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ABSTRACT 

 

We study the problem of determining the number of vehicles needed to provide a demand 

responsive transit service with a predetermined quality for the user in terms of waiting time at the 

stops and maximum allowed detour. We propose a probabilistic model that requires only the 

knowledge of the distribution of the demand over the service area and the quality of the service in 

terms of time windows associated with pickup and delivery nodes. This methodology can be much 

more effective and straight forward compared to a simulation approach whenever detailed data 

on demand patterns are not available. Computational results under a fairly broad range of test 

problems show that the model can provide an estimation of the required size of the fleet in several 

different scenarios. 

 

Keywords:  Transportation model, demand responsive, fleet operation, predetermined quality. 

 

 

INTRODUCTION 

 

very decision-making process produces a final choice or opinion. It begins when we need to do something 

but we do not know what. Therefore, decision-making is a reasoning process, which can be rational or 

irrational, and can be based on explicit assumptions or tacit assumptions. 

 

Decision-making is said to be a psychological construct. This means that although we can never “see” a 

decision, we can infer from observable behavior that a decision has been made. Therefore, we conclude that a 

psychological event that we call “decision making” has occurred. It is a construction that imputes commitment to 

effect the action. The manager is forever beset by the necessity to choose among alternatives the outcome of which 

is definitely unknown. Strategic decisions take place at three different levels in an organization. These levels are 

functional, businesses and corporate. The corporate strategic manager seeks to maximize the attainment of long-term 

organization priorities such as maximizing shareholders wealth and developing managerial ability.  

 

The political and business terrain in many developing countries in recent time has been that of biting 

economic hardship, great uncertainties and instability. Most organizations in these nations are having serious 

problems in coping with their corporate functions and responsibilities. Of particular interest is the fleet operation 

problem manufacturing organizations have been encountering. The decision on the choice of route of transportation 

which tells more on the profitability and success of such organizations, has posed a great challenge to the Fleet 

Operation Departments of many of these organizations. Hence, this study considers a many-to-many demand 

responsive transit service with predefined itineraries and schedules. 

 

The Problem 

 

The economic downturn in many African countries, particularly Nigeria, has been having serious effects on 

some organizations in the manufacturing sector to the extent that a number of such organizations have had to close 

shop due to escalating costs of production and distribution. However, the distribution cost outweighs the production 

E 
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cost. We investigated to what extent a transportation model could help in solving the problem and which type of 

model will be most suitable for use in order to: 

 

 Achieve the attainment of corporate objectives 

 Optimize the profitability level 

 

Related Studies 

 

A good deal of research has been devoted to the investigation of issues similar to ours, and it is interesting to 

compare different approaches in order to draw lessons from our problem. As will be shown in the following 

sections, the proposed methodology relies on a variety of research fields. In what immediately follows, we take a 

brief look at the past work of various authors in the area being investigated.  

 

Freight Distribution Systems 

 

One of the related fields that can provide useful insights for our problem is the abundance literature on the 

modeling of freight distribution systems. Bearwood, Halton and Hammersley (1959) and Eilon, Watson-Grandy and 

Christofides (1971) estimate the length of a TSP tour for a fleet of vehicles through simulation. In distribution 

problems it is usually possible to divide the service area into several zones each of which is served with one vehicle 

and each path is estimated using the formulas for the TSP tour. This very popular technique, called “cluster-first, 

route second”, has been successively used in many papers modeling distribution problems. Larson and Odoni (1981) 

provide useful insights for the multi-route problem, while a generalization of the TSP formula for zones of different 

shapes is provided in Daganzo (1984a).  

 

Some authors [for example Adebisi and Hurdle (1982); Aldaihani, Quadrifoglio, Dessouky and Hall 

(2004); Quadrifoglio, Hall and Dessouky (2005)] adapt a model for fixed lines bus systems to flexible services (that 

is, services in which the buses can deviate from their pre-defined path to serve requests off the route). In those cases, 

the decision variable usually considered is the headway between two successive vehicles or the slack in the 

schedule. This kind of service is different from our DRT system, since in our case there are no predefined paths and 

so headways cannot be defined. For this reason, a model for conventional transit system cannot be used in our case. 

 

In the 1970’s due to the diffusion of Para transit services, some researchers proposed different 

methodologies to model simplified variants of a DRT system in order to compare them with conventional bus line 

networks (Ward, 1975). The issue of the design of an integrated urban public transportation system was investigated 

by Batchelder and Kullman (1977). However in this case the model for the dial-a-ride system was based on 

computer simulations calibrated on real datasets. Wilson and Hendrickson (1980) focus on performance models, 

where the decision variable is related to the quality of the service, and provide an excellent comparative analysis on 

the different methodologies that have been proposed. They also report from previous unpublished research empirical 

models for the determination of the number of vehicles that were calibrated on real data. It is well known that 

empirical models are difficult to use in a context that is different from the one upon which they have been calibrated. 

