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ABSTRACT 

 

This study shows that the relationship between oil price changes and European stock market is 

significant and vary in relation to individual industry sectors. The oil price changes exhibit 

significant Granger causality for majority of European industry sector stock returns, but no 

cointegration could be determined for the price series. The results are proved to be economically 

exploitable for trading strategies. The trading rule based on the bivariate VAR( p ) model for 

forecasting future stock returns significantly outperforms the buy-and-hold strategy in term of 

expected return and risk. It yields large Sharpe ratios and significant positive Jensen's alpha for 

both weekly and monthly data. 
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INTRODUCTION 
 

il prices and their effect on various macroeconomic variables is an object of ongoing research in 

academic literature. The impact of changes in oil price on equity prices is still a relatively young field 

of research, but particularly in the last few years, the number of studies on this topic has increased 

remarkably. According to the theory, the value of a firm equals the discounted sum of the expected future cash 

flows. The cash flows themselves are assumed to be influenced by a company's relative economic condition, which 

is driven by, for instance, interest rates, exchange rates, income, revenue or production costs as well as diverse 

macroeconomic factors such as GDP or prices of resources. Motivation for analyzing the hypothesis about the link 

between the oil and stock market is obvious, since oil is one of the important inputs for almost all kinds of 

industries. The aim of this paper is twofold. First, it analyzes the impact of oil prices on the European stocks prices 

and returns within individual industry sectors. It has been verified that there is a statistically significant impact of oil 

price changes on the majority of industry sector stock returns in Europe, as well as on the aggregated European 

stock market index. Nevertheless, considering the price time series indicated no cointegration relationships, which 

implies a lack of a common stochastic trend and long term stable relationship. It could have been shown that the 

impact of oil return on stock return varies for different European industry sectors. The stocks in the oil & gas sector, 

for instance, seem to absorb the information from the energy market much faster than in other industries, which 

supports the findings of Driesprong et. al., (2008) and Nandha & Faff (2008) published for other markets. The 

second aim of this paper is to draw possible implications for market participants. Most studies on the relationship 

between oil and stock prices conclude by making a statement about the connection and causality between the time 

series data. While the majority of recent research studies agree on the existence of a link between oil price and stock 

price, it is still possible that even though the results are statistically significant, they are not economically 

exploitable. This paper introduces a trading strategy based on the underlying vector autoregressive (VAR) model 

containing oil returns as a predictor of future stock returns. For monthly and weekly returns, a trading technique 

based on a bivariate VAR model can provide investors with abnormal returns and has comparably favorable risk-

return characteristics relative to the buy-and-hold policy. This trading strategy outperforms the market return 

measured by Jensen's alpha and Sharpe ratio, and exhibits significantly lower standard deviation of its returns when 

compared to the market index. To confirm the validity of our results, the study contains a necessary robustness 

check of the trading rule itself, which has been frequently omitted in the literature. 

 

O 
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 The results of the study provide not only valuable information for investors, hedgers and other market 

participants but also contribute to the ongoing research on market efficiency. Fama (1970) provides the textbook 

definition of an efficient market, which has been broadly cited in the literature: "A market in which prices always 

fully reflect available information is called efficient." A more detailed definition has been developed by Jensen 

(1978): A market is efficient with respect to an information set, if it is impossible to make economic profits by 

trading on the basis of this information set. Because economic profits are defined as risk-adjusted returns after 

deducting transaction costs, Jensen's definition implies that the efficient market hypothesis (EMH) can be tested by 

considering the net profits and risk of trading strategies based on available information. A good survey of the results 

of a technical analysis used for testing the efficiency market hypothesis, as well as a discussion on the theoretical 

concepts related to technical trading is provided by Park & Irwin (2007). In this paper, information from the oil 

market was used to trade equity, and the obtained results at least question the hypothesis that the European market 

satisfies the requirements of a semi-strong efficient market. Nevertheless, this paper does not aim to reject the 

efficient market hypothesis itself. Furthermore, it is trying to open a discussion on economical exploitability of 

cross-market relationships. Further research on this topic is necessary. The paper is structured as follows. In section 

2, the empirical methodology for investigating the relationship between the series is introduced. In section 3, the 

data and the results relating to the link between oil and stock prices are discussed, and a conclusion is reached. 

