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ABSTRACT 

 

In this study, a BCC/CCR
1
Data Envelopment Analysis (DEA) Input-Oriented model is employed to 

measure the carbon reduction efficiency of the four major banks in South Africa (ABSA, Standard 

Bank, First National Bank, and Nedbank). Specifically, the Banxia Frontier Analysis DEA 

software is utilized to make two runs on publicly available data. In the first run, number of 

employees and operating costs are treated as inputs and carbon emissions as the output. In the 

second run, again, the number of employees and operating costs are treated as inputs, but 

electricity usage, paper usage, and business travel are treated as outputs. Results are opposite to 

those generated by the DEA input-oriented model; firms distant from the efficiency frontier are 

deemed efficient in terms of reducing carbon emissions and firms lying on the efficiency frontier 

are deemed inefficient. The first run reveals one bank (ABSA) to be inefficient and the second run 

demonstrates two banks (ABSA and Standard Bank) to be inefficient. Taken in sum, the current 

research study seeks to facilitate the measurement of carbon reduction efficiency within the 

banking sector. 
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INTRODUCTION 

 

ue to the nature of their industrial activities, most service industries are not regarded as heavy 

polluters. Nevertheless, many of their activities are indirectly supported by firms characterized by 

heavy carbon emissions (i.e., the aviation industry, energy providers, and the paper industry). As a 

result of this reliance on heavily polluting support firms within many South African industries, the International 

Energy Information Administration (IEIA, 2009) estimates that South Africa is the 12
th

 highest emitter of carbon 

dioxide globally. The IEIA estimates that, in total, South Africa was responsible for 1.49% of total global emissions 

in 2009. In addition, South Africa exceeds the average global emissions per capita. Whereas 4.49 tons of CO2e are 

generated per capita worldwide, South Africa generates 9.18 CO2e per capita. This makes South Africa the largest 

producer of emissions in Africa, contributing about 40% of carbon emissions on the continent. Egypt is the second-

leading producer of carbon emissions in Africa and contributes only 17% (IEIA, 2009). 

 

In order to achieve environmental sustainability, most companies have initiated activities of measuring 

their carbon emissions and have also instituted various initiatives to reduce these carbon emissions as well. One of 

these activities is a process of voluntary reporting of their carbon reductions to independent institutions like the 

Carbon Disclosure Project (CDP), Global Reporting Initiative (GRI), and the Dow Jones Sustainability Index (DJSI). 

In South Africa, most companies do this to fulfill the King III Integrated reporting requirements which, when 

followed, give the companies a good reputation among its stakeholders as being transparent, fair and promoting a 

sustainable earth through their activities. The CDP report (2011) indicates that South African companies 

(specifically the JSE - Johannesburg Stock Exchange - Top 100 [JSE100]) are the top respondents among the 

BRICS companies, with 83% of the JSE100 responding to the CDP reporting requirements. Compared to their 

                                                           
1See Methodology section for full explanation of these abbreviations. 
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counterparts in the BRICS - Brazil Top 80 at 67%, India Top 200 at 28%, China Top 100 at 11%, and Russia Top 50 

at 8% - more South African companies are disclosing their emissions. South Africa has also the second highest 

number of companies reporting carbon emissions globally after the Europe 300 which stands at 91%. Of note is the 

low response from emerging countries, like China and India, who have emerged as the 21
st
 century workshops of the 

world and are heavily industrialized. 

 

Released in 2011 in South Africa, the National Climate Change Response White paper recommended the 

establishment of carbon budgets for activities that emit high amounts of greenhouse gases (GHG), and the 

introduction of carbon taxes and compulsory GHG reporting regulations. In the National Climate Change Response 

White paper, it is suggested that entities that (a) emit more than 100,000 tons of CO2e per year (Scope 1 

emissions)
2
or (b) consume electricity in excess of 100,000 tons of CO2e (Scope 2 emissions) will be required to 

report their emission output. Though most banks in South Africa are characterized by low amounts of Scope 1 

emissions, their Scope 2 emissions exceed the proposed threshold of 100,000 tons of CO2e per year. Therefore, it is 

imperative that banks in South Africa move beyond merely measuring and disclosing their carbon emissions. Instead, 

it is critical that they also measure the extent to which their carbon reduction activities and processes are efficient. In 

this paper, a new perspective is offered that can be of use for South African firms to measure the effectiveness of 

their carbon reducing activities, thereby providing them with the means to avoid proposed regulations related to 

carbon emissions. 