 

Another modeled system is “many-to-one”, where there are many origins and a single destination. In this 

case the service area is usually divided into several zones and in each of these zones, only one vehicle can operate. A 

typical example of this is the waste disposal problem in Lagos and Oyo states in Nigeria. Each vehicle collects the 

request in its zone and delivers them to a central location. It is straightforward to see that in this case it is possible to 

decompose the problem into several smaller TSP, and to successfully apply the previously mentioned “cluster-first, 

route-second” methodologies for the estimation of both the number of vehicles and the distance traveled. In this 

case, the decision variable can be the size of the zone or the capacity of the vehicle.   

 

Some research has focused on “many-to-many” systems, where there are many origins and destinations. 

Arrillaga and Medville (1974) and Flushberg and Wilson (1976) make use of regression models, whereas Lerman 

and Wilson (1974) and Daganzo (1978) propose stochastic models in which the customer’s arrival at a stop is a 

Poisson distributed queuing process. The general drawback of the former approach is the limitation of the validity 

range depending on the datasets used for the calibration, whereas the latter may present problems in the case of un-
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congested systems. Daganzo (1984b) performs a comparison of fixed and flexible transit systems by modeling their 

costs. In this work, door to door service is a limiting case of a jitney service, that is the considered routing strategy 

consists of dispatching vehicles with constant headways and the stops, without waiting passengers are skipped.  

 

An interesting theoretical discussion is provided in Stein (1978a, 1978b) where on the basis of a 

probabilistic analysis; a class of scheduling rules is suggested. The outcome is that a decomposition algorithm in 

which buses serve a small zone and passengers across different zones have to transfer seems to asymptotically 

outperform systems in which the vehicles can travel in the whole area and a customer is inserted on the basis of the 

cost minimization. 

 

AGENT-BASED MODEL SIMULATION (ABMS) 

 

An attempt at aiding the understanding of this study will necessitate a little excursion into the explanation 

of Modeling Technique, as explained through the understanding of Agent-Based Simulation. Agent-based 

simulation is establishing itself as a serious, useful area of study. 

 

The essential idea of agent-based modeling and simulation (ABMS) is that many phenomena, even very 

complex ones, can best be understood as systems of autonomous agents that are relatively simple and follow 

relatively simple rules for interaction. Applications range from modeling agent behavoiur in the stock market 

(Arthur et al. 1997) and supply chains (Macal 2003, 2004) and modeling bacterial cell behavior (Emonet et al. 

2005). Agent-based modeling and simulation is also an experimental technique, a framework for developing 

electronic laboratories in which the most detailed assumptions about individual agents, their behaviors and 

interactions can be varied and explored in silicone. 

 

ABMS and Traditional M&S Techniques 

 

Agent-based modeling can provide an overarching framework for model based on other modeling 

techniques. For example, models may be composed of agents whose decision-making behaviors are represented by 

formal optimization problems or by informal decision heuristics. Another example is agent behaviors represented as 

statistical models deriving agent behaviors from the agents' input information. Agent-based modeling can also be 

used as a complement to other modeling techniques: for example, an agent model that builds system behavior from 

the behaviors of the individual agents can be "docked" (use in conjunction) with a more aggregate systems dynamics 

model of the system, to see whether the two approaches yield similar results over a range of test cases. 

 

The goal of this study is to model a many-to-many demand responsive transit service without predefined 

itineraries and schedules. In this case, the fleet has to be dispatched exclusively on the basis of the list of requests, 

like in taxicab systems, the difference being the possibility of serving customers with some detours in order to share 

the ride. We believe that this kind of service is of particular interest for the possibility of offering a high quality 

service with an efficient allocation of the resources. To achieve this, we have modeled a service in which time 

windows are associated with each pickup and delivery point. 

 

The definition of time window is different from the notion of “time deadline” that can be found in previous 

works, for example concerning hauling services (Hall, 1996). Although Daganzo (1987) modeled a distribution 

problem considering time windows associated with each delivery point, the suggested methodology is not suitable 

when temporal constraints are tight as in the case we are considering. Thus, we need a procedure that is not easily 

derivable from existing methodologies. For example, comparing our problem to the previously discussed ones, it can 

be observed that in our case, it is impossible to model it as a fixed-line service since we cannot define a “path” 

or“headway” between the vehicles. On the other hand, the joint need of avoiding transfers for any pair of pickup and 

delivery points and of limiting the maximum ride time for every customer prevents us from dividing the area into 

several service zones served by a single vehicle, hence, a “cluster-first, route-second” model is not appropriate. 
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METHODOLOGY 

 

Specification of the Studied System 

 

Assumption 1 

 

In the following, we will start by partially adopting the operating scenario described by Jaw et al. (1986).  

 

 Our demand responsive transit (DRT) system consists of a fleet of vehicles with no predefined schedules.  

 The vehicles travel at a constant speed and cannot idle. We later show where relaxing the no idling 

assumption by considering a more idealized scenario.  

 The service time at the locations is zero and we do not consider capacity constraints since in most practical 

cases they are dominated by time window constraints.  

