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ABSTRACT 
 

In this paper, we develop a bi-level human migration model using the concept of conjectural 

variations equilibrium (CVE). In contrast to previous works, here we construct a bi-level 

programming model. The upper level agents are municipalities of competing locations, whose 

strategies are investments into infrastructures of the locations (cities, towns, etc.). These 

investments aim at making the locations more attractive for both the residents and potential 

migrants from other locations. At the lower level of the model, the present residents (grouped into 

professional communities) are also considered as potential migrants to other locations. They make 

their decision where to migrate (if at all) comparing the expected values of the utility functions of 

the destinations and original locations, which are estimated by taking into account their group's 

conjectures concerning equilibrium migration flows between the involved locations. Applying a 

special technique to verify the consistency of the conjectures (influence coefficients), the existence 

and uniqueness results for the consistent conjectural variations equilibrium (CCVE) are 

established. 
 

Keywords:  Bilevel Human Migration Model; Variational Inequality Formulation; Consistency Criterion; 

Consistent Conjectural Variations Equilibrium 
 

 

1. INTRODUCTION  
 

igration problems have been studied actively in many countries throughout the world, as the 

information / migration prediction / data is extremely useful on a large economic scale. Migration 

prediction data can stipulate development of facilities necessary to advance employment, 

education, ecology, etc. Reciprocally, locations with more advanced infrastructure, higher employment capacities, 

ecology-friendly environment, etc., can attract more potential migrants. On the other hand, overloaded 

housing/infrastructure facilities may reduce the comfort in the everyday life. Therefore, one can expect a tradeoff in 

the investments into the locations' infrastructures balanced at a conjectural variations equilibrium state.  In the due 

time period, various migration theories have been developed. In the short historical aspect, one may rely on the 

excellent fundamental survey Akkoyunlu and Vickerman (2001).  
 

Recently, in the works by Bulavsky and Kalashnikov (1994, 1995), a new array of conjectural variations 

equilibria (CVE) was introduced and investigated, in which the influence coefficients of each agent affected the 

structure of the Nash equilibrium. In particular, constant conjectural influence factors were used in the human 

migration model examined in Isac et al. (2002). More precisely, the potential migration groups were taking into 

account not only the current difference between the utility function values at the destination and original locations, 

but also the possible variations in the utility values implied by the change of population volume due to the migration 

flow. These conjectured variations could be described with an aid of the so-called influence coefficient iw . In other 

M 
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words, we considered not a perfect competition (with 0iw  ) but a generalized Cournot-type model with influence 

coefficients iw  in general different from 1 (in contrast to the classical Cournot model, where 1iw  ). 

 

In  their previous papers Kalashnikov et al. (2007, 2008), the authors extended the latter model to the case 

where the conjectural variations coefficients may be not only constants, but also functions of the total population at 

the destination and of the group's fraction in it. Moreover, we allow these functions to take distinct values at the 

abandoned location and at the destination, which should elevate the model's flexibility. As an experimental 

verification of the proposed model, we developed a specific form of the model based upon relevant population data 

of a three-city agglomeration at the boundary of two Mexican states: Durango (Dgo.) and Coahuila (Coah.) Namely, 

we consider the 1980–2005 dynamics of population growth in the three cities: Torreón (Coah.), Gómez Palacio 

(Dgo.) and Lerdo (Dgo.), and propose utility functions of three various kinds for each of the three cities. To our 

knowledge, utility functions of these types were not used in the previous literature dealing with the human migration 

model. After having collected necessary information about the average movement and transportation (i.e., 

migration) costs for each pair of the cities, we apply the above-mentioned human migration model to this example. 

Numerical experiments have been conducted with interesting results concerning the probable equilibrium states 

revealed. 

 

The main novelty of the recent paper Kalashnykova et al. (2011) lies in the proposed definitions of 

consistent conjectures and in the outskirt of possible ways to calculate the consistent conjectures and the related 

consistent conjectural variations equilibrium state (CCVES). 

 

Motivated by the ideas of bi-level structures of processes of migration (the upper level competition among 

municipalities, and the lower level equilibrium among the potential migrants), we propose a new (bi-level) 

formulation of the human migration model. Under general enough assumptions, we prove the existence of solutions 

to the bi-level program as well. Results of numerical experiments (which are underway yet) will be outlined only 

scarcely. 