 

In essence, this study is intended to propose and implement a strategy for moving beyond the mere 

measurement and disclosure of carbon emissions, such that the efficiency with which a firm is efficiently reducing 

its carbon emissions can be gauged. In this vein, the remainder of this paper is structured as a series of interrelated 

sections. The following section reviews relevant literature on carbon emissions; then the methodology section 

describes the methodology and data used for the study; followed by the analysis of results and the discussion thereof. 

Finally, some concluding remarks and directions for future scholarship in this domain are presented. 

 

LITERATURE REVIEW 

 

Most extant studies have measured companies’ environmental sustainability performance, but not the 

degree to which they have reduced their carbon emissions. Continued emphasis on corporate sustainability has 

motivated firms to pursue three pillars of sustainability through their operations - economic, social, and 

environmental. These three pillars are often informally referred to as profit, people, and planet (Elkington, 1998). 

Some have advocated a holistic approach of looking at these three concepts (that is, in concert with each other) to 

promote sustainability as advocated for by the Brutland Commission which defines sustainability as ‘development 

that meets the needs of the present without compromising the ability of the future generations to meet their own 

needs’ (Brutland, 1987). According to the Royal Society Report (2010) and the fourth Assessment Report produced 

by the Intergovernmental Panel on Climate Change (IPCC, 2007), global warming is largely the result of human 

activity, including the burning of fossil fuels, changes in the ways in which land is used, and deforestation. 

 

Given this, there exists a need to determine how institutions reduce carbon emissions in their production of 

goods and services. Ditz and Ranganathan (1997) identified four key elements of corporate environmental 

performance that relate to carbon emissions - materials use, energy consumption, non-product output, and pollutant 

releases. Materials use pertains to the quantity, resource inputs, composition, source, and types of materials used in 

the performance of the company’s operations. Energy consumption refers to the quantity and types of energy used or 

generated by the company. For example, banking firms must establish the sources from which they derive their 

energy and the proportion of that energy that is gas, electricity, and diesel power. Non-product output refers to the 

quantity and types of waste created prior to recycling, treatment, or disposal. Most critically, however, firms must 

possess the ability to distinguish production efficiency from end-of-pipeline pollution. Pollutant releases are the 

quantity and types of pollutants released into the natural environment. These include toxic chemicals, GHGs, solid 

wastes, and types of pollutants. 

                                                           
2GHG protocol divides GHG emission into three types of scope. Scope 1 refers to all direct GHG emissions; Scope 2 refers to indirect GHG 

emissions that result from consumption of purchased electricity, heat, or steam; and Scope 3 involves other indirect emissions, such as the 

extraction and production of purchased materials and fuels, transport-related activities in vehicles not owned or controlled by the reporting entity, 
electricity-related activities (e.g., T&D losses) not covered in Scope 2, outsourced activities, and waste disposal. 
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Imeson and Sim (2010) identified three ways which banking institutions are using to combat climate 

change. Firstly, they adapt to the effects of climate change by not locating facilities in areas prone to serious 

flooding and bushveld fires and having robust disaster recovery plans to cope with extreme weather events or other 

catastrophes. In addition, they take business interruption insurance as a result of such events. Taken together, these 

steps are referred to as rendering the firm “climate proof.” Second, banking institutions mitigate the environmental 

impact of their activities by becoming “climate friendly.” This involves the reduction of energy use in their daily 

business activities that, in turn, reduces the carbon emissions the firm generates. Third, banking institutions exploit 

commercial opportunities related to climate change by lending to, and investing in, energy saving equipment and 

materials, as well as industrial activities that reduce toxic waste and pollution, create renewable energy, and any 

other process that reduces the firm’s carbon footprint. Banks also invest in, and trade, carbon emissions allowances 

and climate change funds. They refer to this third category of activity as “climate profitability.” 