 When making a reservation, the customer has to specify the origin and the destination of the trip, as well as 

the pickup time.  

 The coordinates of the pickup and the delivery points are random variables drawn from the same 

distribution. Hence, given this distribution, it is possible to compute the distribution of the Euclidean travel 

distances between any pair of points.  

 

Parameters 

 

Let a and b be two parameters that are specified by the scheduler, with a ≥ 0 and b ≥ 1. 

 

Variables 

 

Since the vehicles travel at a constant speed v, the direct ride time is simply L (Dk, Pk)/v assuming the 

Euclidean metric, where Pk and Dk are the pickup and the delivery points of request k, respectively. 

 

Model 1 – Computation of Time Window 

 

Let L(A,B) be a random variable from the latter distribution, representing the distance between point A and 

point B. In order to ensure an acceptable quality of the service, the vehicle has to pick up the customer no earlier 

than the pickup time and no later than a specified time interval from the pickup time. The vehicles cannot pickup a 

customer earlier than the pickup time because customers may not be there at that time. Also the maximum length of 

the trip must be somewhat limited. To do this, we fix a maximum wait state WS, which is the same for all the 

customers, and we compute a maximum ride time MRTk for each request k.  

 

The maximum ride time is defined as an increasing function of the direct ride time that is the time needed 

to serve the request without deviations. The maximum ride time of each customer k is computed as:  MRTk = a + b⋅ 

L(Dk,Pk)/v 

 

The above scheduling constraints related to the maximum wait state and maximum ride time for each 

request k define the quality of the service. The most practical way to take them into account in the scheduling 

process is to define time windows for all the pickup and delivery locations. 

 

Let EPTk and LPTk be the earliest pickup time and latest pickup time of customer k, respectively; while 

EDTk and LDTk are the corresponding earliest delivery time and latest time respectively. Define (EPTk ,LPTk ) and 

(EDTk , LDTk ) as the time windows associated with the pickup and delivery time for customer k, respectively. It is 

possible to define these time windows on the basis of [L(Dk,Pk)]/v, WS and MRTk in several different ways, each 

method having its benefits and drawbacks as discussed in Diana and Dessouky (2004). In this paper, we use the 

following method to compute the time windows (see Figure 1). 
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LPTk = EPTk + WS  

EDTk = EPTk + [L(Pk,Dk)]/v 

LDTk = EPTk + MRTk = EPTk + a + b [L(Pk,Dk)]/v 

 

 

MRTk 

 

 

L(Pk,Dk)/v 

 

             WS 

 

 

 

                Time 

 

EPTk                  LPTk       EDTk                           LDTk 

 
Figure 1:  Definition of Time Windows 

 

 

A Model for Estimating the Required Number of Vehicles  

 

Expected Number of Vehicles 

 

We have a list of n requests scattered in a service area. Our objective is to estimate the number of vehicles 

needed to serve these request using the DRT system introduced earlier. 

 

Let rm be the probability of serving a set of m requests out of the n total requests with the same vehicle. By 

the above definition of the time windows, r1=1; that is, each request can be satisfied if assigned to a vehicle. If for 

example we state that each vehicle cannot serve more than two requests, then there will be on average (n/2) r2 

vehicles that serve two requests and n (1-r2) that serve the remainder. The expected total number of vehicles E(z) 

needed to serve n requests is thus  

 

E(z) = (n/2) r2 + n(1-r2) 

     

Now, if we suppose that each vehicle can serve three requests, there will be on average (nr3)/3 vehicles that 

serve three requests, [nr2(1-r3)]/2 that serve two requests (where r2(1-r3) is the joint probability of serving two 

requests with a vehicle that could not serve the three requests) and finally, n.(1-r2) (1-r3) that serve only one request. 

Thus, the expected number of vehicles is 

 

E(z) = (nr3)/3 + [nr2(1-r3)]/2 + n.(1-r2)(1-r3) 

  

The expected number of vehicles needed to serve n requests can be computed generalizing the above 

equation: 

 

    n          m 

E(z) = n
 
 

r
i   (1-rj)                                      [1] 

  
i=1  i    j=i+1 

 

It should be noted that the succession of the probabilities r1, r2, ..., rn rapidly converges to zero so that we 

need to determine only the first m values, with      m << n. 
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The Probability of Serving m Requests with One Vehicle 

 

The General Case 

 

From the definition of our problem, if one vehicle has to serve m requests it will have to visit 2m nodes (m 

pickups and m deliveries). Theoretically, there are (2m)! possible visiting sequences and we compute the probability 

associated with each one. If we assume that the fleet dispatching process seeks for cost minimization, then the 

scheduler would choose the visiting sequence that maximizes the possibility of serving all the m requests. It follows 

that rm would simply be the maximum of all the probabilities of success that are associated to the (2m)! possible 

visiting sequences. However, the presence of the pairing constraints (each pickup point must be visited before the 

corresponding delivery point) limits the number of feasible sequences (that is, of the sequences that have probability 

greater than zero) to (2m)!/2
m
. 

