost 5.37769; using  = μ/ = 0.50000 has a total cost of 5.59091. For Scenario 482, the overall best policy 

is to increase demand by a factor 
*
 =

 
1.07469 leading to a minimum expected total cost of 3.48814. The next best is to 

use -hat = 1.11936 with total cost 3.53281; using  = / = 1.50000 has a total cost of 6.92857. For Scenario 482, 

the overall best policy is to increase demand by a factor 
*
 =

 
1.07469 leading to a minimum expected total cost of 

3.48814. The next best is to use -hat = 1.11936 with total cost 3.53281; using  = / = 1.50000 has a total cost of 

6.92857. 
 

 

Table 2:  Comparing Minimum Expected Costs for Three Policies 

 

Reduction/Expansion Factor  

        Expected Total Cost 
CASE Scenario 23 Scenario 482 Scenario 628 

(I-a) Optimal * I 0.42126 0.95299 1.0000 

         C(*) I 5.29315 3.51410 4.06249 

(I-b) Regression Estimate: -hat I 0.46209 0.71355 0.56935 

         C(-hat) I 5.37769 5.39570 7.51630 

(I-c) α = μ/  I 0.50000 0.66667 0.50000 

          C(μ/) I 5.59091 6.92857 10.42857 

(II-a) Optimal * II 2.16545 1.07469 1.0000 

          C(*) II 5.51008 3.48814 4.06249 

(II-b) Regression Estimate: -hat II 2.20302 1.11936 1.66734 

          C(-hat) II 5.56643 3.53281 6.31315 

(II-c)  = /  II 2.00000 1.50000 2.0000 

          C(/) II 5.59091 6.92857 10.42857 

 

 

 Since scenario 23 is representative of more than 90 percent of the scenarios investigated, it can be concluded 

that policies based on regression estimates are, in most situations, very close to policies based on exact values and 

much better than those found setting the utilization factor ρ equal to 1. 

 

CONCLUSION 

 

We present a queuing model for stochastic supply/demand systems with excess supply where inter-arrival 

time of units of demand and supply are assumed to be exponentially distributed and supply and demand queues have 

finite maximum lengths k’ and k”, respectively.  We denote c’ and c” the costs per time unit due to a unit of excess 

of supply and demand, respectively, while cα and c denote the costs incurred per time unit in reducing the supply 

rate by one unit or increasing the demand by one unit, respectively. Under these assumptions and notation, we derived 

formulas (I-4, 5) and (II-4, 5) for the long-run total cost due to imbalance of demand and supply as a function of 

either the supply reduction factor (0 < α < 1) or the demand expansion factor (>1).  These formulas can be used to 

numerically find the optimal policy factors, i.e., those that minimize the expected total cost. By comparing the 

minimum expected total losses, the best policy, either reducing supply or increasing demand, is the one leading to the 

smaller expected total loss.  

 

We found regression equations to estimate the optimal policy factors based on exact results found in a large 

number of scenarios. Overall, measures of goodness of fit and detailed performance comparisons of representative 

scenarios indicate that policies based on regression estimates are, in most situations, very close to policies based on 

exact values and much better than those found setting the utilization factor equal to 1. 

 

The proposed model can be extended in several directions. One, already in progress, is to consider systems 

with excess demand instead of excess supply. Another possibility is to extend the proposed model to one dealing 

with a finite number of stochastic supply/demand systems. More challenging extensions are the use of more general 

distributions for the queues or the study of the transient behavior of the system before stationarity is achieved. 
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