 

Imeson and Sim (2010) further indicate that although banking institutions have made substantial progress 

in reporting data on their environmental sustainability, this data is often tracked inefficiently by multiple operational 

systems or rudimentary accounting systems. It is thus imperative to go beyond reporting and disclosure, by 

exploring how the environmental performance of banking institutions can be measured. The authors propose that 

banks invest in data and analytical frameworks in order to assist them in understanding correlations among key 

environmental performance indicators and to be able to identify areas for further analysis and improvement. Most 

banks have established environmental management systems based on ISO14000/14001 certification, which ensures 

conformance to environmental laws and regulations. In spite of this positive step, there remains a need for systems 

that can track and demonstrate not only environmental compliance, but also environmental performance. 

 

In a study of six German/Swiss financial institutions, Juecken and Bouma (1999) showed that measuring 

and comparing environmental performance among banks remains difficult. Specifically, the authors used a method 

developed by VfU
3
to standardize the measurement of environmental pollution within banks. Each bank employed 

the VfU approach to evaluate their internal activities as a means to compare the respective degrees to which they 

negatively affect the environment. However, Juecken and Bouma (1999) found that the VfU method was unable to 

account for the size or specific operations of organizations, which led to some anomalies. For example, firm size 

affects the amount of paper a firm uses and the amount of travel in which it engages. This was determined to have 

affected the ways in which a bank’s pollution was measured, making it difficult to standardize these measures when 

comparing small banks with multinational financial institutions. In the current study, however, Data Envelopment 

Analysis (DEA) is employed to evaluate these issues. In contrast to the VfU method, DEA is able to account for 

scale of operations in its calculations (the characteristics of DEA will be explored in greater detail in the 

methodology section). Kuosmanen and Kortelainen (2008) agreed that DEA is capable of aggregating various 

positive and negative effects of production into a single efficiency index. Moreover, DEA does not require a priori 

weights for different environmental variables. 

 

To the best of the researcher’s knowledge, there has been no measurement developed to evaluate efficiency 

in reducing carbon emissions exclusively in the banking sector. Further, literature related to comparable measures is 

limited. A study by Zhou et al. (2008b) showed how DEA can be used to construct composite sustainability 

indicators. The authors assert that sustainability indicators can be classified as economic, environmental/ecological, 

and socio-political. They further discuss various extant indicators for sustainability. One of these indicators - the 

Environmental Sustainability Index - is important to this paper because (a) the Environmental Sustainability Index 

was derived from an aggregation of a set of individual indicators that measure multi-dimensional concepts, but 

usually do not have common units of measurement, and (b) the primary aim of this study is to measure different 

sources and generators of carbon emissions, which are similarly measured in different units. Zhou and colleagues 

(2008b) concur that DEA is suitable for performing an analysis in which multiple decision criteria must be 

considered in the construction of composite sustainability indexes. They also demonstrate how the DEA model can 

be tailored to construct an Environmental Performance Index. The underlying construct of this model uses 

production theory and sub-divides the indicators into inputs, desirable outputs, and undesirable outputs. 

                                                           
3VfU stands for VereinfürUmweltmanagement in Banken, Sparkassen und Versicherungen. In English, this means Association for Environmental 

Management in Banks and Insurance Companies. VfU’s primary objective is to develop industry-specific tools and methods for environmental 
performance measurement and reporting. 
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Similarly, Chang et al. (2011) used DEA to measure changes in corporate sustainability performance in 311 

companies over several industries. Using economic, social, and environmental tenets of corporate sustainability as 

classifications, the authors identified environmental performance (eco-efficiency), environmental 

policy/management, and environmental reporting as important components of corporate sustainability. Through the 

identification of these components, Chang et al. (2011) effectively measured changes in corporate sustainability 

performance. Moreover, the study used sustainability scores developed by Sustainability Asset Management (SAM)
 

to measure the relative efficiency of various companies in terms of their corporate sustainability performance. 