 

Focusing our attention on the easiest case, that is for m = 2; we want to compute the probability of success 

in serving any pair of requests (say, 1 and 2) among the n requests waiting to be served with one vehicle. The 

vehicle must then visit four nodes: the pickup and delivery point of the first and of the second request each one 

having the above defined time window. If we denote these points with P1, D1; P2 and D2 respectively, considering 

the pairing constraint, the feasible sequences are: 

 

P1D1P2D2, P1P2D1D2, P1P2D2D1, P2D2P1D1, P2P1D2D1, P2P1D1D2. 

 

Now, assuming that r2 is equal to the probability of realizing the most likely sequence among the above six, 

each sequence is determined by three different events; for example, the first one is feasible if and only if we can 

serve first P1 and then D1, D1 and then P2, and P2 and then D2.  

 

Assumption 2 

 

We assumed that the location of any point is not related to the location of all the others, the travel times of 

these three events are independent. However, the arrival time at P2 is dependent on the travel time of the first two 

legs. In order to simplify the computation of the joint probability of the realization of the above sequence (P1 to D1 

to P2 to D2), we assume that it is the product of the probabilities of the single events. This assumption of 

independence of the events related to a sequence overlooks the links between the arrival time at a node and the 

departure time from the same node. It may be a more severe limitation as the time window width decreases and the 

vehicle is running late.  

 

We refer to the probabilities of the single events in a sequence as “elementary probabilities” and pdij 

denotes the probability of success in visiting the pickup point p of request i and then the delivery point d of request j. 

This same indication goes for dpij, ppij and ddij. By so doing, r2 can be expressed as: 

 

r2 =   max   {pd11 dp12 pd22,  pp12 pd21 dd12,  pp12 pd22 dd21, pd22 dp21 pd11,  

                             pp21 pd12 dd21,  pp21 pd11 dd12}                                                                  [2] 

 

Considering the definition of the time windows, we set pdii = 1 for every i. To determine all the other 

elementary probabilities, we proceed as follows. We will extensively show the procedure of computing dpij for a 

case and give only the results for the other three cases since the steps are very similar.  

 

Since the nodes Di and Pj have a time window, the vehicle can serve both only if the travel time L(Di,Pj)/v 

between them is within a certain range. The upper limit of this range is reached if the vehicle visits Di at the earliest 

time and Pj at the latest. If the vehicle is not allowed to idle, there is also a lower limit represented by the trip 

duration when the vehicle visits Di at the latest time and Pj at the earliest time.  
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Max. travel time 

 

 

 

 

Min. travel time 

  

 

                   Time 

 

EPT1 + L(P1,D1)/v                   EPT1+a+bL(P1,D1)/v                                          EPT1                                      EPT1+WS 

 

Figure 2:  Computation of the Elementary Probability pdij 

 

 

Figure 1 shows the relationship between these two limits and the time windows. The following inequalities 

translate this graphical relationship into a mathematical expression: 

EPTj – [EPTi + a + b. L(Di,Pj)/v] ≤ L(Di,Pj)/v ≤ EPTj + WS – [EPTi + L(Di,Pj)/v] 

The above can be expressed as: 

 

v.[EPTj – EPTi – a] ≤ L(Di,Pj) + b L(Pj,Di) 

L(Di,Pj) + L(Pi,Di) ≤ v.[EPTj – EPTi + WS]                            [3] 

 

  

For the other three elementary probabilities, the procedure is the same and only the time windows need be 

changed. The probability intervals associated with each of these elementary probabilities are given below. 

 

 ppij : v.[EPTj – EPTi – WS] ≤ L(Pi,Pj) ≤ v.[EPTj – EPTi + WS]                         [4] 

 

pdij : v.[EPTj – EPTi – WS] ≤ L(Pi,Dj)- L(Pi,Di) 

L(Pi,Dj)- bL(Pi,Di) ≤ v.[EPTj – EPTi + a]                       [5] 

 

ddij : v.[EPTj – EPTi – a] ≤ L(Di,Dj)+bL(Pi,Di)- L(Pj,Dj) 

L(Di,Pj)+ L(Pi,Di) -bL(Pj,Dj) ≤ v.[EPTj – EPTi + a]    [6] 

 

In the above expressions, EPTi, EPTj and L(•,•) are random variables, while v, a, b and WS are constants. 

 

Problem Reduction 

 

On the basis of equations [3 to [6], given the distributions of the random variables, it is theoretically possible to 

define the associated probability intervals, and thus, the values of the elementary probabilities. However, in order to 

have a computationally tractable problem, it is necessary to make some simplifying assumptions concerning these 

distributions.  

 

Assumption 3 

 

In the following, we will assume that EPTi, EPT,j and L(•,•) are drawn from the same distribution for every 

value of the argument.  Another issue concerns the number of times we need to apply this procedure to compute all 

the elementary probabilities and the number of sequences to be considered when m is increasing.  

