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ABSTRACT 

 

We investigate the potential of artificial neural networks (ANN) in the stock selection process of 

actively managed funds. Two ANN models are constructed to perform stock selection, using the 

Dow Jones (DJ) Sector Titans as the research database. The cascade-correlation algorithm of 

Fahlman and Lebiere (1990/1991) is combined with embedded learning rules, namely the 

backpropagation learning rule and the extended Kalman filter learning rule to forecast the 

cross-section of global equity returns. The main findings support the use of artificial neural 

networks for financial forecasting as an active portfolio management tool. In particular, fractile 

analysis and risk-adjusted return performance metrics provide evidence that the model trained 

via the extended Kalman filter rule had greater strength in identifying future top performers for 

global equities than the model trained via the backpropagation learning rule. There is no 

distinguishable difference between the performances of the bottom quartiles formed by both ANN 

models. The zero-investment portfolios formed by longing the top quartiles and simultaneously 

shorting the bottom quartiles or the market proxy exhibit statistically significant Jensen’s alpha 

and continues to accumulate positive returns over the out-of-sample period for both ANN 

models. On the other hand, the zero-investment portfolios formed by longing the bottom quartiles 

and simultaneously shorting the market proxy exhibit statistically significant Jensen’s alpha and 

continues to accumulate losses over the out-of-sample period for both ANN models. The 

implementation of the extended Kalman filter rule in training artificial neural networks for 

applications involving noisy financial data is recommended. 
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INTRODUCTION 

 

raditional financial asset pricing models such as the capital asset pricing model (CAPM) of Sharpe 

(1964) and Lintner (1965) and the arbitrage pricing theory (APT) of Ross (1976) are based on the 

assumption that a linear pricing relation between stock returns and the respective explanatory 

variables exist. A growing body of evidence has questioned this relationship suggesting that perhaps a nonlinear 

pricing relation, in addition to this linear relation might exist, particularly in the pricing relationship based on firm-

specific attributes.
1
 Thus, if one were to relax this assumption and allow for a nonlinear pricing relation, in addition 

to the linear pricing relation, models incorporating this nonlinearity could be constructed. An artificial neural 

network (ANN) is one such technique having the ability to map this nonlinear relation and potentially improve 

forecasting accuracy. Artificial neural networks, having its roots in cognitive psychology and computational 

neuroscience, are designed to mimic the functioning of the human brain. Like the human brain an ANN is often 

described as a nonlinear, parallel computer responsible for all the information-processing abilities that we possess 

(Attew, 2002). 

                                                 
1
 See for example Banz (1981); Fama and French (1992, 1993); Van Rensburg and Robertson (2004); Eakins, Stansell and Buck 

(1998, 2003); Cao, Leggio and Schniederjans (2005) and Cao, Parry and Leggio (2009), to name a few. 

T 
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In this paper we build stock selection models to forecast stock returns and examine the potential of ANNs 

in the stock selection process of actively managed funds. We combine the cascade-correlation algorithm of Fahlman 

and Lebiere (1990) with embedded learning rules, namely the backpropagation learning rule and the extended 

Kalman filter learning rule, to forecast the cross-section of global equity returns. The cascade-correlation algorithm 

is a supervised learning algorithm that serves a two-fold purpose of determining the neural network architecture and 

is responsible for the learning process by modifying the network architecture and adding hidden neurons to the 

network until the optimal network is selected. This contrasts fixed-architecture structures which requires the network 

architecture to be clearly specified before any training (weight adjustment) of the network takes place. Much of the 

research into the financial application of ANNs involves the construction of fixed-architecture networks trained via 

the gradient descent backpropagation learning algorithm.
2
 An extended Kalman filter is introduced in this research 

as an alternative to backpropagation for selecting stocks. The rationale for this lies in the fact that financial data is 

often noisy, thus an algorithm that specifically adjusts for this noise could improve the ANN model’s ability to 

generalize. The extended Kalman filter, a nonlinear version of the Kalman filter proposed by Kalman (1960) is used 

to estimate nonlinear systems. Correlation analysis and fractile analysis is conducted to enhance the comparison 

between the predictability of the respective ANN models. 
 

A series of financial ratios and firm-specific attributes are considered as candidate model inputs to predict 

global equity returns. A genetic algorithm is employed to select the best subset of input variables in the respective 

ANN models. 
 

The main findings of this research support the uses of artificial neural networks for stock return forecasting 

as an active portfolio management tool. The use of the extended Kalman filter in training artificial neural networks 

for applications involving noisy financial data is recommended.  
 

LITERATURE REVIEW 
 

Over the past decades researchers have put forward a case for the use of ANNs in forecasting stock returns 

from a set of firm-specific variables such as firm size, book-to-market ratio, price-to-earnings ratio, to name a few. 

Research conducted by Eakins, Stansell and Buck (1998) is one of the first studies to examine nonlinearities in 

financial data for this purpose. The sample includes companies listed on the New York stock Exchange (NYSE), 

American Exchange (AMEX) or those trades through the national association of security dealers over the period 

1988 to 1991. An ANN model is constructed which includes the lagged values of ten firm-specific variables as 

inputs, namely, net profit margin, operating profit margin, current ratio, total asset turnover, debt-to-asset ratio, 

return-on-assets, price-earnings ratio, market value, trading volume and percentage ownership as the model output. 

The model is trained via the gradient descent backpropagation learning algorithm and then compared to a Tobit 

regression model. In terms of predictive power, the ANN model outperforms the Tobit regression model over the 

examination period. 
 