 

A study performed by Tyteca (1997), relating to the measurement of environmental performance using 

linear programming, laid the foundation for the use of DEA in measuring environmental performance at the firm, 

industry, and even country level. Tyteca (1997) categorically stated that a variety of linear programming approaches 

(particularly DEA approaches) have contributed to the formulation of two categories of factors (inputs and outputs) 

for use in environmental performance index. Tyteca additionally identified a third factor for inclusion in 

environmental performance indices - pollutants or undesirable outputs. However, Haynes et al. (1994) recommended 

the use of a DEA model that measures the most efficient firm in environmental terms by categorizing pollutants as 

inputs and air and water as outputs. Despite their contributions, Tyteca (1998) and Haynes et al. (1994) focused 

primarily on the measurement of environmental performance among electricity-generating plants. Thus, some of the 

inputs used in their models were not entirely applicable to the service industry as a whole. In spite of their 

limitations, however, the two studies were crucial in the models they proposed to aid in measuring environmental 

efficiency. In this paper, water pollution is not considered. Instead, the focus is on banking-related activities that 

affect the air. Stated another way, this study focuses on carbon emissions. 

 

Several empirical studies have shown that within the service industry, reductions in energy consumption 

are essential for reducing the effect of carbon emissions on the environment. Mortimer et al. (1998) showed that 

carbon reductions are possible through the adoption of cost effective energy efficiency measures that involve the 

installation and operation of energy-saving building services plants and appliances and the use of low-energy 

equipment, including computers and other accessories. In this vein, Aranda et al. (2012) used regression analysis to 

analyze energy consumption in the Spanish banking sector. Though the authors did not seek to link energy savings 

to reduced carbon emissions, they validated essential variables for reducing carbon emission in the service industry. 

The most noteworthy outcome of the study was the identification of a correlation between number of employees, 

number of automated teller machines, summer climatic severity, office surface area, age, and annual energy 

consumption. Specifically, Aranda et al. (2012) found that a firm’s total number of employees was highly correlated 

to the rest of the variables. 

 

However, a concern arises when one seeks to measure carbon reduction efficiency. Although the generation 

of carbon emissions is an output of conducting business, it is an undesirable one. Because the mainstream DEA 

model measures desirable outputs, a number of studies have employed it as such. However, Dyckhoff and Allen 

(2001) proposed a DEA model that incorporates both positive and negative ecological outputs. Holger (2001) 

demonstrated the need to incorporate undesirable outputs into the product model measured by DEA. Seiford and 

Zhu (2002) also showed how the standard DEA model can be used to improve the performance of decision-making 

units (DMUs) by increasing desirable outputs and decreasing undesirable outputs, all while preserving the linearity 

and convexity of DEA. In this way, these studies developed a more theoretical approach to measuring and 

benchmarking ecological efficiency among DMUs. 

 

At the national level, Kim and Kim (2012) used the Log-Mean Divisia Index (LMDI) and the DEA model 

to decompose worldwide industrial CO2 emission trends into six driving forces from data obtained from OECD and 

non-OECD countries. They identified economic activity change as a strong predictor of CO2 emission growth and 

concluded that changes in potential energy intensity and energy mix have yielded reductions in emissions. 

Ramanathan (2005) used DEA to analyze 17 countries from the Middle East and North Africa in terms of energy 

consumption and carbon emissions. This analysis demonstrated that between 1992 and 1995, Middle Eastern and 

North African nations made progress in achieving higher output using lower amounts of input. Ramanathan (2005) 

concluded that most oil-rich countries tend not to implement carbon-friendly policies to promote economic 

development. 
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At the industry level, Zhou and Ang (2008a) showed that DEA has been widely used in the benchmarking 

of electricity utilities accounts and in the modeling of environmental performance and energy efficiency. The 

authors found that the Constant Returns to Scale (CRS) reference technology and the radial efficiency measures 

were the most widely used specifications. They also found that desirable outputs and undesirable outputs were 

simultaneously considered and further recommended the incorporation of environmental DEA technology with the 

Directional Distance Function (DDF) measure of efficiency. 

 

On the basis of the literature outlined above, it is evident that few studies have attempted to measure carbon 

emissions in the financial services industry. Therefore, it is sought to explain the concept of data envelopment 

analysis and the model construct to redress this gap in the literature. 