Section 4 features the design and implementation of a trading technique based on the bivariate VAR model and 

analyzes the out-of-sample results. Section 4 also contains various robustness checks. Section 5 concludes the paper. 

 

LITERATURE REVIEW 
 

 Many researchers have brought a broad perspective to analyzing the relationship between oil prices and 

economic variables such as GDP or production in detail. Hamilton (1983) and Gisser & Goodwin (1986) conclude 

that oil price shocks might impact the future development of the macroeconomy and could be a cause for economic 

recession. Much research on the effect of oil prices on real activity has been influenced by Hamilton's paper, and his 

findings have been elaborated on and confirmed by many studies (Mork 1989, Lee et. al., 1995, Hooker 1995). The 

impact of changes in oil price on the equity prices is still a relatively young field of research. Jones & Kaul (1996) 

test the impact of oil prices on four developed markets using the cash-flow dividend model, and find significant 

negative correlation to the U.S. stock market. Huang et. al., (1996) discuss the relationship between daily oil futures 

returns and daily U.S. equity returns using a vector autoregression approach and find that oil futures returns do 

affect some individual oil company stock returns. Nevertheless, the authors could not prove that futures returns have 

much impact on market indices such as the S&P 500. More recent studies do tend to support the hypothesis that the 

link between national stock indices and oil price time series is significant (Driesprong et. al., 2008; Basher & 

Sadorsky 2006; Park & Ratti, 2008; Sadorsky, 1999). There exist only a few studies analyzing the impact on the 

individual industry sectors. Al-Mudhaf & Goodwin (1993) considered 29 oil companies on the New York Stock 

Exchange and found a positive impact of oil price shocks on returns for firms with significant assets in domestic oil 

production. Sadorsky (2001) show that an increase in oil prices leads to higher prices of oil and gas companies in 

Canada. A very recent study by Nandha & Faff (2008) uses a multifactor market model to describe the impact of oil 

prices on 30 world sector indices and finds a rise in oil prices has a detrimental effect on stock returns in all 

analyzed sectors other than mining and the oil and gas industry. Literature considering European industries is rather 

scarce. Oberndorfer (2009) discusses the impact on the prices and volatility in the energy sector in Europe, while 

another very recent study by Arouri & Nguyen (2010) uses a market model to analyze the impact of unexpected 

shocks in oil prices on industry indices, and suggests that the obtained results can be used to improve portfolio 

diversification.  

 

METHODOLOGY 
 

VAR Model 
 

 Based on Sims (1980)’s findings the relationship between two stationary time series can be empirically 

investigated by the vector autoregressive model. In fact, this approach has often been used in academic literature to 

evaluate the relationship between stock and oil prices. In the most basic bivariate case, a VAR consists of two 

equations and can be written as follows:  
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where 1c  and 2c  denote the constants and t  is white noise error term. ty  and tx  are the observations of two 

stationary time series, while p  represents the used lag length. In the following study, one of the equations describes 

the oil price dynamics, while the other represents the analyzed equity index movements. One of the advantages of 

using a VAR is that in doing so, it is not necessary to provide prior assumptions about which variables are 

exogenous and which are endogenous. In this model, all variables are treated as endogenous. Each variable depends 

on the lagged values of all other variables in the system. Because the model is sensitive to the choice of the lag-

length, the appropriate number of lags is usually estimated using the Akaike Information Criterion (AIC) or Schwarz 

Bayesian Criterion (SBC). In the case of non-stationary time series, which are integrated of order one, i.e. (I(1)), the 

VAR in first differences can be estimated, and conventional asymptotic theory can be used for hypothesis testing. In 

addition, Engle & Granger (1987) proposed that a linear combination of non-stationary time series can be stationary. 

This is the case in which cointegration relationships exist; i.e., the time series have a common stochastic trend. Such 

a trend implies long-term stable relationships among the time series. If the cointegration vector is indicated, the 

VAR model will be extended by an error correction term to the vector error correction model (VECM).  
 