 

The paper is organized as follows. Sections 2 through 3, following mainly the previous papers Kalashnikov 

et al. (2007, 2008) and Kalashnykova et al. (2011), describe the proposed bi-level human migration model, define 

the conjectural variations equilibrium at the lower level, and cite Theorems 3.1 and 3.2 from Kalashnikov et al. 

(2007, 2008), which establish the existence and uniqueness of the lower level equilibrium as a solution of an 

appropriate variational inequality problem. Consistency of conjectures and the existence of the corresponding bi-

level equilibrium are discussed in Section 4. Conclusion (Section 5), acknowledgments, and the list of references 

complete the paper. 

 

2. PROBLEM STATEMENT AND PRELIMINARIES 

 

Similar to Isac et al. (2002) and Kalashnikov et al. (2007, 2008), consider a closed economy with: 

 

n   locations, denoted by  i  

K   classes of population, denoted by k 
k

iQ  initial fixed population of class k in location i 

k

iQ  final population of class k in location i 

k

ijs  
 
migration flow of class k from origin i to destination  j 

   
2

1

2

k k k k k k

ij ij ij ij ik ijc s b s a s  cost of migration for group k from location i to location j 

 

Assume that the migration cost reflects not only the cost of physical movement but also the personal and 

psychological cost as perceived by a class when moving between locations. The utility 
k
iu (attractiveness of location 

i as perceived by class k), depends on the population at destination, that is,  k k k
i i iu u Q . This assumption is quite 



International Business & Economics Research Journal – February 2012 Volume 11, Number 2 

© 2012 The Clute Institute  197 

natural: indeed, in many cases, the cities with higher population provide much more possibilities to find a job, better 

medical service and household facilities, a developed infrastructure, etc. On the other hand, when the infrastructure 

development lags behind the modern city demands, the higher population may lead to certain decrease in the living 

standards, and hence, of the utility values. 

 

These utility functions also incorporate parameters reflecting the scale of investments made by the 

location’s authorities in order to improve the infrastructure, employment capacities, household construction, power 

supply, and so on. Exactly these amounts of investment play the role of the municipality strategies in the game at the 

upper level. 

 

First, we describe the lower level problem. The conservation of flow equations, given for each class k and 

each location i, and the inequalities forbidding repeated or chain migration, are listed below: 

 

       1
k

k k k

i ji iji

j i j i

Q Q s s , i ,...,n
 

     ,                                                                                               (1) 

 

and 

 

     1
k

k

ij i

j i

s Q , i ,...,n,


                                                                                                                           (2) 

 

with 0 1k

ijs , k , ,K; j i    . Denote the problem’s feasible set by 

 

    0    satisfies (1) - (2)M Q,s s , Q,s   . 

 

Equation (1) states that the population of class k at location i is determined by the initial population of class k at 

location i plus the migration flow into i of that class minus the migration flow out of i for that class. Equation (2) 

affirms that the flow out of i by class k cannot exceed the initial population of class k at i, since no chain migration is 

allowed. 

 

 Assume that migrants are rational, and that migration continues until no individual has any incentive to 

move, since a unilateral decision will no longer yield a positive net gain (the gain in the expected utility minus the 

migration cost). 

 

In order to extend the human migration model from Isac et al. (2002), here we introduce the following 

concepts.  

Let 0k
ijw    be an influence coefficient taken in account by an individual of class k moving from i to j. This 

coefficient is defined by her assumption that after the movement of k
ijs individuals of class k from i to j the total 

population of class k at j will become equal to:  

 
k k k
j ij ijQ w s .   

 

On the other hand, let 0k
ijw    be an influence coefficient conjectured by an individual of class k moving from i to 

j, determined by the assumption that after the movement of 
k
ijs  individuals, the total population of class k in i will 

remain equal to: 

 
k k k
i ij ijQ w s  . 
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We accept the following assumptions concerning the utility functions and expected variations of the utility values: 

 

A1. The utility ( )k k k
i i iu u Q  is a monotone decreasing and continuously differentiable function. 

