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ABSTRACT 

 

Employing the daily bilateral exchange rate of the dollar against the Canadian dollar, the Swiss 

franc and the Japanese yen, we conduct a battery of tests for the presence of low-dimension chaos.  

The three stationary series are subjected to Correlation Dimension tests, BDS tests, and tests for 

entropy. While we find strong evidence of nonlinear dependence in the data, the evidence is not 

consistent with chaos.  Our test results indicate that GARCH-type processes explain the 

nonlinearities in the data.  We also show that employing seasonally adjusted index series 

enhances the robustness of results via the existing tests for chaotic structure. 
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INTRODUCTION 

 

his paper is a continuation of research on the behavior of the daily exchange rate of the dollar.  We 

investigate nonlinearities and chaos in the daily bilateral exchange rates of the US dollar against the 

Canadian dollar, the Swiss franc, and the Japanese yen.   

 

The behavior of the bilateral exchange rate of the dollar may be significantly different from the broader 

effective exchange rate.  This may be due to the weighting process that could smooth the effective rates series.  

Adrangi et al. (2008) investigate nonlinearities and the daily volatility in the effective exchange rate of the dollar.  

However, the aggregation and the trade-weighting of bilateral exchange rates to construct the effective exchange 

rate may also distort the actual behavior of the bilateral exchange rates.   

 

Several factors motivate the paper.  First, economists have long been interested in exchange rate 

fluctuations and forecasting them (see Kim and Karemera (2006), among others).  . The volatility and movements of 

the dollar are of particular interest to money managers, securities authorities and world Central Banks because the 

dollar plays the role of international anchor currency, and international capital movements among nations has 

steadily increased in the last two decades.  Furthermore, the dollar has experienced volatility in recent years and 

depreciated against major currencies, such as the Canadian dollar and the British pound.  

 

Second, the volatility in financial markets has generated interest in applying chaos theory to these markets 

including movements in the exchange rate of the dollar. Technical analysis has been used in forecasting other 

financial time series and may be successful in forecasting short-term fluctuations in the dollar if the series is 

nonlinear and/or chaotic (see for example, Blume, Easley, and O’Hara (1994), Bohan (1981), Brock, Lakonishok, 

and LeBaron (1992), Brush (1986), Clyde and Osler (1997), LeBaron (1991), Pruitt and White (1988, 1989), Taylor 

(1994), among others). 

 

Third, Nonlinear dynamics may be able to explain a richer array of time series behavior.  For example, 

sudden movements and wide fluctuations in asset prices, exchange rates, and other financial and economic series 

may not be properly captured by linear models, while nonlinear models may explain these behaviors (for instance, 

see Baumol and Benhabib (1989). 

T 
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In this paper, we first examine the daily percentage changes of the bilateral exchange rates of the dollar for 

nonlinearities. If nonlinearities are evident, we investigate whether chaos is the source of these nonlinearities.  

Finally, if nonlinearities are not stemming from chaotic behavior, we search for econometric models that may easily 

explain the nonlinear dynamics in the series.    

 

 Our findings show strong evidence that the exchange series exhibit nonlinear dependencies.  However, we 

find evidence that the series behavior may be inconsistent with chaotic structure. We argue that employing a 

seasonally adjusted index series contributes to obtaining robust results via the existing tests for chaotic structure. We 

identify Asymmetric Component GARCH (1,1) process as the model that best explains the nonlinearities in the daily 

dollar rates.  Our findings are particularly compelling because they confirm the power of a commonly known 

nonlinear model in explaining the behavior of the exchange rates. 

 

TESTING FOR CHAOS 

 

 The common tests of chaos are discussed in Adrangi et al. (2001a), Adrangi et al. (2001b), and Adrangi et 

al. (2004).  We repeat them in this paper to inform the reader. There are three tests that we employ here: (i) the 

Correlation Dimension of Grassberger and Procaccia (1983) and Takens (1984), (ii) the BDS statistic of Brock, 

Dechert, and Scheinkman (1987), and (iii) a measure of entropy termed Kolmogorov-Sinai invariant, also known as 

Kolmogorov entropy.   

 

Correlation Dimensions 

 

 Consider the stationary time series xt, t =1...T.  One imbeds xt in an m-dimensional space by forming M-

histories starting at each date t: xt
2 
= {xt, xt+1},.., xt

M 
= {xt, xt+1, t+2,............ 