 

From expression [2] we observe that we need to repeat the above procedure for computing these eight 

elementary probabilities eight times, viz: dp12, pp12, pd21, dd12, dp21, pp21, pd12 and dd21. Furthermore, as m increases 

the number of elementary probabilities that need to be computed explodes. 

 

 

Time window of D1 Time window of P1 
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Computational Experiments 

 

Distributions of the Time Intervals between Pickup Times 

 

In order to implement our model, we need to specify the probability density function of the time intervals 

between two successive pickup times, f(g). We assume Poisson arrivals, hence, it follows that f(g) is an exponential 

distribution with parameter λ = 1/E(g).   

 

Distribution of the Leg Lengths in A Vehicle Route 

 

We also need to specify the probability density function f(L(•,•)) of the distance between two successive 

points in a route served by one vehicle. We assume a complete randomness for the spatial point pattern. This implies 

that the number of service points in any planar region with area A follows a Poisson distribution with parameter λ’ = 

N/A, where N is the number of service points, and that the point coordinates are an independent random sample 

from a uniform distribution. Even under this assumption, it is not straightforward to represent the probability density 

function of the distance between two successive points of a vehicle route.   

 

We shall start by illustrating the procedure for computing E(L(•,•)). Consider the case limit in which there 

are no time windows and ignoring the precedence constraints, the problem is reduced to a standard Traveling 

Salesman Problem (TSP). Previous research showed that when the number of points, p, is large, the length LT of a 

TSP tour, assuming Euclidean metric and a square area A, is  

 

LT ≈ 0.75 √A√p. 

 

Assuming the vehicles are routed like in a TSP in our problem, if each vehicle serves m requests then it has 

to visit m pickup and m delivery locations starting and coming back to the depot. So, the expected length of the tour 

would be LT ≈ 0.75 √A√(2m+1) 

 

Experimental Design and Results 

 

Consider a square area of 10 x 10 miles and a planning period of 2 hours (a short planning period is used in 

this illustration since we are focusing on determining the fleet size during the peak period). The complete spatial 

randomness assumption implies that the pickup and delivery points are independently and uniformly distributed over 

the square area. In both cases, we used the above specified distributions of g and L(•,•) and we varied the number of 

requests from 12 to 120 (corresponding to a mean value of g ranging from 10 to 1 minute). 

 

Also, we considered different time windows since in our DRT system the time window width directly 

affects the quality of the service; thus, this sensitivity analysis is the key to assess the trade off between a higher 

quality of service and the corresponding increase of the costs, in terms of a greater number of vehicles needed.  

 

In order to simplify the presentation of our results and their subsequent analysis, we have allowed the 

vehicle to idle in the following but we will keep b = 1. Appendix 1 shows that we could as well consider a system in 

which either b > 1 or the vehicles are not allowed to idle. Furthermore, we set a = WS, implying that the pickup and 

the delivery time windows are the same for all the requests. 

 

The lognormal model we introduced in section “Distribution of the Leg Lengths in a Vehicle Route” seems 

to satisfactorily approximate f(L(•,•)) in those cases. Figure 3 shows the plots of the sampled distribution of the leg 

lengths when there are 120 requests and time windows of 10 and of 30 minutes, together with their respective 

approximation when m = 7.  
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      pdf of Leg    Leg distribution 

        0.3  -        Model, m = 7 

       0.25 -        Simulation TW = 10mins 

       0.2   -        Simulation TW = 30mins 

      0.15  - 

       0.1   - 

      0.05  - 

             2           4                       6                8       10 

Figure 3:  Distribution of the Leg Lengths from the Simulation and the Model when 120 Requests are Serviced and the 

Time Window Width TW is 10 and 30 Minutes 

 

 

As mentioned in subsection “The Probability of Serving m Requests with One Vehicle”,  when we compute 

the probabilities of serving 2, 3, ..., m requests with one vehicle, we do not need to fix m = n. In fact, the values for 

ri are decreasing when i increases, and the corresponding counter j in equation [1] become less and less influential 

on the value of E(z). Thus, we compute the series of probabilities r2, r3, ..., rm until the expected number of vehicles 

cannot be changed by the counter related to the probabilities rm+1, ..., rn. However, we also tested a more stringent 

stopping criterion. Since the scheduling horizon is of two hours, we impose that the time needed to serve m requests 

with a vehicle must be less than the deadline of delivering the latest request; hence, we compute the probabilities 

only until m satisfies the inequality: 

 

2m/v E(L(•,•)) < m·E(hg)+ TW + 1/v E(L(•,•))                                              [7] 

 

Where E(hg) is the expectation of the f(hg) distribution, v is the speed of the vehicles and TW is the time window 

length. 

 

In order to benchmark our planning model, we compare it to a simulation approach that requires 

determining the complete daily schedule. In the simulation model, requests were generated that followed the above 

mentioned distributions. The requests were scheduled using a parallel regret insertion algorithm (Diana and 

Dessouky). The regret insertion method allowed us to find the minimum number of vehicles required to service all 

the requests. In order to do this, we performed the first run of the algorithm with a very high number of vehicles, and 

later progressively lowered this number in the successive runs until some requests could not be scheduled. The result 

of the computational experiments and the simulation are shown in Table 1. 