 

A2.  Each person of class k, when considering her possibility of moving from location i to location j, takes into 

account not only the difference in the utility values at the initial location and the destination, but also both 

the expected (negative) increment of the utility function value at j 

 

                                                                                       

k
jk k

ij ij k
j

u
s w

Q





 

 

and the expected (positive) utility value increment in location i 

 

                                                                                     

k
k k i
ij ij k

i

u
s w

Q

 


. 

 

3. DEFINITION OF EQUILIBRIUM  

 

3.1. Definition of Equilibrium in the Lower Level 

 

A multi-class population and flow pattern  * *,Q s M  is an equilibrium in the lower level, if for each 

class 1, ,k K , and for each pair of locations , 1, , ;  i j n i j  , the following relationship holds: 

 

                      

 
 

 

  if  0

  if  0

k

jk k* k * k k*

j ij ij i ijkk
jk k* k * k k k*i

i ij ij ij ij ijk k
i jk k* k * k k*

j ij ij i ijk

j

u
u s w Q , s ;

Qu
u s w Q b a s

Q u
u s w Q , s ;

Q











 
   


   

 
    

                                          (3) 

and 

 

                            

0    if   

0     if   

k* k

il i

l ik

i k* k

il i

l i

, s Q ;

, s Q .






 


 





                                                                                                                   (4) 

 

A3.  We assume that the influence coefficients are functions depending upon the current population at the 

location in question and the migration flow from location i to location j, satisfying the following conditions: 

 

                                  k k k k k k

ij ij ij ij ij js w Q,s v s Q    , 

 

and 

 

                                   k k k k k k

ij ij ij ij ij is w Q,s v s Q    , 

 

where  

 

                                    0   0   1    k k

ij ijv , , k , ,J ; i j.      
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 Taking into account assumption A3 and omitting for shortness the argument *Q in the utility functions, we 

turn (3) into: 

 

             

  if  0

k kk k
j jk k k k k k k k k k k k k k ki i

i ij ij ij i ij ij ij j ij ij ij j i ijk k k k

i i j j

u uu u
u s v Q b a s u s v Q s

Q Q Q Q
     

  
        

   

* * * * * *, ;              (5a) 

 

and 

 

            

  if  0

k kk k
j jk k k k k k k k k k k k k k ki i

i ij ij ij i ij ij ij j ij ij ij j i ijk k k k

i i j j

u uu u
u s v Q b a s u s v Q s

Q Q Q Q
     

  
        

   

* * * * * *, .               (5b) 

 

Assume that the utility function associated with a particular location and a single class can depend upon the 

population associated with every class and each location, that is, compose a vector-function  u u Q . Assume also 

that the cost associated with migration between two locations as perceived by a particular class can depend, in 

general, upon the flow of each class between every pair of locations, i.e., compose an aggregate vector-function 

 c c s .  Finally, let us compose an auxiliary vector of the appropriate size as follows: 

 

                         
    k

ijd Q,s d Q,s ,  where  
k kk k
j jk k k k k k k k ki i

ij ij ij ij i ij ij ij jk k k k

i i j j

u uu u
d Q,s s v Q s v Q .

Q Q Q Q
    

  
   

   
      

 

Now we are in a position to formulate the following result, established in the previous papers Kalashnikov et al. 

(2007, 2008): 

 

Theorem 3.1. A population and migration flow pattern  * *Q ,s M satisfies the equilibrium conditions (3) and (4) 

if, and only if it solves the variational inequality problem 

 

                         
       0* * * * * *u Q ,Q Q c s d Q ,s ,s s , Q,s M           .                                                    (6)  

 

The existence of at least one solution to the variational inequality (6) follows from the general theory of 

variational inequalities, under the sole assumption of continuous differentiability of the utility functions u and 

continuity of migration cost functions c, since the feasible convex set M is compact (cf., for example, Kinderlehrer 

and Stampacchia, 1980). 