In a similar study Eakins and Stansell (2003), in an attempt to determine whether value stocks provide 

superior investment returns, construct an ANN model using the descriptors of value, that is, price-to-cash flow, 

price-to-book, dividend yield, earnings yield, sales and market capitalization as inputs in the neural network to 

forecast returns for stocks listed on COMPUSTAT over the period from 1975 to 1996. The model is trained using 

the backpropagation algorithm. The results provide evidence that the risk-adjusted returns of stocks selected by the 

ANN model are greater than the results achieved by other forecasting models. Consistent with Fama and French 

(1992, 1993) value stocks provide higher returns with lower risk than can be obtained from the random walk 

process.  
 

Cao, Leggio and Schniederjans (2005) examine the influences of firm-specific attributes in pricing stocks 

traded on the Shanghai Stock Exchange over the period from 1999 to 2002. ANN models trained via the 

backpropagation model outperform the linear counterparts in terms of their predictive power. Cao, Parry and Leggio 

                                                 
2
 Past financial research employing this technique includes Abhyankar and Wong (1997) and Kanas and Yannopoulos (2001) for 

the forecasting of stock market index returns. Other applications employing this technique include research conducted by 

Singleton and Surkan (1990) for bond classification; Utans and Moody (1995) for bond rating; Qi and Maddala (1995) and White 

(1995) for option pricing and Swanson and White (1995a, 1995b) for macroeconomic forecasting. 
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(2009) extend the methodology of Cao, Leggio and Schniederjans (2005) by comparing three linear models with 

three ANN models on the Shanghai Stock Exchange over two sub periods, namely, 1999 to 2002 and 2003 to 2008. 

The models include a linear and an ANN univariate time series model; a multivariate linear and nonlinear version of 

the CAPM (where stock returns are regressed on market returns); and the linear and nonlinear version of Fama and 

French (1993) three-factor model. The results confirm the forecasting superiority of the ANN models relative to the 

linear models in forecasting Chinese stock returns.  
 

Other tests that support the use of ANN models in financial research include studies conducted by Hung, 

Liang and Liu (1996) and Kana and Yannopoulos (2001). Hung, Liang and Liu (1996) examine the feasibility of 

integrating the APT and ANN models to forecast stock returns on the Taiwan Stock Exchange. The results provide 

evidence that the integrated approach provides a more optimal solution than when the APT or ANN is used alone. 

The integrated model outperforms the market benchmark, as well as other integrating techniques such as blending 

ARIMA with APT. Kanas and Yannopoulos (2001), on the other hand, attempt to forecast movements in the Dow 

Jones (DJ) and Financial Times (FT) indices, using dividends and trading volume as the explanatory variables for 

the linear and ANN models. The study discovered an underlying nonlinear relation between stock returns and 

fundamental attributes.  
 

FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS IN ASSET PRICING 
 

Neural Network Architectures 
 

Fixed Architecture Networks 
 

An artificial neural network is made up of a group of artificial neurons, with weighted interconnections. 

Structured in layers with parallel processing, there exists an input layer, one or more hidden layers and an output 

layer. With fixed-architecture networks, every neuron is specified in advance, prior to network training and does not 

change. Feed-forward neural networks are arranged in layers where information passes in one direction from input 

to output layer via interconnection weights. Each neuron in the input layer is connected to every neuron in the 

hidden layer, which in turn is connected to the output layer. There are no interconnections between neurons 

occupying the same layer. A feed-forward neural network with multiple neurons occupying multiple hidden layers 

may exist for certain applications which are more complex or chaotic. According to McNelis (2005), the single layer 

feed-forward network with one hidden layer is the most popularly used neural network in both economic and 

financial applications. Equation 1, adapted from Hodnett (2010) (modified from Kanas and Yannopoulos (2001)) is 

the algebraic expression of a standard fixed-architecture ANN model with direct connections between the input 

neurons and output neuron that is used to estimate E(Ri,t ), the expected return of share i in month t.  
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Where: 
 

ti,0,a  = the bias term to the output layer for period t; 

tj,i,g  = the direct payoff to input neuron 1, tjF  from the output neuron (the equity returns) for period t; 

1tj,F   
= the input neuron representing the transformed lagged value of  attribute j in the input layer; 

ti,k,b  = the factor payoff to the hidden neuron k from the output neuron for period t (it measures the 

sensitivity of the equity returns to movements in hidden neuron k);  

ti,0,d  = the bias term to the hidden layer for period t; 

tj,k,i,c  = the factor payoff to input neuron 1, tjF  from the hidden neuron k for period t (it measures the 

sensitivity of hidden neuron k to movements in input 1, tjF );  
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1tj,tj,k,i,ti,0, Fcd    = the input signal within the nonlinear activation function. 

 

Based on Equation 1, the expected return determination process receives signals from the linear function which is 

the sum of the products of the input neurons and their associated factor payoffs (that is,




J

1j
1tj,tj,i, Fg ). It also 

receives signal from the nonlinear transformation function. Each input neuron 1tj,F   takes on the raw lagged value 

of the attribute j, or a transformed lagged value of the attribute j via one or more transformation functions. The input 

signal, 



J

1j
1tj,tj,k,i,ti,0, Fcd , has to be activated in order to reflect the nonlinearity. The sigmoid logistic 

cumulative distribution function is employed for the research.
3
 The nonlinear transformation function,
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A feed-forward network, together with the sigmoid activation function is referred to as a multilayer 

perceptron (MLP) network. Equation 2, adapted from Gonzalez (2000) and Hodnett (2010), displays an example of 

an ANN model possessing 2 input neurons and 2 hidden neurons in a single hidden layer. In Equation 2, the input 

neurons are the lagged values of the firm-specific attributes of the sample shares, and the output neuron is the 

expected returns of the sample shares in time period t. 
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The advantage of employing this model is that it separates the contribution of the nonlinearity from that of 

the linearity. The nonlinear factor payoffs, bi,1,t and bi,2,t in Equation 2 are equal to zero if the share returns do not 

exhibit any nonlinear traits. 