EMPIRICAL RESULTS 
 

Data 
 

This study considers monthly data from January 1990 to September 2010. The Morgan Stanley Capital 

International (MSCI) European reinvestment index is used to track the development of the European equity market. 

To describe the movement in the industry sector stocks, ten Datastream indexes provided by Thompson Datastream 

Database are employed: Oil & Gas, Basic Materials, Industry, Consumer Services, Consumer Goods, Health Care, 

Telecommunication, Technology, Financial Services and Utilities. All prices have been linearized with a natural 

logarithm and calculated at the end of the month. The log returns are defined as a difference in log prices. The 

consideration of monthly prediction interval is assumed to be common practice among numerous institutional 

investors; this choice is consistent with the findings of Ghysels et. al., (2005), for instance, who suggest that the 

monthly frequency describes the "best balance between sample size and the signal-to-noise ratio". Later in the paper, 

robustness checks based on weekly prices are provided as well. The weekly returns are calculated on Wednesday of 

each week, to avoid the impact of higher trading volumes on Monday and Friday. The one-month European 

Interbank Offering Rate (EURIBOR) and one-week EURIBOR is used as a proxy for the risk free rate in the period 

after 1999. Before 1999, Frankfurt Interbank Offering Rate (FIBOR) was used. The Brent type crude oil is the oil 

price proxy, given that oil production in Europe is priced relative to this type. The Brent oil prices as well as the 

analyzed stock returns are expressed in Euros. 
 

Unit Root Test and Cointegration 
 

 The first step is to investigate the stationarity of the observed univariate time series, the existence of which 

is the key assumption of the OLS based VAR estimation. Augmented Dickey-Fuller (ADF) test for unit roots is 

adopted to evaluate the property. For all of the time series, I run following regression:  
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where the optimal lag p  is based on the AIC. The null hypothesis of the ADF-test is 0= . If the variable is 

integrated of order one, 1ty  provides no relevant information for predicting ty  outside of that already obtained in 
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pty  . In such a case, the null hypothesis cannot be rejected; i.e., the time series y  has a unit root. The t-values are 

compared with the Dickey-Fuller (DF) t-values and summarized in Table 1. As the results indicate, all log price 

series are integrated of order one, which implies that the log return time series are stationary. The result is in line 

with the general accepted fact that the price series tend to have a time trend, but stock return time series are 

stationary. For European industry sectors, f.e. Arouri & Nguyen (2010) and Oberndorfer (2009) obtain same results.  
 

 

Table 1: Unit Root Test and Granger causality 

 I(0) I(1) Granger causality 

Index Lags DF Lag DF O   S S   O Inst. Caus. 

MSCI Eur 3 -1.45 2 -7.69 
4.79

***
 2.92

**
 

0.05 

Oil & Gas 2 -1.35 1 -10.20 0.80 
4.37

**
 30.80

***
 

Basic Met 6 -3.22 5 -6.92 0.84 8.86
***

 2.14 

Cons Gds 2 -2.84 1 -9.87 
4.24

**
 

0.79 0.38 

Industry 4 -2.66 3 -6.39 3.05
**

 3.08
**

 0.00 

Cons Serv 2 -1.58 1 -10.20 
2.95

**
 2.13

*
 

0.05 

Health 2 -1.22 1 -9.75 0.40 0.05 
2.73

*
 

Telcom 5 -1.42 4 -6.34 
4.85

**
 

1.39 0.31 

Utility. 2 -1.26 1 -9.93 1.46 0.88 0.11 

Financial 5 -1.70 4 -5.83 1.80 
2.98

**
 

0.22 

Tech 4 -1.25 3 -6.76 
4.80

***
 2.72

**
 

0.31 

Note: The corresponding Dickey Fuller t-values for lag one an 5% significance level is -3.24. The highest DF t-value is -3.94 for 

lag of four. Instanenous causality has been tested using 
2  Test statistics. The null hypothesis is no Granger causal relationship. 