 

xt+M-1}. One employs the stack of these scalars to carry out the analysis. If the true system is n-dimensional, 

provided M  2n+1, the M-histories can help recreate the dynamics of the underlying system, if they exist (Takens 

(1984)). For a given embedding dimension M and a distance , the correlation integral is given by 
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where  is the distance induced by the norm.  For small values of , one has C
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 where D is the dimension 

of the system (see Grassberger and Procaccia (1983)).  The Correlation Dimension in embedding dimension M is 

given by 
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and the Correlation Dimension is itself given by 
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We estimate the statistic 
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for various levels of M (e.g., Brock and Sayers (1988)).  The SC
M

 statistic is a local estimate of the slope of the C
M

 

versus e function. Following Franc and Stengos (1989), we take the average of the three highest values of SC
M

 for 

each embedding dimension.  
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BDS Statistics 

 

 Brock, Dechert and Scheinkman (1987) employ the correlation integral to obtain a statistical test that has 

been shown to have strong power in detecting various types of nonlinearity as well as deterministic chaos. BDS 

show that if xt is (i.i.d) with a nondegenerate distribution,  

 

infinityT   as   ,)(C  )(C
M1M  

 (5) 

 

for fixed M and .  Employing this property, BDS show that the statistic 
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where 
M

, the standard deviation of [], has a limiting standard normal distribution under the null hypothesis of IID. 

W
M

 is termed the BDS statistic. Nonlinearity will be established if W
M

 is significant for a stationary series void of 

linear dependence.  The absence of chaos will be suggested if it is demonstrated that the nonlinear structure arises 

from a known non-deterministic system.   

 

Kolmogorov Entropy 

 

 Kolmogorov entropy quantifies the concept of sensitive dependence of a series on initial conditions.  

Kolmogorov entropy (K) measures the speed with which the trajectories of a time-series diverge so that they become 

distinguishable. 

 

 Grassberger and Procaccia (1983) devise a measure for K which is more computationally manageable than 

earlier measures of entropy.  The measure is given by 

 

).
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 (7) 

 

 If a time series is non-complex and completely predictable, K2 0. If the time series is completely random, 

K2 .  That is, the lower the value of K2, the more predictable the system. For chaotic systems, one would expect 

0< K2 < , at least in principle. 

 

DATA AND SUMMARY STATISTICS 

 

 We utilize the daily bilateral dollar exchange rate series from January 1974 through mid July 2009, thereby 

covering the time period when the value of the dollar has been determined in a free float foreign exchange market 

system. We focus our tests on daily percentage changes, which are obtained by taking the ratio of log of the 

exchange rates as in Rt = (ln(Pt/Pt-1))100, where Pt represents the closing value on day t. 

 

 Table 1 presents the diagnostics for the Rt series.  The returns series are found to be stationary employing 

the Augmented Dickey Fuller (ADF) statistics.  There are linear and nonlinear dependencies as indicated by the Q 

and Q² statistics, and Autoregressive Conditional Heteroskedasticity (ARCH) effects is suggested by the ARCH(6) 

chi-square statistic. The summary of findings of Table 1 is as follows: (i) there are clear indications that nonlinear 

dynamics are generating the daily dollar exchange values, (ii) these nonlinearities may be explained by ARCH 

effects, and (iii) whether these dynamics are chaotic in origin is the question that we turn to next.   

 

 To capture the linear structure and daily seasonalities we first estimate an autoregressive model for the 

dollar with controls for possible day-of-the-week effects, as in  
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where Djt represent day-of-the-week dummy variables.  The lag length for each series is selected based on the 

Akaike (1974) criterion.  The residual term (t) represents the index movements that are purged of linear 

relationships and seasonal influences.   

 

 Table 2 presents the estimation results for equation (8).  We see that the AR (1) or AR (4) models with the 

day-of-the-week dummies completely explain the linear dependencies in the Rt series.  For instance, the Q (12), in 

all cases, is statistically insignificant at all usual significance levels.  However,  Q
2 

(12) LM statistics are significant 

at the one percent level showing that the seasonal AR models in equation (8) are not capable of explaining 

nonlinearities present in the series. Thus, we turn our attention to testing for the source of these nonlinearities.  The 

correlation dimension and BDS statistics are employed to see if the nonlinearities are consistent with chaos.   