 

DATA AND METHODOLOGY 

 

Data Envelopment Analysis 

 

DEA (Data Envelopment Analysis) is a powerful linear programming tool used to assess the efficiency of 

organizations or DMUs that provide similar services (Julnes, 2008). The DMUs evaluated in this study are four 

South African banks - ABSA, Standard Bank, Firstrand, and Nedbank. The DEA approach applies linear 

programming to measure the efficiency of any organization (DMU) as the maximum ratio of weighted outputs to 

inputs. Further, this generalized optimization technique measures the relative performance of different decision-

making entities that have multiple input structures. The DEA model estimates relative efficiency, which is in 

reference to the best performing DMU or DMUs (if multiple DMUs are equal in terms of optimal efficiency). The 

DEA allocates an efficiency score of 100% to the most efficient unit, with the lower-performing DMUs being 

evaluated from 0-100% in relation to the most efficient unit. 

 

To develop a DEA model, n DMUs are considered and the following variables are defined: 

 

j = 1,2,…,n (DMU variable) 

i = 1,2,…,m (inputs variable) 

r = 1,2,…,s (outputs variable) 

 

Therefore, each DMUj, j = 1,2,…,n, uses the following variable factors: 

 

xij – amount of input i for the unit j, i = 1,2,…,m and j = 1,2,…,n. 

yrj – amount of output r for the unit j, r = 1,2,…,s and j = 1,2,…,n. 

ur – weight assigned to the output r, r = 1,2,…,s. 

vi – weight assigned to the input i, i = 1,2,…,m. 
 

The next step is to form the virtual input and output of each DMU using the weights (to be determined) vi 

and ur: 
 

 

1

virtual output =
m

r rj
i

yu



 

 

where j = 1, 2,…,n (DMU variable). This is done to determine the weights using linear programming so as to 

maximize the ratio: 
 

Virtual Ouput

Virtual Input
 

1

virtual input =
m

i ij
i

v x
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However, in this study, the relative efficiency approach is employed to determine the most efficient DMU 

in reducing carbon emissions. This is determined by the following equation: 

 

weighted sum of outputs
Efficiency =

weighted sum of inputs
 

 

1 21 2

1 1 2 2

...
Efficiency of unit j =

...

j j

j j

y yu u

v x v x

 

 
 

 

where 

 

U1 = the weight given to output 1 

Y1j = amount of output 1 from unit j 

V1 = weight given to input 1 

X1j = amount of input 1 to unit j 

 

Because the aim is to identify the DMU that most efficiently reduces its carbon emissions, an input-

orientation DEA model is used. In an input-oriented model, the level of all outputs remains constant and technical 

efficiency score θ measures the minimal radial contraction of the inputs. 

 

Mathematical Theory behind the DEA Model 

 

Sherman and Zhu (2006) proposed the following DEA mathematical model: 

 

Maximize the efficiency   score for DMUo. 

 

           
                    

                   

 
      

 
   

      
 
   

 

 

This is subject to a constraint such that when the same set of u and v coefficients is applied to all other 

DMUs being compared, no DMU will be more than 100% efficient. This is demonstrated as follows: 

 

        
                             

                            
 

         
 
   

         
 
   

   

 

       
                          

                         
 

        
 
   

        
 
   

   

 

       
                          

                         
 

        
 
   

        
 
   

   

 

           
                                      

                                     
 

            
 
   

            
 
   

   

 

u1… us >0, v1…vm≥0 

 

To perform DEA on a standard linear program package, the fractional forms above are algebraically 

reformulated as: 
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Additionally, the fractional forms above are subject to the constraints: 

 

                             

 

   

  

 

                                        

 

The above equation is reduced to: 

 

       

 

   

      

 

   

 

 

Thus, the fractional forms above can be calculated as: 

 

                                                                                                                                                                                                   

 

   

    

 

and is subject to: 

 

             

 

   

 

   

             

 

        

 

   

 

 

Where, ur,vi≥ 0 

 

To identify the DMU (bank) that is most efficient at reducing carbon emissions, the dual linear program 

must be applied to Equation 1. That is, 

 