* denotes significance on the 10% level, ** on 5% level and *** on 1% level. The lag length has been chosen using AIC.  
 

 

Table 2: Cointegration 

Index 0H  2 -test 5% crit. 

MSCI Eur 0r  17.85 25.32 

 1r  3.17 12.25 

Oil & Gas 0r  18.18 19.99 

 1r  5.98 9.13 

Basic Mat 0r  24.90 25.32 

 1r  11.01 12.25 

Cons Gds 0r  10.36 19.99 

 1r  1.94 9.13 

Industry 0r  20.24 25.32 

 1r  5.26 12.25 

Cons Serv 0r  18.22 25.32 

 1r  4.26 12.25 

Health 0r  18.95 19.99 

 1r  5.65 9.13 

Telcom 0r  17.64 25.32 

 1r  4.18 12.25 

Utility 0r  14.60 25.32 

 1r  3.19 12.25 

Financial 0r  18.42 25.32 

 1r  3.22 12.25 

Tech 0r  20.34 25.32 

 1r  3.06 12.25 

Note: The optimal length has been estimated using AIC and is listed in Table 1. The results for maximum eigenvalue allow the 

same interpretation.   
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 Engle and Granger (1987) proposed that a linear combination of non-stationary time series could be 

stationary. As explained above, this is the case when the two time series contain a common stochastic trend; i.e., 

there exists long-term stable relationships among the time series. If a common stochastic trend is indicated, classic 

VAR in first differences does not describe the relationship between the time series correctly. Vector error correction 

models should be estimated instead. To judge whether the cointegration relationship between the log price series 

exists, the maximum likelihood procedure based on Johansen (1988) and Johansen (1991) will be employed. This 

procedure detects the number of cointegrating vectors present in non-stationary time series. The VAR( p ) model 

from 1 and 2 can be re-written using matrix notation as 
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tY  is 12  vector of observations from analyzed non-stationary time series y  and x .   describes the first 

difference in the observations. i  is a coefficient matrix and tε  is a vector of innovations. The trace-test and 

maximum eigenvalue verify, the existence of a non-zero vector in  . If this is the case, the stationary long-run 

relationship between the series is implied. The null hypothesis for the trace test is the number of cointegration 

vectors; i.e., if the rank of   in equation 4 is ir  , the null hypothesis for the eigenvalue test is ir = . For the log 

price time series, which are not stationary according to the ADF test, the results of the trace test are summarized in 

Table 2. For all pairs of time series, the evidence is the same using a testing procedure based on maximum 

eigenvalues. The table was omitted to save space. In the end, no cointegration relationship on the 5% significance 

level could be indicated. This result is not surprising given that the evidence for cointegration relationship between 

oil and equity prices in the academic literature is mixed. The results tend to vary for different data frequency, 

different markets, industries, and for different time periods. In sum, the monthly industry-specific log stock prices 

are integrated of order one and not cointegrated with the log prices of Brent oil, which implies that there exists the 

possibility to investigate the relationship using VAR in first differences. Since the first differences of the log prices 

are nothing else but the returns, we could imply that link between the returns on the oil and returns on equity could 

be described using a bivariate VAR( p ) model. 

 

Granger Causality 
 

 Analysis of the estimated coefficients themselves sometimes reveals uninteresting results. Bivariate VAR 

models are in most cases used to test Granger causality and to determine whether lags of one variable help to explain 

the current value of some other variable. The null hypothesis of the test is that the variable y  does not Granger 

cause variable x  and vice versa. To verify causality, the unrestricted equation 1 and equation 1 under the restriction 

0=  are estimated and then F-Statistics is used to test for the equality of both models. If the explanatory power 

differs, it could be concluded that x  Granger causes y . Because the relationship is not symmetric, Granger causality 

in one direction does not imply causality in the other. The test results for the causality relationships are summarized 

in Table 1. Additionally, the data have been tested for instantaneous causality. If, in period t , adding 1tx  to the 

information set improves the forecast of 1ty , there is instantaneous causality between the two variables (Lütkepohl 

2005). Because this concept of causality is symmetric, we speak about instantaneous causality between tx  and ty , 

and deem the direction irrelevant.  