 

N.B: When computing r2, ..., rm, we noticed that the most likely sequence is always the following one: P1 D1 P2 

D2 ... Pm Dm. This consistently occurred throughout the entire experimental plan. However, it depends on the value 

of the elementary probabilities and cannot be shown to be a general rule. Nevertheless, when solving these problems 

we could always take the above sequence as the most likely.    
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PRESENTATION AND ANALYSIS OF RESULTS 

 

Analysis of Model Results on the Required Number of Vehicles 
 

 

Table 1:  Number of Required Vehicles from the Model and from the Simulation (In Brackets) when the Demand Density 

and the Time Windows Width is Changing 

Time Window 

Demand Density 10 minutes 15 minutes 20 minutes 30 minutes 

120 requests 22.9 

(21.2) 

18.7 

(18.4) 

17.6 

(16.0) 

17.2 

(13.4) 

60 requests 11.8 

(13.0) 

9.5 

(11.0) 

8.9 

(9.6) 

8.6 

(8.0) 

24 requests 5.2 

(7.2) 

4.1 

(6.2) 

3.7 

(5.8) 

3.4 

(4.4) 

12 requests 2.9 

(4.4) 

2.2 

(3.2) 

1.8 

(3.2) 

1.7 

(2.6) 

 

 

It can be seen that the difference between the model results and those from the simulation (shown in 

brackets) is almost always less than two vehicles. Only when we have to serve 120 requests and the time windows 

are of 30 minutes do we overestimate the number of needed vehicles by a little more than 2.1. This could be due to 

the approximation of the leg lengths that we used. We believe that the model presented in this paper would 

outperform the simulation model whenever the demand density is greater than 120 requests for any time window 

width. 

 

Analysis of Expected Leg Length 
 

 

Table 2:  Expected Leg Lengths from the Model and from the Simulation (in Brackets) when the Demand Density and the 

Time Windows Width are Changing 

 

 

Table 2 presents the values of E(L(•,•)) computed from equation [7] and those derived from the schedules 

of the simulation. It can be seen that there was overestimation in the expected value of the leg lengths with larger 

time windows when we have to serve a higher number of requests. In particular, when we have 120 requests and the 

time windows are of 30 minutes, an estimate of a mean leg length of 3.72 miles was made, whereas the one from the 

simulation is 2.70 miles. The reason for the overestimation in this case is because there is a significant amount of 

ridesharing when there are a large number of requests and a wide time window. With a significant amount of 

ridesharing our approach in equation [7] under-weight the trips that follow the TSP tour versus those that have a 

longer expected length of 0.52 = 5.2 miles. In this scenario, only a small number of trips go directly from pickup to 

delivery. Thus, only a small fraction of trips have a mean length of 5.2 miles. This suggests deriving a new 

weighting scheme in equation [7] when there is a significant amount of ridesharing. 

 

Considering that a better approximation of f(L(•,•)) would even improve the model results, it is believe that 

the proposed methodology is an effective way to quickly estimate the number of vehicles needed to provide a DRT 

under a fairly broad range of cases (systems with different levels of demand and different quality requirements).  

Time Window 

Demand 10 minutes 15 minutes 20 minutes 30 minutes 

120 requests 3.97 

(3.51) 

3.89 

(3.27) 

3.81 

(3.03) 

3.72 

(2.70) 

60 requests 4.08 

(3.96) 

3.99 

(3.62) 

3.90 

(3.32) 

3.81 

(2.98) 

24 requests 4.30 

(4.14 

4.20 

(4.12) 

4.16 

(3.93) 

3.99 

(3.80) 

12 requests 4.45 

(4.58) 

4.22 

(4.33) 

4.22 

(4.33) 

4.09 

(3.78) 
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Viability of Two Possible Approximations for the Distribution of the Leg Lengths in a Demand Responsive 

Service Vehicle Route 

 

The first approach is to consider the distribution of the distance between any two random points in the 

service area f(d) that can be obtained from the distributions of the coordinates of the points through convolution. 

Another possible strategy is to consider the s
th

 nearest-neighbor distance density f(ds) from a given point in the 

service area. In other words, either the distance d between any two points in the service area or between a point and 

its s
th

 nearest neighbor, ds , could be used as an approximation of the vehicle route L(•,•). 

 

Under the complete spatial randomness hypothesis, some results related to the distributions f(d) and f(ds) 

are available in the published literature. Christofides and Eilon (1969), and Eilon, Watson-Gandy and Christofides 

(1971) derived the expected distance between two random points for different shapes of the service area. The 

distribution of the distances f(d), their mean E(d) and variance VAR(d) for the cases of points uniformly scattered 

over a unit service area are reported in Table 3. Spatial analysis textbooks such as Mathai (1999) reports the 

probability density function f(ds) of the nearest, second-nearest, ….., s
th

 nearest point, assuming Poisson arrivals in a 

plane. However, if we consider a finite area, there are boundary effects that alter these latter distributions. In fact, we 

would expect that the value of ds is greater and is increasing when we consider points that are nearer the edge. 