 

 

Figure 1 provides a representation of Equation 2. (gi,1,t × F1,t-1) + (gi,2,t × F2,t-1) represents the input signal 

from the linear transformation function to the output. The input signals, (di,0,1,t + ci,1,1,t × F1,t-1 + ci,2,1,t × F2,t-1) and 

                                                 
3 The sigmoid logistic cumulative distribution function )(xf  is defined as 1/ (1+e-x). Other activation functions include a linear, 

Tanh, Gaussian and Sine transfer function. 
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(di,0,2,t + ci,1,2,t × F1,t-1 + ci,2,2,t × F2,t-1), are first transformed into the nonlinear format using the sigmoid logistic 

cumulative distribution function before they are received by the output neuron. Next, the hidden neurons, H1,t  and  

H2,t are then established with their values being depicted by  
 

   
                                           

  and 

 
 

   
                                           

  respectively. The final signal of the nonlinear transformation function 

connecting the hidden layer and the output neuron, E(Ri,t), is equal to the sum of the products of the hidden neuron 

values and their factor payoffs,  
      

   
                                           

  +  
      

   
                                           

 . 

 

 

 
Figure 1:  Fixed Architecture Neural Network (adapted from Hodnett (2010)) 

 

 

As previously mentioned fixed-architecture networks entail the predetermination of the appropriate input 

neurons, hidden layers and hidden neurons. Determining the exact number of hidden neurons to occupy a hidden 

layer varies from application to application and is often determined using trial and error, heuristics, or 

experimentation. This could severely impact the accuracy, robustness and generalization ability of the model. 

 

E(Ri,t) 
 

Output     

Bias 

Hidden 

Neuron 1 

(H1,t) 

Hidden 

Neuron 2 

(H2,t) 

Input 

Neuron 1 

(F1,t-1) 

Input 

Neuron 2 

(F2,t-1) 

Hidden 

Layer 

Bias 

OUTPUT 

LAYER 

          αi,0,t 

 

             bi,1,t          bi,2,t 

 

        gi,1,t            gi,2,t 

 

 

 

 

 
HIDDEN                 di,0,2,t 

LAYER 
                  di,0,1,t 

  

          ci,1,1,t               ci,2,2,t 

 

 

                  ci,1,2,t   ci,2,1,t 

 
INPUT 

LAYER 



International Business & Economics Research Journal – April 2012 Volume 11, Number 4 

380 © 2012 The Clute Institute 

Specifying too many hidden neurons could result in network overfitting, while too few hidden neurons could impact 

the ability of the network to adequately learn the training data. In order to overcome the problems associated with 

traditional fixed-architecture networks and the hidden layer problem, the cascade-correlation algorithm, was 

proposed by Fahlman and Lebiere (1990).  

 

Cascade-Correlation Architecture 

 

The cascade-correlation algorithm is a topology-modifying algorithm responsible for both network 

architecture and network learning. The objective is to establish the network architecture by adding hidden neurons 

one by one to the network as it learns. Once these hidden neurons have been added to the network they do not 

change. In installing a hidden neuron, many different networks are trained until the best one is selected. Unlike fixed 

architecture networks, no a priori network architecture needs to be specified in advance, since the architecture 

dynamically adjusts as more hidden neurons are installed. With cascade-correlation networks, unlike fixed 

architecture networks, depending on the complexity of the input data, more (or less) hidden neurons are added to the 

network, as the architecture evolves. The advantage is that the network learns quickly and it determines its own size 

and topology (Fahlman and Lebiere (1990), Diamtopoulou (2005), Hodnett (2010)). This cascaded architecture 

ensures that the neural network determines the actual number of hidden nodes and connection weights. The 

mechanics of the cascade-correlation algorithm is further discussed in the methodology section of this paper. 
 

Neural Network Training 
 

The goal of supervised learning is to minimize the discrepancy between the output of the network and the 

target/desired output by adjusting the network weights. The extended Kalman filter rule is tested, in addition to 

backpropagation in this research since it is a faster converging alternative to backpropagation and specifically 

adjusts for the presence of noise in financial data (Nechyba and Xu (1997)). Singhal and Wu (1989) were the first to 

test the extended Kalman filter in training neural networks. They find the extended Kalman filter to be superior to 

backpropagation for training multilayered networks. An alternate interpretation proposed by Ruck, Rogers, 

Kabrisky, Maybeck and Oxley (1992) is that backpropagation is simply a degenerate form of the extended Kalman 

filter. The backpropagation learning rule and the extended Kalman filter is embedded within the cascade-correlation 

architecture to train the network weights during cascade learning. Below is a description of each learning method. 
 