 

 The log price changes of Brent oil Granger cause consumer services sector stock returns in Europe as well 

as stock returns in consumer goods, telecommunications, technology, industry sectors and MSCI Europe index 

itself. Conversely, stocks in the following sectors exhibit Granger causality to the returns on the oil market: oil & 

gas, basic material, industry, consumer services, financial services and technology, as well as the MSCI Europe. In 

the case of oil & gas sector stocks, while we are unable to observe an impact of the past monthly oil returns, the 

instantaneous causality seems to be very strong. This supports the prior research of, for instance, Driesprong et. al., 

(2008), who showed that while stock markets in general tend to underreact to information from the energy market, 

oil-related stocks usually tend to react faster. Another sector presumed to be strongly related to the oil price changes 
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is industry. In this case, bidirectional Granger causality is observable, as in the case of European MSCI index, 

consumer services, and technology. While the economic explanation for the results in the consumer services and 

goods sector is unclear, the link between the technology sector and oil price is not surprising. The sector results 

support findings similar to those in the literature for other countries, observing varying impact of the oil price 

information on different industries. The results verify the generally accepted fact that the oil & gas industry absorbs 

information faster comparing than other industries (Driesprong et. al., 2008, Nandha & Faff 2008) in the case of the 

European equity market. The obtained statistically significant link to the overall stock indices is also in line with 

common findings.  

 

VAR based Trading 
 

 Studies on the link between oil prices and stock markets typically end with a statement concerning the 

causal relationship between the two, concentrating on the strength, direction and statistical significance of the 

relationship. Literature on the implications for investor decisions or portfolio diversification is rather scarce. Related 

to data used in this paper, Arouri & Nguyen (2010) shows that diversification with oil spot price-based products can 

improve the risk-return profile of stock portfolios. While the majority of recent research studies agree about the 

existence of the link between oil price and stock price, it is possible that while the results are statistically significant, 

they are not economically exploitable. Existing literature pays little attention to this fact. Driesprong et. al., (2008) in 

a recent paper shows, that a simple trading rule based on one-month lagged oil returns yields a better risk-return 

profile than a buy-and-hold strategy, and shows that the economic significance of the oil price shocks in the sense of 

Hong et. al., (2007) is stronger than for other possible predictors, such as interest rates or dividend yields. This paper 

expands upon  

the idea of exploiting the relationship between the two markets and shows that a bivariate-VAR-based trading rule 

strongly decreases the risk of an investment and yields abnormal returns for the investor in the case of European 

equity market and diverse industry sectors stocks. The results are robust and valid for weekly and monthly returns 

over the last twenty years.  

 

Trading rule 
 

 The trading strategy is to exploit one-step-ahead forecasts of the stock returns based on the movement in 

the oil spot prices. To obtain the forecasts, bivariate rolling VAR( p ) model was employed: 
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pty   stands for the index stock returns, and ptx   describes past changes in the prices of Brent type oil. 1
~
ty  is the 

one-period-ahead predicted stock index return. Parameters ̂  and ̂  are estimated from the 48 month rolling in-

sample window. Optimal lag length p  has been estimated for every single rolling window using AIC. The trading 

rule is designed to generate a signal for the investor to invest in the equity market or EURIBOR bonds each month. 

If the forecasted equity market return y~  is greater than the current risk-free rate, it generates a signal to invest in the 

equity market; otherwise, it signals that the investor should invest in bonds. Similar trading rules have been used in 

various studies on technical trading (Park & Irwin 2007). This strategy can be easily implemented using index 

futures or another instrument tracking the index such as an exchange traded fund (ETF). Especially for the industry 

indices no futures are usually traded, but the possibility to track the index with an ETF exists. Transaction costs are 

assumed to be 0.1% which is consistent with the literature on technical trading. The returns were compared with the 

returns acquired by holding an index-related product. 