 

Correlation Dimension Estimates 

 

 Table 3 reports the Correlation Dimension (SC
M

) estimates for various components of the dollar returns 

series alongside that for the Logistic series developed earlier. Results show that correlation dimension estimates do 

not settle with increasing dimension.  For instance, SC
M

 estimates for the logistic map stay around one as the 

embedding dimension rises.  Furthermore, the estimates for the logistic series are not sensitive to the AR 

transformation, consistent with chaotic behavior.     

 

 For the dollar series, on the other hand, SC
M

 estimates show inconsistent behavior with chaotic structures.  

For instance, the SC
M

 does not settle.  The estimates for the AR transformation do not change results much, but are 

mostly larger and do not settle with increasing of the embedding dimension.    

 

BDS Test Results 

 

 Table 4 reports the BDS statistics (Brock, Dechert and Scheinkman (1987)) for [AR(p),S] series and 

standardized residuals (/h) from three GARCH- type  models: GARCH (1,1), Exponential GARCH (1,1), and 

Asymmetric Component GARCH (1,1). 

 

 The BDS statistics are evaluated against critical values obtained by bootstrapping the null distribution for each 

of the GARCH models. The critical values for the BDS statistics are reported in Adrangi et al. (2001a), Adrangi et al. 

(2001b), and Adrangi et al. (2004). 

 

 The BDS statistics strongly reject the null of no nonlinearity in the [AR(p),S] errors for the dollar return 

series. However, BDS statistics for the standardized residuals from the GARCH-type models are mostly 

insignificant at the 1 and 5 percent levels.  On the whole, the BDS test results provide compelling evidence that the 

nonlinear dependencies in the dollar exchange rate returns series arise from GARCH-type effects, rather than from a 

complex, chaotic structure.   

 

 From the BDS statistics presented in Table 4, it is apparent that the variations of the GARCH model may 

explain the nonlinearities in the dollar series.  Table 5 reports the maximum likelihood estimation of a Asymmetric 

Component GARCH (1,1) model.  It is clear that this model fits the dollar return series well.  All coefficients in the 

[AR(p),S] and the variance equations are significant at the one or  five percent significance levels.   

 

Kolmogorov Entropy Estimates 

 

 We examined the Kolmogorov entropy estimates (embedding dimension 15 to 30) for the Logistic map (w 

= 3.75, x0 =.10) and [AR(1),S] for the dollar return series.  Kolmogorov entropy estimates are considered the most 

direct test of chaotic behavior. The estimates for the Logistic map provide the benchmarks for a known chaotic 
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series.  The entropy estimates for the dollar return series show little sign that the series is settling down as do those 

for the Logistic map, i.e.,  there is no clear evidence of low dimension chaos in the dollar returns. The standardized 

residuals from the GARCH (1,1) model and the returns series  demonstrate a pattern that is not consistent with the 

chaotic pattern shown by the logistic function.   

 

SUMMARY AND CONCLUSIONS 

 

 Financial researchers have become interested in chaotic time series in the past two decades because many 

economic and financial time series appear random.  However, random-looking variables may, in fact, be chaotic and 

thus, may be predictable by technical tools, at least in the short-run.   

 

 Employing the daily bilateral exchange rates of the dollar, we conduct a battery of tests for the presence of 

low-dimension chaos.  The stationary percentage change series are subjected to Correlation Dimension tests, BDS 

tests, and tests for entropy. While we find strong evidence of nonlinear dependence in the data, the evidence is not 

consistent with chaos.  Our test results indicate that GARCH-type processes explain the nonlinearities in the data.  

We also show that employing seasonally adjusted return series enhances the robustness of results via the existing 

tests for chaotic structures. For the bilateral exchange rates, we show that an Asymmetric Component GARCH (1,1) 

model adequately explains the nonlinearities in the series. Thus, relatively common nonlinear econometric models 

may be employed to gather information and predict future movements and the volatility of these series. This 

information may be valuable for money mangers, global fund managers, country fund investors, as well as local 

monetary policy and exchange authorities and central banks.  It also suggests that the “weak form” of the Efficient 

Market Hypothesis for the case of the bilateral dollar exchange rates may be violated.  This is so because GARCH-

type nonlinear models may be employed for possible predictive purposes.  This point may be the topic of further 

research.    