Backpropagation in ANN Training 
 

Backpropagation is a gradient descent algorithm in which the network weights move along the negative of 

the gradient of the performance function. Organized in a multilayer from input to output layer, the signal is 

propagated “forward”. The network error is then propagated “backwards” into the network via the backpropagation 

learning algorithm. This mechanism continues until the error is minimized. The training process starts by assigning 

random values (between -1 and +1) to the weights. The network computes an output which is dependent on the 

hidden neurons, activation function and network weights. The activation function (    ) of the artificial neurons in 

ANNs can be represented as the sum of the product of the inputs (  ) and their respective weights (   ): 

 

                      

 

   

                                                                                                                                                                  

 

This is then passed through a transfer function. The output function is the sigmoid function represented as: 
 

     
 

      
                                                                                                                                                                                           

 

The partial derivative of the sigmoid function with respect to its argument is derived and represented as follows: 
 
            

  
                                                                                                                                                          

Because the activation function is differentiable, so is the function computed by the neural network, as well 

as the error function differentiable. The weights are thus adjusted at a rate reflective of the curvature of the sigmoid 
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function. The network is trained to determine a target output from a set of given inputs. The error signal is the 

difference between the actual activation of the output      and the target (‘desired’) activation (  ) for the neuron. 

The error is dependent on the weights, thus the weights need to be adjusted in order to minimize the error. This cost 

function is represented as follows: 
 

    
 

 
         

                                                                                                                                                                        

 

 

 

The error is reduced by adjusting the weights. Thus the partial derivative of the error with respect to the weights is 

computed. This gradient of E in respect of the weights w is: 

 

          
  

       
                                                                                                                                                                                 

 

The network weights are updated as follows: 
 

                                                                                                                                                                                          

 

     (representing the training process/adjustment of each weight) is the vector of all weights of the network. The 

backpropagation algorithm adjusts the weights using the method of gradient descent: 
 

        
  

       
                                                                                                                                                                                 

 

The learning rate ( ) determines how the weights change at each step length of each iteration. The goal is to find the 

derivative of   with respect to   , backwards. Thus referring to Equation 6, the partial derivative of the error with 

respect to the output can be represented as follows: 
 
  

   
                                                                                                                                                                                            

 

Next, expanding the partial derivative 
   

    
 by the chain rule, determine how much the output (    depends on the 

activation        and how this activation depends on the weights. Referring to Equation 3 and Equation 4: 
 
   

    
  

   

     
 
     

    
                                                                                                                                                            

 

Thus, combining Equation 10 and Equation 11, the partial derivative of the error with respect to the weights can be 

represented as follows: 
 
  

    
  

  

   
 
   

    
                                                                                                                                                     

 

Rewriting Equation 10, the adjustment to each weight is now derived as follows: 
 

                                                                                                                                                                           
 

The Extended Kalman Filter in ANN Training 
 

State estimation is a procedure in which the state of a process needs to be estimated, given the presence of 

noisy and inaccurate measurements from the process. In ANN modeling, the network weights represent the state that 

needs to be estimated in the training process. The extended Kalman filter is comprised of two phases: predict next 

state (before the measurements are taken) and measurement update (update state after the measurements are taken). 

In state estimation form, the training of the neural network can be formulated as a filtering problem, assuming that 

the data are generated by the following noisy signal model (Hodnett (2010), adapted from Haykin (2001)): 
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Where: 
 

          = the value of the function is the ANN output; 

    = is the known output target (actual) output vector; 

    = is the measurement noise vector that is assumed to a Gaussian-distributed random   

  variable with zero mean and constant covariance; 

    = is the input vector; 

    = the weights of the ANN model at k; and 

    = is the process noise vector that is assumed to a Gaussian-distributed random variable  

  with zero mean and constant covariance. 
 

The following assumptions are made: 
 

   is a white process noise with       
     =       covariance matrix 

   is a white measurement noise with       
   =       covariance matrix 

      
   = 0, for all   . 

 

     the network’s weight parameter represents the state of the system. Equation (14) represents the process (predict 
phase) model, which uses estimates from the previous step to produce and estimate of the current state. Equation 

(15) represents the network’s desired response vector    as a nonlinear function of the input vector    and the 

weight parameter     (Haykin (2001)). Observation of the weights (  ), is made according to Equation (16), the 

measurement phase. The nonlinear function   thus relates the state to the measurement     Thus, the EKF solution to 

estimating    that minimizes the network error is obtained via the following recursion (Haykin (2001); Lary and 

Mussa (2004); Hodnett (2010): 
 

                                                                                                                                                                                     
 

Where: 
 

    = weights (the state vector) to be estimated; 

       =  previous step weight estimate; 

         = vector contains the prediction errors (innovations); and 

     = is the prediction (=          ). 
 

   represents a weighting factor known as the Kalman gain matrix at step k. It is the gain or blending factor that 

minimizes the error covariance, where    is defined as the estimate error covariance (conditional mean covariance 

matrix).    represents a measure of the estimated accuracy of the state estimate. The Kalman gain matrix can thus be 

represented as follows: 
 

                                    
        

                                                                                                                                    
 

Where: 
 

      = the estimate error covariance at the previous iteration; and 

    = the measurement noise covariance at iteration k. 

 

 

Observing Equation 17, it is evident that as     , approaches zero, the Kalman gain weights the residual 

error/innovation less heavily, but as    approaches zero, the Kalman gain weights the residual error more heavily. 
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   is thus represented as follows: 
 

              
                                                                                                                                                                 

 

Where: 

 

   is the matrix of the partial derivatives    with respect to all elements of      , that is: 

 

     
               

      
                                                                                                                                                                              

 

                                                      

 

An important feature of the extended Kalman filter is that the function of    (the Jacobian matrix) is to correctly 

propagate the relevant component of the measurement component. 