Considering the case of the nearest neighbor (s=1) and the related distribution of the distance d1, Donnelly (1978) 

determined correction terms through simulation for E(d1) and VAR(d1), that are sufficiently accurate when there are 

more than seven points and the shape of the region is sufficiently smooth. We report the expressions for f(d1), E(d1) 

and VAR(d1) both considering and not considering edge effects in Table 4.    
 

 

Table 3:  Distribution of the Distances between any Two Points that are Uniformly Scattered in a Unit Square 

                

 

f(d) 

             2 πd – 8d2 + 2d3                                     : 0≤ d≤ 1 

    4d arcsin ((2 – d2)/d2) + 8d√(d2  – 4d - 1) – 2d2  : 1<d≤√2 

                             0                                                         : otherwise 

E(d) 0.5214 

VAR(d) 0.0615 

 

 

Table 4:  Distribution of the Nearest-Neighbor Distance from a Given Point in a Unit Square (Assuming Poisson Arrivals 

of N Points) 

Options 

                Not considering edge effects Including Donnelly (1978) correction terms 

f(di) 2 π Ndie
-π Nd

i
2           di≥0 - 

E(di) ½√N 1/2√N + 1/N(0.0514 + 0.041/√N) 

VAR(di) (4 - π) / 4πN (4 – π) / 4πN + 0.037/N√N 

 

 

In order to check the possibility of approximating f(L(•,•)) through either f(d) or f(di), we ran some 

simulations on standard problems (pickup and delivery points uniformly scattered in a unit square area). To schedule 

the vehicles in the simulation, we used a parallel regret insertion heuristic (Diana and Dessouky). The results 

showed that E(L(•,•)) is about 20% to 40% less than the value of E(d) indicated in Table 3, and the gap increases 

when the time windows are larger and the density of the requests is higher. This is rather an intuitive result since 

relaxing the scheduling constraints leads to more efficient routing of the vehicles. On the other hand, E(di) seriously 

underestimates E(L(•,•)) when there are more than 3-4 requests to serve and the time window width is not too loose 

even if we include the correction terms proposed by Donnelly. Also, the shape of the sampled distribution is quite 

different from those reported in Tables 3 and 4. 

 

To sum up, the considered approximations have proven to be rather poor for our purposes. When 

scheduling the service, the vehicles are normally dispatched to the “best” point that satisfies the time, precedence, 

and coupling constraints in order to increase the efficiency of the system. The definition of “best” point obviously 

depends on the heuristic used to schedule the service, but in any case this is rather unlikely to be either a random or 

the nearest-neighbor point. In this case, the regret insertion algorithm tries to anticipate the insertion of requests that 
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could be difficult to insert in a later stage of the process, as explained in detail in Diana and Dessouky. One could 

argue that using a nearest-neighbor-based heuristic to schedule the service could allow for a better approximation of 

f(L(•,•)) through f(d1). However the inferiority of the nearest-neighbor rule over an insertion-based algorithm when 

we consider a routing problem with time windows is an established result (Solomon, 1987). 

 

SUMMARY OF THE STUDY 

 

This paper has presented a continuous approximation model to forecast the number of vehicles needed to 

operate a demand responsive transit service. In contrast with current mathematical programming techniques, our 

approach simply requires the knowledge of the demand density over the service area since it may be hard or even 

impossible to have more detailed data in the planning phase. Computational results showed that the proposed 

methodology can provide reliable result under different circumstances. A critical point is the approximation of the 

distribution of the leg lengths that can alter the results when the time windows are wide, and further research is 

needed at this point in order to improve the performances of the proposed model.  

 

SUMMARY OF THE FINDINGS 

 

The interest in using an approximation model lies in the possibility of the planner to perform sensitivity 

analysis through the construction of several different scenarios. In this way, the choice of the best compromise 

between quality of service and financial resources is much more effective. The problem presented in this paper, as 

described in section 3, is sufficiently general to envision the application of our methodology in different contexts, 

particularly the problems of distribution of goods in which there are severe time constraints. Another useful 

generalization of the present work might be the inclusion of the proposed methodology in a demand-supply 

equilibrium model for a general DRT system, similar to what was proposed by Chang and Schonfeld (1991) and 

Chang and Lee (1993) for the specific case of a deviation service. 