 

 The risk and return characteristics of the strategy is discussed by considering Sharpe ratio and standard 

deviation comparison. Furthermore, CAPM-based Jenson's alpha was estimated running following regression: 
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where OS
tr  describes the return of the oil price based strategy in time t  and Index

tr  the return of the corresponding 

market index; this is nothing but the return of the of the buy-and-hold strategy. The estimate i  is the systematic 

risk of the trading strategy compared to the market return and   is the Jensen's alpha. To account for possible 

heteroscedasticity and autocorrelation (HAC) in the explanatory variables, the test statistics are calculated using 

Newey & West (1987) standard errors. Descriptive statistics for the trading rule are summarized in the Table 3, the 

results of the regression 6 are provided in Table 4. 
 

 

Table 3: Trading Strategy: Descriptive statistics 

 Buy-and-Hold Policy Trading Strategy 

Index Mean SD SR Mean SD SR 

MSCI Europe 3.74 0.048 0.009 11.67 0.033 0.215 

Oil & Gas 7.05 0.056 0.057 10.81 0.047 0.134 

Basic Mat. 6.95 0.061 0.051 16.23 0.39 0.277 

Cons. Gds. 5.43 0.058 0.032 11.03 0.038 0.171 

Industry 5.42 0.061 0.030 13.69 0.041 0.212 

Cons. Serv. 3.27 0.051 0.001 14.61 0.032 0.293 

Health 5.74 0.035 0.059 11.21 0.027 0.246 

Telecom 4.03 0.066 0.010 16.84 0.047 0.239 

Utility 5.44 0.040 0.046 12.10 0.029 0.249 

Financial 2.78 0.063 -0.006 15.12 0.039 0.251 

Tech 6.18 0.095 0.026 25.76 0.059 0.317 

Note: Mean is given in % per anum. SD stands for standard deviation, SR for Sharpe ratio.  

 

 

RESULTS 
 

 For all analyzed indices, VAR-based trading strategies generate higher mean returns and smaller standard 

deviations than the buy-and-hold policy. Using the F-Test for a comparing of variances implies that the variance of 

the buy and hold strategy is significantly larger that of the trading rule. Remarkably large Sharpe ratios also support 

the hypothesis of a more favorable risk-return relationship of the oil-based strategy compared to the buy-and-hold 

policy. Using the VAR-based strategy in connection with the MSCI Europe index, for instance, one could achieve 

11.67% annual return, while a buy-and-hold strategy yields only 3.74%. The Shrape ratio for the oil based trading 

strategy is 21.5%, almost 25 times larger than the 0.9% in the case of holding the market index. Similar results can 

be observed for all considered industry sector related stock indices. Table 4 describes more precisely the economic 

significance of the trading rule. For all analyzed indices, the Jensen's alpha is significantly positive. Implementation 

of this strategy for the European MSCI equity index would yield on average risk adjusted 8.21% per anum more 

than the buy-and-hold strategy. Furthermore, beta coefficients, which measure the systematic risk of the trading 

strategy, are significantly smaller than one, confirming that the oil strategy is substantially less risky than investing 

in the market or sector index. A good trading strategy should provide reasonable signals for going in or out of the 

stock market. If the rule implies holding the market index related product, one should expect significant positive 

returns of the market index (H1). A good trading strategy should be capable of indicating the bullish market. On the 

contrary, if the rule implies the optimal step is to invest in bonds, one might expect a downward trend in the market 

index and negative returns in the equity market related product. If the return of the market index in this period is 

significantly positive, the trading technique is missing potential sources of additional gains. In this sense, one might 

expect the market returns to be less than or equal to zero in the periods following the trading strategy's sell signal 

(H2). Columns t(Buy) and t(Sell) in Table 4 contain the t-values for corresponding tests. Buy is the test result for 

hypothesis (H1), and Sell is the test result for hypothesis (H2). For all indices, the trading strategy yields positive 

returns after a buy signal, and with exception of the oil & gas and consumer goods sector, after a sell signal, the 

market is bearish. For the consumer sector this result may be surprising, given the previous results indicating 

Granger causality between changes in oil price and changes in the consumer goods-related stock index. On the 

contrary, the oil & gas sector tends to absorb the information from the oil market faster than other sectors. 
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Nevertheless, the Jensen's alpha, Sharpe ratio and significantly positive market returns in the buy period in these two 

cases indicate the trading technique's superiority to the buy-and-hold policy. It is generally remarkable that even if 

we unable to prove Granger causality for all analyzed pairs, the trading technique provides good results for all equity 

indices. A possible explanation for this is that while the causality itself was tested for the whole sample, only the 

relationship in the short in-sample is relevant for the trading rule. The profitability of the trading strategy indicates 

that the power of causality relationships could vary over different subsamples.  
 