 

DEVELOPING ANN STOCK SELECTION MODELS 

 

Based on the cascade-correlation architecture described in the previous section, two ANN models are built 

to perform stock selection for global equities, namely, a backpropagation model (BACKPROP) and an extended 

Kalman filter model (KALMAN). Using the Dow Jones (DJ) Sector Titans Composite as the research database, the 

ANN models predict forward monthly stock returns and subsequently divide sample stocks into quartiles based on 

the rankings of their predicted returns.
4
 Such fractile analysis enhances the comparison between the predictability of 

BACKPROP and KALMAN. The performance of the top quartile (Q1) and the bottom quartile (Q4) of the two 

models are evaluated against the collective performance of sample stocks (that is, the market portfolio) over a 60-

month examination period from 01 January 2005 to 31 December 2009. The top quartile (Q1) of a successful stock 

selection model is expected to generate higher risk-adjusted returns relative to the market portfolio. Conversely, the 

bottom quartile (Q4) is expected to underperform the market portfolio. We consider a series of financial ratios and 

firm-specific attributes as candidate model inputs to predict forward stock returns. This includes the beta coefficient 

that measures the sensitivity of stock returns to market returns, past return momentum (stocks that yield the largest 

gains over the past 1, 3, 6, 12, 24 and 36 months respectively), yields on fundamental values such as book value, 

earnings, dividends, sales and cash flow and the year-on-year growth of these fundamental values. The attributes for 

each sample stock are obtained from DataStream International over the period from 01 January 2004 to 31 

December 2009. Although survivorship bias is inherent in the database, research results provide useful insights into 

investment strategies built on well-established (large market capitalization) global stock portfolios with sufficient 

sector diversification. The look-ahead bias is avoided by using model inputs that lag model outputs by at least 6 

months. All downloaded data are subsequently converted into U.S. dollars. Table 1 demonstrates the detailed 

descriptions for the computation of these attributes. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4
 The DJ Sector Titans Composite provides a fair sector representation as it consists of the largest 30 global stocks by market 

capitalization from each of the 19 second tier sectors of the Supersector structure defined by the Industry Classification 

Benchmark (ICB). This index methodology results in 570 stocks in the research sample. The constituents of this composite are 

chosen from both developing and developed economies. 
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Table 1:  List of Firm-Specific Attribute 

Symbol  Name      Descriptions 

 

Mom36  Prior 36-month total return    Total return indext/Total return indext-36 - 1 

Mom24  Prior 24-month total return    Total return indext/Total return indext-24 - 1 

Mom12  Prior 12-month total return    Total return indext/Total return indext-12 - 1 

Mom6  Prior 6-month total return    Total return indext/Total return indext-6 - 1 

Mom3  Prior 3-month total return     Total return indext/Total return indext-3 - 1 

Mom1  Prior 1-month total return    Total return indext/Total return indext-1 - 1 

YOYC%  Year-on-year cash flow growth   Net cash flowt/Net cash flowt-12 - 1 

YOYS%  Year-on-year sales growth    Total Salest/Total Salest-12 - 1 

YOYD%  Year-on-year dividend growth   Total dividendt/Total dividendt-12 - 1 

YOYE%  Year-on-year earnings growth   Earnings after taxt/Earnings after taxt-12 - 1 

YOYB%  Year-on-year book value growth   Book valuet/Book valuet-12 - 1 

CY  Cash flow-to-price ratio    Net Cash flow per share/Share price 

SY  Sales-to-price ratio     Total Sales per share/Share price 

DY  Dividend yield     Dividend per share/Share price 

EY  Earnings yield     Earnings per share after tax/Share price 

BY  Book-to-market value ratio    Book value per share/Share price 

Beta  Beta coefficient     *Regression coefficient obtained by   

        regressing prior 36-month stock excess   

        returns on prior 36-month market excess returns.  

*The market proxy is a monthly-rebalanced equally-weighted portfolio of all constituents from the DJ Sector Titans Composite 

Index; the risk-free proxy used to calculate excess returns is the 3-month U.S. Treasury bill. 

 

 

 This research first takes on all 17 candidate attributes as potential inputs in the training set. The cross-

sectional factor weights are estimated by training the MLP of the ANN models. Four steps are involved in building 

the respective ANN models, namely: specifying training, test and validation sets; selecting input variables; model 

construction and training and evaluating model performance: 

 

Step 1 Specifying Training, Test and Validation Sets 

 

The training set maps the model parameters by updating the network weights and hence determines the 

generalization ability of the learning process. A test set, independent from the training set, is used to reassure the 

robustness of the weights obtained in the training set in the model building process. The training set and the test set 

together comprise the in-sample period based on which the respective ANN models are built. A round robin 

approach is implemented whereby 70% of the in-sample data is used as the training set and 30% as the test set at 

regular intervals. As opposed to the training set and the test set, the validation set is not involved in the model 

building process, as it serves to evaluate the performance of the quartiles of the respective ANN models in the out-

of-sample period. This research employs a moving-window procedure whereby 12 months are used as the in-sample 

period to forecast the immediate 1-month forward return in the out-of-sample period.
5 Under this procedure, the data 

set spanning the period 01 January 2004 to 31 December 2004 represents the first training set to forecast the January 

2005 returns. The second training set spans the period 01 February 2004 until 31 January 2005 to forecast the 

February 2005 returns. This overlapping procedure is repeated a further 58 times until all monthly returns over the 

out-of-sample period from 01 January 2005 to 31 December 2009 is predicted. 

 

Step 2 Selecting Input Variables 

 

Different variable selection procedures have been employed in research entailing stock return prediction. 