 

AUTHOR INFORMATION 

 

Bahram Adrangi is a Professor of Economics.  His areas of research interest are financial economics, international 

economics, and transportation economics.  His research papers have appeared in the Financial Review, Journal of 

Business Finance and Accounting, Journal of futures Markets,  Quarterly review of Economics and Finance, 

Applied Financial Economics, Journal of Transport Economics and Policy, Transportation Journal, The Logistics 

and Transportation Review, and the Journal of Industrial Organization,  among others.   

 

Mary Allender is an Associate Professor of Economics.  Her areas of research interest are Macroeconomics, 

International Economics, and sports economics.  Her research papers have been published in the Quarterly review of 

Economics and Finance, Journal of Economics and Finance, Atlantic Economic Journal, and Sports Journal, 

among others.   

 

Arjun Chatrath is a Professor of Finance.  His areas of research interest are financial economics, futures markets 

and derivatives.  His research papers have appeared in the Journal of Business, Journal of Banking and Finance, 

Journal of Derivatives, Financial Review, Journal of Business Finance and Accounting, Journal of futures Markets, 

and Quarterly review of Economics and Finance, among others.   

 

Kambiz Raffiee is the Foundation Professor of Economics in the College of Business at the University of Nevada, 

Reno.  He received his Ph.D. in Economics from the University of Oregon in 1983.  His areas of specialization are 

in the airline industry and applied financial economics. He has published extensively in nationally and 

internationally refereed journals that includes the top ranked journals in transportation economics. He received the 

University of Nevada, Reno Foundation Professor award in May 2001 in recognition of his significant contributions 

in research, teaching and service.   

 

 

 

 

 



International Business & Economics Research Journal – March 2010 Volume 9, Number 3 

90 

REFERENCES 

 

1. Adrangi, B., Allender, M., Chatrath, A., & Raffiee, K. (2008).  Nonlinear dependencies and chaos in the 

exchange rate of the dollar. Global Business and Finance Review, 13(1), 59-76, Spring.   

2. Adrangi, B., Chatrath, A., Kamath, R., & Raffiee, K.  (2004).  Nonlinearity and chaos in the stock market of 

Thailand. International Journal of Business, 9(2), 159-176, Spring. 

3. Adrangi, B., Chatrath, A., Dhanda, & Raffiee, K. (2001a), Chaos in oil prices?  Evidence from futures 

markets. Energy Economics, 23 (4), pp. 405-425, July. 

4. Adrangi, B., Chatrath, A., Kamath, R, & Raffiee, K. (2001b). Demand for the U.S. air transport service:  A 

chaos and nonlinearity investigation. Transportation Research Part E, 37(5), 337-353,  November.   

5. Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19 

(6), 716-723, December. 

6. Blume, L., Easley, D., & O’Hara, M. (1994). Market statistics and technical analysis:  The role of volume.  

Journal of Finance, 49 (1), 153-181, March. 

7. Bohan, J. (1981). Relative strength: further positive evidence. Journal of Portfolio Management,  8(1), 36-39, 

Fall. 

8. Brock, W.A., Dechert, W., & Scheinkman, J. (1987).  A test of independence based on the correlation 

dimension. Unpublished Manuscript, University of Wisconsin, Madison, University of Houston, and University 

of Chicago. 

9. Brock, W.A., & Dechert, W. (1988). Theorems on Distinguishing Deterministic and Random Systems. In 

Barnett, W., Berndt, E., & White, H.. (Eds.), Dynamic econometric modeling, Proceedings of the Third 

Austin Symposium, Cambridge: Cambridge University Press. 

10. Brock, W.A., & Sayers, C.L. (1988).  Is the business cycle characterized by deterministic chaos?. Journal 

of Monetary Economics, 22 (1), 71-90, July. 

11. Brock, W.A.., Lakonishok, J., & LeBaron B. (1992).  Simple technical trading rules and the stochastic 

properties of stock returns. Journal of Finance, 47 (5), 1731-1764, December. 