 

Table 4: Jenson's alpha 

Index Buy Sell   t( )   t(  ) 

MSCI Europe 3.09 -2.80 8.21 3.99 0.48 6.16 

Oil & Gas 2.51 -1.15 4.91 2.19 0.70 11.46 

Basic Mat. 4.64 -2.17 11.41 3.77 0.43 4.27 

Cons. Gds. 3.10 -1.23 6.86 2.76 0.44 5.27 

Industry 3.03 -1.84 9.20 3.14 0.45 5.09 

Cons. Serv. 4.98 -3.35 11.37 6.07 0.44 6.14 

Health 4.54 -3.17 6.46 3.54 0.611 6.59 

Telecom 3.93 -3.24 13.2 4.38 0.53 5.47 

Utility 4.48 -2.55 7.56 5.69 0.55 7.48 

Financial 4.21 -2.84 12.09 4.30 0.42 5.01 

Tech 5.07 -3.15 21.3 6.177 0.42 4.98 

Note: Jenson's alpha is given in % per anum. The columns Buy and Sell give the t-values for Hypothesis H1 and H2. 

 

 

Robustness checks 
 

 To ensure that the results are not caused by randomness, I provide various robustness checks containing 

sub-period analysis and variation of the in-sample period length. I verify, if the construction of the trading rule 

allows one to make statements regarding the power and economic significance of the VAR( p ) based forecast. 

Additionally, the trading strategy is evaluated for weekly data. 

 

Trading Rule 
 

 The trading decision is based on the comparison of the forecast generated by VAR( p ) and risk-free rate 

represented by FIBOR and EURIBOR. It is theoretically possible that the signal exhibits predictive power because 

of expected return estimates or because EURIBOR itself has significant predictive power for the future market 

development. In the latter case, it would not be possible to conclude that the oil price based strategy really 

outperforms the market. Even if it is essential to analyze the rule when evaluating the results of the trading 

technique, verifying the validity of the trading rule has been frequently omitted in the literature. In this study, to 

prove whether or not there is predictability power of interest rates on the stock returns, I run a simple regression 

model  

 

ttii
I

t EURIBORr   1=  (7) 

 

where i  is a constant and t  is the error term for the sample period from 1990 to 2010. For the European MSCI, 

index the HAC standard errors-based t-statistics are -0.96 for monthly data and -1.41 for weekly returns and weekly 

risk free rates, which implies a lack of significant predictive power of the European term structure. The regression 

results are insignificant for all industry sector indices. To conclude, this trading technique is suitable for exploiting 

the oil price-based stock return forecasts. 

 

Weekly Returns 
 

 Compared to the daily data, the use of weekly data in the analysis significantly reduces the chance that 

potential bias may arise, such as the bid-ask effect or problems with non-synchronous trading days. Some authors, 
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Arouri & Nguyen (2010) for example, likewise believe that the monthly data may have some bearing on asymmetry 

in the responses of stock returns to oil price shocks. The robustness of the results has been verified considering 

weekly returns. The returns are calculated on Wednesday to avoid Monday and Friday effects. Table 5 summarizes 

the results of the trading technique using weekly price changes. The trading rule is the same as before and considers 

weekly FIBOR/EURIBOR as a proxy for risk free rate. The in-sample period for the forecasts is again four years, or 

208 weeks. 
 