                                                 
5
 Kaastra and Boyd (1996), Qi (1999), Quah and Srinivasan (1999) and Eakins and Stansell (2003) apply this procedure when 

modelling time-series data. An advantage of the moving-window procedure as opposed to a static procedure is that new 

information is updated and older information discarded as time proceeds. 
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For example, studies have employed stepwise and backward stepwise regression (Motiwalla and Wahab, 2000), 

principal component analysis, or selecting variables based on a set of a priori assumptions, to name a few. Some 

authors argue that although several available methods are applicable for linear modeling, these approaches cannot be 

simply extended to nonlinear modeling. For example, Mao and Billings (1999:352) attribute the inapplicability of 

forward selection and backward elimination algorithms to the weight structure of an MLP neural network and 

explain “these algorithms are in fact term selection and/or deletion methods rather than variable selection and/or 

deletion algorithms in the nonlinear system case”. A genetic algorithm (Holland (1975) and Goldberg (1989)) is 

used in this research to select the optimal subset of input variables for the neural network.
6
 This evolutionary search 

procedure has the capability of modeling complex systems with multiple solutions. Inspired by Charles’ Darwin’s 

principle of evolution and genetics, the laws of natural selection apply where only the fittest members of a group 

will survive. These fit members genetically recombine with other fit members to produce offspring thereby ensuring 

that good characteristics pass on to the next generation, while those less fit members will be eliminated. The 

standard GA starts with the simulation of a random population consisting of subsets of input variables referred to as 

“individuals” or “chromosomes” in the evolutionary process. Each member of the population is then evaluated and 

graded according to a fitness function. This ensures that only the proportion of the fittest individuals from the 

current (“parent”) population is extracted. Through the process of reproduction (crossover and mutation) individuals 

(subset of input variables) are selected for the next generation. This continues until a particular stopping criterion 

(50 generations for BACKPROP and 30 generations for KALMAN) is achieved. With regard to KALMAN, a 

necessary requirement for the extended Kalman filter rule is that the number of input variables presented to the 

network for training is reduced. 

 

Step 3 Construction and Training of ANN Model 

 

Referring to Figure 2, the cascade-correlation algorithm is depicted as follows: 

 

1.  Cascade-correlation starts with a network consisting of a fully connected input layer and output layer with 

no hidden layers.  

2. Train the output-side weights via the backpropagation learning rule for  BACKPROP and via the extended 

Kalman filter learning rule for KALMAN until the mean squared error (MSE) is minimized. 

3.  Initialize candidate hidden neuron. Candidate neurons are fully connected to input neurons as well as any 

hidden neuron. There are no connection weights between the candidate neurons and output neurons at this 

stage.  

4. Attempt to maximize the correlation between the candidate hidden neuron’s output and the network output. 

Learning stops when there is no further improvement in correlation. 

5. The candidate neuron with the maximum correlation between its output and the network output is  prepared 

for installation in the network. 

6.  Selected hidden neuron’s input-side weights are then frozen; it is installed in network with links between 

the hidden neuron and the output neuron created (output-side weights). 

7. Go back to 2. 

 

This process is repeated until the error is sufficiently reduced when the specified hidden layers reaches a maximum. 

In the research a maximum of 30 hidden layers are specified, with a minimum increment of 1 and a maximum 

increment of 2 hidden neurons added at a time. 

 
 

 

 

 

 

                                                 
6
 Genetic algorithms have been previously employed in financial applications, for example, by Mahfoud and Mani (1995) for 

stock selection, Rutan (1993) for portfolio selection and Kingdom and Feldman (1995) for bankruptcy prediction, to name a few. 
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Figure 2: Cascade-Correlation Algorithm 

 

 

Step 4 Evaluation of ANN Models 

 

The overall accuracy of model predictions is evaluated by calculating the time-series correlation between 

the model’s forecasted returns and the actual returns over the training, testing and the out-of-sample periods. Fractile 

analysis is conducted to evaluate the practicality of the ANN models by assessing the relative out-of-sample quartile 

performance based on risk-adjusted performance measures such as the Sharpe ratio, the Treynor measure and 

Jensen’s alpha.  The Sharpe ratio discounts the excess portfolio return by the standard deviation (a measure of total 

volatility) of portfolio returns to measure excess return per unit of volatility as shown in Equation 19: 
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        =  the annualized return for portfolio X, 

         = the annualized standard deviation of return for portfolio X 

 

The Treynor measure estimates excess return per unit of systematic risk proxied by the fractile’s beta coefficient as 

shown in Equation 20: 

 

                 
                

    
                                                                                                                               

 

Using equally-weighted portfolio of all constituents from the DJ Sector Titans Composite Index and the 3-month 

U.S. Treasury yield as the risk-free rate, the beta coefficient of portfolio X is estimated using Equation 21: 

 

                                  –                                                                                                                     

 

Where: 

 

     =  the beta coefficient for portfolio X, 

          = the annualized return for the market proxy 

The regression intercept,    is known as Jensen’s alpha and measures the abnormal return of portfolio X. 

 

RESULTS  

 

Variable Selection 

 

The attributes selected as inputs for BACKPROP and KALMAN using a genetic algorithm to forecast 

monthly stock returns in the out-of-sample period are displayed in Figure 3 and Figure 4 respectively. With regard to 

BACKPROP (refer to Figure 3), most of the momentum attributes are important inputs for forecasting returns, with 

the exception of Mom3. DY is the most important attribute in the value fundamental category for BACKPROP. 

Beta, a measure of sensitivity of stock returns to market risk, is also an important model input employed by 

BACKPROP. Attributes in the growth category are less frequently selected, with the exception of YOYB%.  