12. Brock, W.A., Hsieh, D.A., & LeBaron, B. (1993).  Nonlinear dynamics, chaos, and instability: Statistical 

theory and economic evidence, MIT Press, Cambridge, Massachusetts. 

13. Brush, J. (1986).  Eight Relative strength methods compared.  Journal of Portfolio Management, 13(1), 21-

28, Fall. 

14. Clyde, W.C., & Osler, C.L. (1997).  Charting: Chaos theory in disguise?. Journal of Futures Markets, 17 (5), 

489-514, August. 

15. Dickey, D.A. & Fuller, W.A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. 

Econometrica, 49(4), 1057-1072, July. 

16. Engle, R.F. (1982).  Autoregressive conditional heteroskedasticity with estimates of the variance of United 

Kingdom inflation. Econometrica, 50 (4), 987-1007, July. 

17. Franc, M. & Stengos, T. (1989).  Measuring the strangeness of gold and silver rates of Return. Review of 

Economic Studies, 56(4), 553-567, October. 

18. Grassberger, P. & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9 (1-2), 

189-208, October. 

19. Kim, B.J. C. & Karemera, D. (2006). Assessing the forecasting accuracy of alternative nominal exchange 

rate models: The case of long memory. Journal of Forecasting, 25 (5), 369-80, August. 

20. LeBaron, B. (1991). Technical trading rules and regime shifts in foreign exchange. University of 

Wisconsin, Social Sciences Research Institute Working Paper. 

21. Pruitt, S.W. & White R.E. (1988). The CRISMA trading system:  Who says technical analysis can’t beat the 

market?. Journal of Portfolio Management, 14 (3), 55-58, Spring. 

22. Pruitt, S.W. & White R.E. (1989), Exchange-traded options and CRISMA trading:  Who says technical analysis 

can’t beat the market?. Journal of Portfolio Management, 15 (4), 55-56, Summer. 

23. Takens, F. (1984). On the numerical determination of the dimension of an attractor in dynamical systems 

and bifurcations. Lecture Notes in Mathematics, Springer-Verlag Publishing, Berlin. 

24. Taylor, S. J. (1994). Trading futures using a channels rule:  A study of the predictive power of technical 

analysis with currency examples.  Journal of Futures Markets, 14 (2), 215- 235, April. 

 

 

http://newfirstsearch.oclc.org/WebZ/FSQUERY?searchtype=hotauthors:format=BI:numrecs=10:dbname=EconLit::termh1=Karemera%5C%2C+David:indexh1=au%3D:sessionid=fsapp11-42225-f2992jqf-pkzb2z:entitypagenum=6:0:next=html/records.html:bad=error/badsearch.html


International Business & Economics Research Journal – March 2010 Volume 9, Number 3 

91 

Table 1:  Return Diagnostics 

 Canadian dollar Swiss franc Japanese yen 

Mean 0.0013 -0.013 -0.013 

SD   0.385 0.739 0.663 

SK -0.243 -0.055 -0.557 

K 17.73 6.107 7.700 

JB 80880.37*** 3600.51** 8691.59*** 

ADF -42.111*** -42.403*** 92.536*** 

ADF(T) -42.150*** -42.411*** -92.532*** 

PP -91.077*** -92.975*** -92.891*** 

PP(T) -91.093*** -92.975*** -92.891*** 

Q(12) 35.49*** 21.359*** 26.750*** 

Q²(12) 5917.5*** 1058.8*** 1007.5*** 

ARCH(6)  1302.08*** 426.42*** 474.37*** 

The Table presents the return diagnostics for the bilateral daily exchange rates of the US dollar against the Canadian dollar, Swiss 

franc, and the Japanese yen series over the interval, January 1974 through July 2009 (8927 observations).  Returns are given by Rt = 

ln(Pt/Pt-1)100, where Pt represents closing exchange rate on day t. ADF, ADF(T) represent the Augmented Dickey Fuller tests (Dickey 

and Fuller (1981)) for unit roots, with and without trend respectively. The Q(12) and Q²(12) statistics represent the Ljung-Box (Q) 

statistics for autocorrelation of the Rt and Rt² series respectively. The ARCH(6) statistic is the Engle (1982) test for ARCH (of order 6) 

and is ² distributed with 6 degrees of freedom.  