 

Table 5: Weekly Returns 

Index Buy (H1) Sell (H1)   )(t  

MSCI Eur 2.79 -1.41 6.45 2.88 

Oil & Gas 2.05 -0.70 4.11 1.72 

Basic Mat 2.71 -0.53 5.79 2.46 

Con Gds 2.16 -0.84 4.24 1.73 

Industry 2.72 -1.71 8.63 3.02 

Con Serv 3.42 -1.78 7.38 3.25 

Health 2.64 - 0.72 5.00 2.36 

Telecom 2.08 -1.23 6.52 2.35 

Utility 4.14 -2.06 7.51 4.02 

Financial 3.17 -2.69 11.18 3.24 

Tech 2.10 -1.67 9.40 2.25 

 

 

 For all considered sector stock indices the Jensen's alpha is significant. The index return in periods after a 

buy signal is also significantly positive. The estimated index return in sell periods is negative, and in many cases 

significant at a 10% level. It might be argued, that to forecast the relationship between the weekly returns with 

higher degree of accuracy, the time series should be tested for the existence of cointegration vectors in the price 

series, and as appropriate, the prediction should be done using VECM. As mentioned before, if cointegration exists, 

imposing this restriction will yield more efficient estimates. Within short horizons, however, vector error correction 

estimates are known to perform poorly relative to those from a VAR (Naka & Tufte 1997). Because the trading 

technique is based on one period ahead forecasts, the choice of the VAR( p ) model is more reasonable. To sum up, 

the oil price-based trading strategy is superior to the buy-and-hold policy not only for monthly returns, but also for 

the weekly returns. For all industries, the standard deviation of the returns generated by the trading strategy is 

significantly lower than in the case of the buy and-hold strategy.  

 

 Furthermore, to check for the robustness of the empirical results, the additional changes were made to the 

underlying strategy. First, I divided the dataset into two sub-samples such that both samples have ten year out-of-

sample periods (i.e., 1990-2004 and 1996 and 2010). In both cases, the results allow for the same interpretation 

concerning the favorable risk-return profile. Refining the in-sample period to three or five years similarly leads to no 

change in the results. 

 

CONCLUSION 
 

 This paper contributes to the literature on the oil and stock price co-movements. It extends the literature 

analyzing the impact of monthly oil price changes on the European industry sectors related stock indices. In general, 

some basic results observed for other markets have been observed for the European case. The impact of the oil price 

changes is significant and varies for different industries. Oil & gas sector stocks seem to absorb the information 

from the energy market much faster than do stocks in other industries. For the oil & gas sector, no Granger causality 

was observed on a monthly basis, but the instantaneous causality was noted as being highly significant. For monthly 

data and all price series, no cointegration relationships, i.e., no common stochastic trend could be observed. Studies 

typically end at this stage of analysis with a statement about significance, power and direction of the relationship 

between the commodity and stock time series. This paper extends the literature illustrating how to exploit the 

obtained information for trading strategies. The trading rule based on the simple bivariate VAR( p ) for forecasting 

future stock returns significantly outperforms the buy-and-hold strategy in term of expected return and risk. The 
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systematic risk of the trading strategy is smaller than one and yields large Sharpe ratios. The standard deviation of 

the strategy is significantly lower than the standard deviation of the market return, a fact which supports the 

favorable properties of the strategy in comparison to the buy-and-hold policy. The oil-based trading technique 

provides an additional significant positive Jenson's alpha, as well as significant positive returns in the periods after a 

buy signal for all indices. For most indices, the index returns after the sell signal are significantly smaller than zero 

or equal to zero, which implies correct identification of an upward and downward trend by the trading strategy. The 

results hold for weekly returns as well. Additionally, the robustness of the trading technique construction has been 

verified, which is a necessary step usually omitted in the literature. In addition to the obvious implication for the 

market participants, the results contribute to the discussion on the market efficiency. From the EMH point of view, 

these results question European stock market being efficient in the sense of Jensen (1978). Nevertheless, this paper 

does not reject the efficient market hypothesis; it is, furthermore, trying to open a discussion on economical 

exploitability of cross-market linkages. For further research, it is necessary to extend the robustness checks and to 

consider different time intervals and equity markets.  
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