 

For both BACKPROP and KALMAN, Mom12 is the most frequently selected model input, among other 

attributes. Mom6 and Mom24 are selected as inputs for KALMAN, mostly prior to 2007 (refer to Figure 4). On the 

other hand, YOYB% is mostly selected for monthly forecasting in 2007 by KALMAN. The presence of other 

attributes from the growth category for KALMAN is not obvious. With the exception of DY, attributes from the 

value category are not frequently selected for KALMAN. As opposed to BACKPROP, beta is not regarded as an 

important input for KALMAN. 
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Figure 3:  This figure displays the attributes selected for BACKPROP using a genetic algorithm over the examination period 

form 01 January 2005 to 31 December 2009. The variables examined include the beta coefficient (Beta), yields (Y) on 

fundamental values such as book value (B), earnings (E), dividends (D), sales (S) and cash flow (C), the year-on-year (YOY) 

growth of the above fundamental values, prior return momentum (Mom) and the beta coefficient (Beta). 

 

 

 
Figure 4:  This figure displays the attributes selected for KALMAN using a genetic algorithm over the examination period form 

01 January 2005 to 31 December 2009. The variables examined include the beta coefficient (Beta), yields (Y) on fundamental 

values such as book value (B), earnings (E), dividends (D), sales (S) and cash flow (C), the year-on-year (YOY) growth of the 

above fundamental values, prior return momentum (Mom) and the beta coefficient (Beta). 
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Correlation Analysis 

 

The log cumulative monthly correlations between the forecasted returns and the realized returns for the out-

of-sample period and their corresponding in-sample period (train and test) results for BACKPROP and KALMAN 

are illustrated in Figure 5 and Figure 6 respectively. The monthly out-of-sample non-cumulative correlations 

between the forecasted returns and the realized returns are shown in histograms. A kink in the out-of-sample log 

cumulative correlation (refer to the trend line marked by cross legends) around 01 January 2006 is observed for both 

BACKPROP (refer to Figure 5) and KALMAN (refer to Figure 6). The gap between the in-sample (train and test 

periods) and out-of-sample log cumulative correlations widens since the beginning of 2006 and is apparent for both 

BACKPROP and KALMAN. The out-of-sample log cumulative correlation for BACKPROP completely flattens out 

after 2006. By contrast, the log cumulative out-of-sample correlation for KALMAN, on the other hand, continues to 

increase after 2006. 

 

 

 
Figure 5:  This figure displays the log cumulative monthly correlations between the forecasted returns and the realised returns 

for the out-of-sample period and the corresponding in-sample period (train and test) for BACKPROP. The monthly out-of-sample 

correlations (non-cumulative) are illustrated in the form of histograms. 
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Figure 6:  This figure displays the log cumulative monthly correlations between the forecasted returns and the actual returns for 

the out-of-sample period and the corresponding in-sample (train and test) period for KALMAN. The monthly out-of-sample 

correlations (non-cumulative) are illustrated in the form of histograms. 

 

Fractile Analysis 

 

Figure 7 illustrates the log cumulative returns for the top quartile (Q1) and bottom quartile (Q4) for 

BACKPROP and KALMAN relative to that of the market proxy over the out-of-sample period.  

 
Figure 7:  This figure displays the log cumulative returns for the top quartile (Q1) and the bottom quartile (Q4) of BACKPROP 

and KALMAN respectively over the out-of-sample period from 01 January 2005 to 31 December 2009. The cumulative return 

for the market proxy is represented by the solid trend line in the figure. 
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The top quartiles of both BACKPROP and KALMAN outperform the market proxy. On the other hand, the 

bottom quartiles of both models underperform the market proxy. The performance of the top quartiles constructed 

under the respective models only diverge after 2006 in that Q1 of KALMAN continues to accumulate returns faster 

than Q1 of BACKPROP. The performance of the bottom quartiles for both models were however not distinctively 

different. 

 

Figure 8 illustrates the log cumulative returns for long-short zero investment portfolios constructed using 

the top and bottom quartiles of the ANN models and the market proxy over the out-of-sample period. The zero 

investment portfolios constructed using the top quartile and the bottom quartile (Q1 - Q4) of both BACKPROP and 

KALMAN outperform their own zero investment portfolios constructed using the top quartile and the market proxy 

(Q1 - MKT), which in turn outperforms the zero investment portfolios constructed using the bottom quartile and the 

market proxy (Q4 – MKT). Although KALMAN (Q1 – Q4) outperform BACKPROP (Q1 – Q4) and KALMAN (Q1 

– MKT) outperform BACKPROP (Q1 – MKT), there is no clear distinction in the log cumulative performance 

between BACKPROP (Q4 – MKT) and KALMAN (Q4 – MKT).  

 

 
Figure 8:  This figure displays the log cumulative spreads for the long-short zero investment portfolios constructed by longing 

(buying) the top quartile (Q1) and shorting (selling) the bottom quartile (Q4) of the respective BACKPROP and KALMAN 

models and the market proxy over the out-of-sample period from 01 January 2005 to 31 December 2009. 

 

 

The out-of-sample risk-return performance statistics for the top quartile and bottom quartile of 

BACKPROP and KALMAN relative to the market proxy are demonstrated in Table 2. KALMAN (Q1) achieves the 

highest annualized return while BACKPROP (Q4) achieves the lowest annualized return over the examination 

period. The top quartiles of the ANN models are riskier than their bottom quartile counterparts in terms of standard 

deviation and beta coefficient. With regard to the risk-adjusted performance measures, KALMAN (Q1) achieves the 

highest Sharpe ratio, Treynor measure and Jensen’s alpha while BACKPROP (Q4) achieves the lowest Sharpe ratio, 

Treynor measure and Jensen’s alpha, over the examination period. Examining the p-value of Jensen’s alpha reveals 

that all four long-only portfolios constructed under both ANN models have generated statistically significant risk-
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adjusted abnormal returns at a 5% significance level. This serves as strong evidence as to the strength of both 

models in classifying future winners and losers. 
 