*** represents the significance level of .01. 

 

 

Table 2:  Linear Structure and Seasonality 

 Canadian dollar Swiss franc Japanese yen 

Intercept 0.0225*** (2.506) -0.005 (-0.221) -0.0352** (-2.145) 

Rt-1 0.0347*** (3.278) 0.0164* (1.653) 0.0209** (1.975) 

Rt-2 -0.0017 (-0.165)     

Rt-3 0.0177* (1.670)     

Rt-4 0.0029 (0.278)     

Mon -0.0276*** (-2.112) -0.0505** (-2.013) 0.0328 (0.266) 

Tue -0.0335*** (-2.625) 0.0069 (0.280) 0.0359* (1.277) 

Wed -0.0300*** (-2.363) 0.0103 (0.425) 0.0162 (-0.105) 

Thr 0.0158 (-1.239) -0.0101** (-0.448) 0.0181 (-0.642) 

       

R² 0.002  0.001   0.0008 

LM(1) 343.33***  124.53***   282.11*** 

Q(12) 22.39**  19.20*   21.77** 

Q2(12) 5795.7***  1055.5***   1013..80*** 

The coefficients and residual diagnostics are from the OLS regressions of returns on prior returns and twelve monthly dummies.  The 

lag-length was selected based on Akaike's (1974) criterion. The Lagrange Multiplier statistic of first order autocorrelation (LM(1), Chi-

square) tests the null of no autocorrelation of order one in the regression residuals. The Q(12) and Q2(12) statistics represent the Ljung-

Box (Q) statistics for autocorrelation in the residuals. *,**, and *** represent the significance levels of .10, .05, and .01, respectively. 
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Table 3:  Correlation Dimension Estimates 

Canadain Dollar 

M= 5 10 15 20 

Logistic 1.02 1.00 1.03 1.06 

Logistic AR 0.96 1.06 1.09 1.07 

Returns 3.795 5.110 6.237 6.831 

AR(4) 3.210 5.108 6.236 6.840 

AR(4),S 3.221 5.165 6.360 7.039 

Shuffled 28.064 7.455 11.457 15.359 

 

Swiss Franc 

M= 5 10 15 20 

Logistic 1.02 1.00 1.03 1.06 

Logistic AR 0.96 1.06 1.09 1.07 

Returns 3.816 7.169 9.997 12.266 

AR(1) 3.813 7.162 10.075 12.249 

AR(1),S 3.803 7.138 9.957 12.413 

Shuffled 3.962 7.989 11.992 16.536 

 

Japanse Yen 

M= 5 10 15 20 

Logistic 1.02 1.00 1.03 1.06 

Logistic AR 0.96 1.06 1.09 1.07 

Returns 3.564 6.339 8.618 10.811 

AR(1) 3.571 6.354 8.669 10.698 

AR(1),S 3.566 6.323 8.555 10.576 

Shuffled 3.806 7.491 11.406 14.696 

 

The Table reports SCM statistics for the Logistic series (w = 3.750, n = 2250), daily bilateral exchange rates of the dollar 

(dollars/Canadian, francs and yen/US dollar) against the Canadian dollar, Swiss franc and the Japanese yen for the period of 

January1974 through July 2007 series and their various components over four embedding dimensions: 5, 10, 15, 20. AR (p) 

represents autoregressive (order p) residuals, AR(p),S represents residuals from autoregressive models that correct for day-of-the-week 

effects in the data. 
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Table 4:  BDS statistics 
 

Panel A: Canadian dollar                               M 

 

/ 2 3 4 5 
 

[AR(4),S] Residuals 

0.04563 18.263 23.645 30.473 39.366 

0.09125 18.505 23.178 27.614 32.408 

0.13688 18.085 22.412 25.883 28.990 

0.18250 16.839 20.927 23.998 26.346 

 

GARCH (1,1) Standard Errors 

0.03720 1.568 0.195 -0.049 -0.379 

0.07440 1.710 0.478 0.209 -0.065 

0.11160 1.908 0.737 0.312 -0.058 

0.14880 2.233 1.292 0.831 0.366 

 

Exponential GARCH Standard Errors 

0.037 0.768 -0.729 -1.023 -1.282 

0.075 1.148 -0.207 -0.477 -0.757 

0.113 1.670 0.383 -0.001 -0.320 

0.150 2.328 1.336 0.914 0.508 

 