 

CONCLUSION AND RECOMMENDATION 

 

We believe that an application of particular interest of this model is the study of the tradeoff between the 

number of vehicles needed and the time windows associated with the locations, in analogy with what is shown in 

Table 1. This is a research field that deserves more attention and that may be a key issue in developing DRT services 

that are more cost-effective but still satisfying for the customers, hence, it is highly recommended for further study 

to serve as antidote to reducing, to the barest minimum (or non-existing), fleet operations problems when noticed or 

envisaged to occur (a proactive-approach) especially in organizations that have big supply-chain of customers to 

satisfy with their products or services as applicable. 
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APPENDIX 1:  COMPUTATION OF THE ELEMENTARY PROBABILITIES 

 

Distribution of the Intervals between Adjacent Pickup Times 

 

Let us define a ranking order for the list of requests by ascending EPT. Define a random variable g that 

represents the temporal gap between the two earliest pickup times of the requests k and k + 1, if k is the index of this 

ranking order: 

 

g = EPTk + 1 - EPTk 

 

In the general case, if two requests are at the k
th

 and at the (k + h)
th

 place according to this order, we can say 

that the temporal gap between their respective earliest pickup times can be represented by the distribution of the 

random variable 

 

                 

 

For simplicity, we will refer to this random variable as hg. Since h is not a constant (that is, the number of 

demand points is a random variable that follows a discrete distribution), we point out that the associated probability 

density function f(hg) is not equal to h.f(g). It is now possible to redefine the elementary probabilities introduced in 

section “A Model for Estimating the Required Number of Vehicles” as a function of these interval gaps. 

Considering again the case m = 2, we have for example that for the first of the above listed six feasible sequences, 

the vehicle should start visiting the pickup and the delivery node of the same request. The difference of order 

between the requests related to the two nodes is obviously 0 since both are from the same request. So in this case h = 

0 and we can denote the corresponding probability as pdo. When leaving D1, the vehicle must arrive to P2. We 

assume that the time gap between the two requests is (n/2).g. We denote the corresponding elementary probability 

with dpn/2, which is the probability of picking up the (k + n/2)
th

 request after delivering the k
th

 request. Defining all 

remaining elementary probabilities in the same way, equation [2] can be rewritten as: 

 

r2 = max. {pd0.dpn/2  pd0 ppn/2  pd-n/2ddn/2  ppn/2 pd0  dd-n/2pd0  dp-n/2pd0  pp-n/2pdn/2 

 

                   dd-n/2pp-n/2 pd0ddn/2 }                                                                                                   [1] 

 

Nine different elementary probabilities appear in this formula. In the general case (that is, for m greater 

than 2), the interval gap is c.(n/m).g = hg, where c is an integer constant comprised between –(m – 1) and +(m – 1). 

The number of elementary probabilities that must be determined is linearly increasing with m, being equal to (8m – 

7). They are the following: 

 

pp-(m – 1).n/m, ..., pp-n/m, ppn/m, ..., pp(m – 1).n/m, pd-(m – 1).n/m, ..., pd-n/m, pd0, pdn/m, ..., pd(m – 1).n/m, dp-(m – 1).n/m, ..., dp-n/m, 

dpn/m, ..., dp(m – 1).n/m, dd-(m – 1).n/m, ..., dd-n/m, ddn/m, ..., dd(m – 1).n/m.  

 

We can see that h assumes a value of zero only when there is a request that is served without deviations; in 

this case the corresponding elementary probability pd0 is 1 by definition. In all the other cases (that is, when h ≠ 0), 

the definition of the elementary probabilities as a function of h allows us to compute more easily their values. In 

fact, assuming b = 1, equations [3] to [6] can be rewritten in this manner: 

 

dpn : v.(hg – a) ≤ L(Di,Pj) + L(Pi,Di) ≤ v.(hg + W S) 

ppn : v.(hg – WS) ≤ L(Di,Pj) ≤ v.(hg + WS) 

pdn : v.(hg – WS) ≤ L(Di,Pj) – L(Pi,Di) ≤ v.(hg + a) 

ddn : v.(hg – a) ≤ L(Di,Pj) + L(Pi,Di) – L(Pj,Dj) ≤ v.(hg + a) 

 

Assuming b = 1 is useful to transform for each elementary probability the two inequalities in a probability 

interval; in order to have only one interval in the above equations, we could alternatively allow the vehicle to idle at 

every node. As discussed in section “A Model for Estimating the Required Number of Vehicles”, the lower bound 

would disappear in this case (if the travel time is too short, then the vehicle could wait at the second point until the 
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time window is met) and the assumption of b = 1 could be relaxed. 

 

It is reasonable to assume that the random variables L(Di,Pj) and (hg) are independent, as well as [L(Di,Pj) 

+ L(Pi,Di)] and (hg), [L(Di,Pj) – L(Pi,Di) and (hg) and [L(Di,Pj) + L(Pi,Di) – L(Pj,Dj)] and (hg). In the preceding 

equation with f(.) we indicated the probability density functions of the random variables L(Di,Pj), [L(Di,Pj) + L 

(Pi,Di)], [L(Di,Pj) – L(Pi,Di)], [L(Di,Pj) + L(Pi,Di) – L(Pj,Dj)] and (hg), that can be computed using convolution. 

Theoretically speaking, we could now compute the probabilities rm. However, if m is increasing we still have the 

problem of the number of elements to consider in equation [1], that as aforesaid is equal to (2m)!/2
m
 (in the general 

case there is one element for each feasible visiting sequence). 

 

 