        

From now on, we omit the superscript k for simplicity purpose. The uniqueness of the equilibrium 

population and migration flow pattern  * *Q ,s  follows under the assumption that the compound operator 

 

                                      

 
   

   1 1K n n K n nK n K n
u Q

: R R R R
c s d Q,s

      
 

     
, 

 

involving the utility and migration cost functions, is strictly monotone over the feasible set  M: 

 

                             

 

   

 

   

1 2
1 2 1 2

1 2 1 21 1 1 2 2 2
0    

u Q u Q Q Q Q Q
, , ,

s s s sc s d Q ,s c s d Q ,s

                     
                   
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that is, 

 

                
           1 2 1 2 1 2 1 2 1 1 2 2 1 2 0u Q u Q ,Q Q c s c s ,s s d Q ,s d Q ,s ,s s          .           (7) 

 

The latter is a consequence of the classical result of the Theory of Variational Inequality Problems (see, for 

example, Kinderlehrer and Stampacchia, 1980): 

 

Theorem 3.2. Consider the variational inequality: Find 
* ny M R  such that, 

 

                     0    * *F y , y y , y M    .                                                                                    (8) 

 

If the operator n nF : R R is strictly monotone, that is, 

 

                     
   1 2 1 2 1 20           F y F y , y y , y y ,      

 

then the variational inequality (8) has at most one solution. 

 

Having established the existence and uniqueness of the (lower level) equilibrium among the potential 

migrants, we may pass to the concept of the upper level equilibrium among the municipal authorities. 

 

3.2. Definition of Equilibrium in the Upper Level 

      

We assume that the utility function associated with location i and class k of potential migrants has the form  

 

                           

  ,
k

k k i
i i i i

i

B
u Q A Q

R
                                                                                                                     (9) 

 

where 0, 0k k
i iA B   are parameters related to the environment facilities for the potential immigrants of class k in 

location i. For instance, the economical sense of 
k
iA  could be the average cost of a household in location i in a 

district where the typical representatives of class k prefer to settle down, while 
k
iB might be interpreted as an inverse 

adaptability coefficient for the immigrants of class k: that is, the lower value of 
k
iB , the higher the degree of 

adaptability revealed by the average family of the specimen of class k to the growing population of location i. 

Finally, the parameter 0iR  reflects the amount of investment by the authorities of location i into the improvement 

of the environment for the newcomers and the regular inhabitants: the higher the investment's amount, the lower the 

negative effect of the growing population on the location’s attractiveness for both the current and potential 

inhabitants. 

      

Now assuming that the investment volumes 0iR  are used as strategies of the players (municipal 

authorities of the locations involved), it is standard to define an equilibrium state in the (upper level) game. 

 

An investment vector  * * * *
1 2, , , nR R R R is an equilibrium in the upper level, if for each location i, i = 

1,…, n, the municipal authority’s utility function  *,i i i iU U R R attains its maximum value exactly at 
*

i iR R

(assuming that all the other players stick to their investment values  * * * * *
1 1 1, , , , ,i i i nR R R R R   ). 



International Business & Economics Research Journal – February 2012 Volume 11, Number 2 

© 2012 The Clute Institute  201 

Here, the municipality utility function  i iU U R is the weighted sum of the location’s utility functions of all the 

classes of potential migrants determined below: 

 

                      

     
1* *

1 * *

* *
,

K
Ki i

i i i

i i

Q Q
U R u Q u Q

Q Q
                                                                                        (10)  

 

where 
*Q is the equilibrium of the lower level population values, which (due to Theorems 3.1 and 3.2) exist 

uniquely for any (fixed) vector of investments R involved into the structure of locations’ utility functions (9). 

 

4. EXISTENCE OF A BI-LEVEL EQUILIBRIUM WITH CONSISTENT CONJECTURES 

 

The consistency of conjectures (or, the influence coefficients) arises naturally as an important issue. Indeed, 

the existence of at least one equilibrium for arbitrary influence coefficients obliges one to select some justified 

conjectures so that the above concept of the equilibrium make sense. In this section, we propose a concept of 

consistency and formulate the existence result for the consistent conjectural variations equilibrium.       

 

Based upon the consistency criterion proposed in Kalashnikov et al. (2011), we formulate the following 

definition. Here, for simplicity, we repeat our assumption that the utility function for each location i and each 

potential migrant group k is linear of the form  
k

k k k ki
i i i i

i

B
u Q A Q

R
  , with 0 0 0k k

i i iA ,B ,R   ; next, 0k

ija  for 

each quadratic migration cost function; and finally, conjectures (influence coefficients) are constant, i.e., 0k ,

ij   , 

and 0  for all k k k

ij ij ijv v v , i, j,k.     