Component GARCH Standard Errors 

0.03664 0.169 -1.340 -1.71 -1.960 

0.07328 0.272 -1.241 -1.640 -1.930 

0.10992 0.349 -1.076 -1.628 -1.984 

0.14656 0.734 -0.392 -0.986 -1.461 

 

 

Panel B: Swiss franc               M 

 

/ 2 3 4 5 
 

[AR(1),S] Residuals 

0.036 6.254 8.290 10.075 11.919 

0.073 6.843 8.914 10.817 12.496 

0.109 7.739 9.685 11.522 12.992 

0.146 8.969 10.771 12.495 19.675 

 

GARCH (1,1) Standard Errors 

0.044 -2.149 -2.380 -2.303 -2.168 

0.089 -2.243 -2.612 -2.599 -2.658 

0.134 -1.961 -2.501 -2.614 -2.727 

0.176 -1.199 -1.874 -2.0733 -2.318 

 

Exponential GARCH Standard Errors 

0.044 -2.368 -2.687 -2.728 -2.757 

0.088 -2.374 -2.739 -2.777 -2.846 

0.132 -1.787 -2.283 -2.414 -2.501 

0.176 -0.823 -1.407 -1.569 -1.726 

   

Asymmetric Component GARCH Standard Errors 

0.044 -2.308 -2.414 -2.377 -2.225 

0.089 -2.443 -2.998 -2.664 -2.678 

0.133 -2.171 -2.559 -2.694 -2.771 

0.177 -1.402 -1.952 -2.171 -2.385 
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Panel C: Japanese yen                                M 

 

/ 2 3 4 5 
 

[AR(1),S] Residuals 

0.03708 9.266 11.666 14.364 17.589 

0.07415 9.046 10.978 13.068 15.013 

0.11123 9.702 11.520 13.220 14.525 

0.14830 10.235 12.257 13.820 14.825 

 

GARCH (1,1) Standard Errors 

0.04209 1.627 1.227 1.631 2.266 

0.08418 0.899 0.264 0.694 1.101 

0.12627 0.897 0.344 0.744 0.945 

0.16836 1.391 1.195 1.529 1.524 

 

Exponential GARCH Standard Errors 

0.041 0.539 -0.101 0.061 0.455 

0.082 0.201 -0.677 -0.443 -0.206 

0.124 0.775 0.033 0.283 0.380 

0.166 1.701 1.465 1.779 1.760 

   

Asymmetric Component GARCH Standard Errors 

0.041 1.561 1.360 1.802 2.533 

0.082 0.854 0.447 0.896 1.386 

0.124 0.848 0.540 0.955 1.246 

0.165 1.334 1.405 1.766 1.847 

 

The figures are BDS statistics for [AR(p),S] residuals, and standardized residuals /h from three ARCH-type models. The BDS 

statistics are evaluated against critical values obtained from Monte Carlo simulation in Adrangi et al. (2001a), Adrangi et al. (2001b), 

and Adrangi et al. (2004) . 

 ** represents the significance levels of .05. 
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Table 5:  ARCH Dynamics in the Dollar Exchange Rates 

 Canadian dollar [ht] Swiss franc [ht] Japanese yen [ht] 

constant 1.087** (3.515) 0.695*** (7.199) -36.995*** (-25.241) 

Perm : q(-1)-c1  0.999*** (11801.982) 0.992*** (592.815) 1.000*** (387587.404) 

Perm: ARCH(-1)-GARCH(-1) 0.041*** (9.574) 0.063*** (19.214) 0.025*** (20.027) 

Trans: (Arch(-1)-q(-1)) 0.065*** (10.261) -0.010 (-1.386) 0.066*** (13.907) 

Trans: GARCH(-1)-q(-1) 0.870*** (57.611) -0.434*** (49.781) 0.818*** (149.564) 

LL(ACGARCH) -1560.717  -9171.601  -7923.447  

 

The maximum likelihood estimates are from Asymmetric Component GARCH(1,1) models fitted to the exchange rates of the dollar against the Canadian dollar, Swiss franc, and the 

Japanese yen series, respectively. Statistics in ( ) are t-values.  LL represents the log-likelihood function. 

 *** represents the significance level of .01. 
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NOTES 

 

 