 

Table 2:  Performance Evaluation of the Long-Only Portfolios 

  BACKPROP  KALMAN BACKPROP KALMAN Market Proxy  

  (Q1)   (Q1)   (Q4)   (Q4)     

Return   19.56%  29.04%  0.90%  2.19%  9.60% 

Stdev  24.80%  25.65%  22.80%  21.21%  21.49% 

Beta  1.11  1.15  1.03  0.95  1.00 

Sharpe  0.675  1.022  -0.084  -0.030  0.315 

Treynor  0.150  0.229  -0.019  -0.007  0.068 

Jensen  0.007  0.014  -0.007  -0.006  0.000 

t-Stats  2.940  5.040  -3.374  -2.647  ------- 

p-Value  0.005  0.000  0.001  0.011  ------- 

 

 

The out-of-sample risk-return performance statistics of the zero-investment portfolios constructed under the 

respective ANN models are shown in Table 3. KALMAN (Q1 – Q4) and BACKPROP (Q4 – MKT) achieves the 

highest and the lowest returns respectively over the examination period. All zero-investment portfolios achieve beta 

coefficients close to zero. KALMAN (Q1 – Q4) achieves the highest risk-adjusted performance while BACKPROP 

(Q4 – MKT) has the weakest risk-adjusted performance in terms of the Sharpe ratio, Treynor measure and Jensen’s 

alpha. All six zero-investment portfolios earn statistically significant Jensen’s alpha over the examination period. 
 

 

Table 3:  Performance Evaluation of the Zero-Investment Portfolios 

 BACKPROP KALMAN BACKPROP KALMAN BACKPROP KALMAN 

 (Q1-Q4)   (Q1-Q4)   (Q1-MKT)  (Q1-MKT)  (Q4-MKT)  (Q4-MKT) 

Return  18.24%  26.52%  9.70%  18.57%  -7.85%  -7.01% 

Stdev 11.81%  12.93%  6.94%  7.84%  5.26%  5.74% 

Beta 0.08  0.19  0.11  0.14  0.03  -0.05 

Sharpe 1.305  1.833  0.991  2.010  -1.932  -1.714 

Treynor 1.902  1.235  0.614  1.092  -3.639  1.998  

Jensen 0.012  0.017  0.005  0.012  -0.010  -0.008 

 

t-Stats 2.703  3.679  1.994  4.174  -4.414  -3.686 

 

p-Value 0.009  0.001  0.049  0.000  0.000  0.001 

 

 

 

CONCLUSION 
 

With regard to variable selection, BACKPROP requires far more inputs to forecast stock returns in any 

given month compared to KALMAN. As was mentioned earlier in the paper, an extended Kalman filter model 

requires fewer inputs for network training. Attributes from the momentum category (especially Mom12) are the 

most frequently selected attributes by the genetic algorithm for both BACKPROP and KALMAN models. On the 

other hand, DY is the most recognized input in the value category for both ANN models. Although Beta and the 

majority of the value attributes are employed by BACKPROP, they are not regarded as important inputs for stock 

return forecasting for KALMAN. With the exception of YOYB%, the attributes from the growth category are not 

frequently included as inputs for both ANN models.  
 

Positive correlations between the realised returns and model forecasted returns indicate the strength of the 

model in distinguishing outperforming and underperforming stocks in the forecasted periods. On the other hand, 

weak positive or even negative correlations reveal the model’s weakness in ranking stocks according to their 

respective performance in the forecasted periods. Comparing the log cumulative correlations of the in-sample and 

out-of-sample periods for the ANN models reveal a structural decrease in the robustness of both ANN models in 
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forecasting stock returns after 2006. This decrease was however less significant for KALMAN as the correlation 

between the realised returns and the forecasted returns after 2006 remains mostly positive. By contrast, the log 

cumulative correlation of BACKPROP flattens after 2006 until the end of the examination period. 

 

The quartile analysis and risk-adjusted performance statistics provide further evidence that KALMAN 

exhibits greater strength in identifying future top performers (using the top quartile as the proxy) in the global equity 

market compared to BACKPROP. This superiority of KALMAN over BACKPROP is consistent with tests results 

of Singhal and Wu (1989) and Nechyba and Xu (1997). There is no distinguishable difference between the 

performances of the bottom quartiles formed by both ANN models. The zero-investment portfolios formed by 

longing the top quartiles and simultaneously shorting the bottom quartiles or the market proxy exhibit statistically 

significant Jensen’s alpha and continues to accumulate positive returns over the out-of-sample period for both ANN 

models. On the other hand, the zero-investment portfolios formed by longing the bottom quartiles and 

simultaneously shorting the market proxy exhibit statistically significant Jensen’s alpha and continues to accumulate 

losses over the out-of-sample period for both ANN models.  

 

Our findings support the uses of artificial neural network for stock return forecasting as an active portfolio 

management tool. Further to this, our results motivate for the use of the extended Kalman filter in training artificial 

neural networks for applications involving noisy financial data. An area requiring further research includes using the 

extended Kalman filter to train fixed-architecture neural networks for financial forecasting. 
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