 

Definition 4.1. At a lower level equilibrium (LLE) pattern  * *Q ,s M , the influence coefficients 

 1  1  k

ijv , k , ,K; i, j , ,n; i j   , are referred to as consistent, if the following equalities hold:  

 

                           

2

1

1
2

2

k

ij

j j jk
i j k

j

v .

a R
v

B











                                                                                                            (11)   

 

The LLE with consistent conjectures is called a consistent conjectural variations equilibrium state (CCVES) in 

application to the above-described human migration model. 

 

Now we are in a position to formulate the following existence result. 

 

Theorem 4.1. Under assumptions A1, A2 and A3, and if all the investment sums are bounded (i.e., 

0 ,  1, ,iR R i n    ), then there exists a consistent conjectural equilibrium state (CCVES) in application to the 

above-described bi-level human migration model. 

 

When proving Theorem 4.1, we established that certain infinite-dimensional mappings involved in 

equations (11) are continuous and contracting over corresponding compact subsets. This allows one to find, for each 

fixed group k of potential migrant and each destination location j, good approximations for the consistent 

conjectures (influence coefficients)  1  1  k

ijv , k , ,K; i, j , ,n; i j   , by applying a simple iteration procedure: 
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 

 

1

2

1
  0 1

1
2

2

k , m

ij

j k , m j j
i j k

j

v , m , ,

a R
v

B






 






                                                                                       (12)  

 

with 
 0

0  1  1  
k ,

ijv , k , ,K; i, j , ,n; i j.     

 

Theorem 4.2. For each fixed group k of potential migrants and each destination location j, approximate conjectures 

(influence coefficients) 
 

 1  
k , m

ijv , i, j , ,n; i j,  obtained by formulas (12), converge (as m ) to the unique 

solution  
1

n
k k

j ij
i ,i j

v v
 

 of system (11).                                   

       

In our future research, we are going to extend the obtained results to the case of not necessarily linear utility 

functions and discontinuous conjectures (influence coefficients). However, some of the necessary technique can be 

developed now, in the case of linear utilities and continuous conjectures. To do that, for fixed values of k and j, we 

denote the value of the inverse of the derivative of the utility function  k k k

j j ju u Q by 

 

                      

 
1

0

k

j k

jk

j

du
Q

dQ



 

  
  

,                                                                                              (13) 

 

and rewrite the consistency equalities (11) in a more general form: 

 

                        

2

1

1
2

2

k

ij

j jk
i j

v ,

a
v 











                                                                                              (14) 

 

where  0,   . When   , then the solution of system (14) tends to the unique limit solution 

1
 1  1  

2

k

ijv , k , ,K; i, j , ,n; i j    . For all the finite values of the parameter 0  we establish the following 

assertion. 

 

Theorem 4.3.  For each fixed group k of potential migrants and each destination location j, and for any  0,   , 

there exists a unique solution of equations (14) as a collection of continuous functions 

   1  k k

ij ijv v , i, j , ,n; i j   . Furthermore,    
1

0 0  and  as  for all  1  
2

k k

ij ijv , v , i, j , ,n; i j      .   

 

5. CONCLUSIONS AND FUTURE RESEARCH 

 

We have investigated a human migration model involving conjectures of the migration groups concerning 

the variations of utility function values both in the abandoned location and in the destination site. To formulate 

equilibrium conditions in this model, we use the concept of conjectural variation equilibrium (CVE). We establish 

the existence and uniqueness results for the equilibrium in question, and introduced a concept of consistent 

conjectures (influence coefficients), together with the corresponding CVEs. The theorem guaranteeing the existence 

and uniqueness of solution to each consistency system and hence, the consistent conjectural variations equilibrium 

state (CCVES), has been also proved. 
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We also notice that the human migration model with conjectural variations can be further extended and 

examined in the case when constraint (2) is replaced by a weaker condition, say 

 

                   
0   1  1k

iQ , i , ,n; k , ,K,                                                                           (15)  

 

which allows us to consider the repeated or chain migration. In this case the feasible set M stops being compact 

(remaining, however, convex), which makes insufficient the use of the general theory of variational inequality 

problems to demonstrate the existence of equilibrium. Then subtler results obtained in Bulavsky et al. (1998) and 

further developed in Isac et al. (2002) can be used to that effect. Indeed, the existence of equilibrium will be 

guaranteed for various classes of utility functions and migration costs that are free of exceptional families of 

elements (EFE). 
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