Min θ: 

 

                                                                                                                                                                            

 

   

 

 

                            

 

   

                                                                                                                                                   

 

                      

 

   

                                                                                                                                                                 

 

The dual linear program seeks to find the efficiency score, minimize θ (Min θ), subject to the constraint 

presented by Equation 2(a) so that the weighted sum of the inputs of the other DMUs is less than or equal to the 

inputs of the DMU being evaluated. Min θ is also subject to the constraint presented by Equation 2(b) so that the 

weighted sum of the outputs of the other DMUs is greater than or equal to the DMU being evaluated. The weights 

are λ (lambda) values. The other DMUs with non-zero lambda values are the units in the efficiency reference set 

(ERS). 
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j = number of DMUs being compared in the DEA analysis 

DMUj = Decision-making Unit j 

θ = efficiency score of the DMU being evaluated by DEA 

yrj = amount of output r used by DMUj 

xij = amount of input i used by DMUj 

i = number of inputs used by the DMUs 

r = number of outputs generated by the DMUs 

ur = coefficient or weight assigned by DEA to output r 

vi.  = coefficient or weight assigned by DEA to input i 

 

This model is known as the Charnes, Cooper, and Rhodes (CCR) Model and assumes constant returns to 

scale (CRS; Charnes et al., 1978). Still, variable returns to scale (VRS) can be incorporated into this model by 

adding the following constraint: 

 

1

1
n

j

e j 


 
 

 

The resulting model is called the Banker, Charnes, and Cooper (BCC) Model (1984). In the BCC model, a 

DMU’s scaled efficiency is determined to be the ratio of CCR efficiency to BCC efficiency. As noted by Azadeh et 

al. (2008), in input-oriented models, the efficiency of a DMU’s VRS is always greater than or equal to its CRS 

efficiency. Therefore, the scale efficiency of a DMU is equal to 1 if the DMU is operating at its most productive 

scale size; otherwise, the scale efficiency will be less than 1. 

 

Sources and Description of the Data 

 

According to the CDP Report 2010 (Incite Sustainability, 2010), in the financial sector, carbon emissions 

are primarily generated from paper usage, electricity usage, and business travel. To determine the efficiency with 

which the banking sector in South Africa (including Standard Bank, Nedbank, ABSA, and Firstrand) reduces carbon 

emissions, the banks’ paper usage, electricity usage, business travel, total carbon emissions, number of employees, 

and operating expenses are extracted from the banks’ annual and sustainability reports. The four banks included in 

the dataset were chosen on the basis of their locality (the aim of the study was to analyze only locally owned South 

African banks), their reporting practices, and their control of 84% of the financial market in June of 2010 (The 

Banking Association South Africa, 2010). Two of the banks began reporting their emissions in 2007 and the other 

two began reporting in 2010. As such, it was justifiable to use carbon emissions data reported by the banks in their 

2010 annual reports. 

 

Methodology and Analysis Framework 

 

The Banxia Frontier Analyst DEA software was used to apply the model parameters outlined by the 

equations above. The banks’ respective efficiencies in reducing carbon emissions through their internal activities 

were tested by running the same model with different variables. The first run incorporated number of employees and 

operating costs as the inputs and total carbon emissions as the output. The second run similarly included number of 

employees and operating costs as inputs, but used electricity usage, paper usage, and business travel as outputs. By 

constructing these two models, it is intended to identify the sustainable level of operating costs and number of 

employees that characterize an efficient carbon reducing DMU within the South African banking sector. In this 

study, the interpretation of the model’s findings is in reverse of the normal DEA results. The normal interpretation 

of the DEA results is that a DMU with an efficiency score of 1 is the most efficient and a DMU with a score of 0 is 

the least efficient. In the case of this study, the DMU with an efficiency of 0 - or closer to zero - is deemed as the 

most efficient DMU that has successfully reduced its carbon emissions. On the other, the DMU with a score of 1 is 

deemed as least efficient DMU in reducing its carbon emissions. 

 

By seeking to identify the most efficient bank in terms of carbon emission reduction, the generalized DEA 

Model is adopted, which is input-oriented and maintains constant returns to scale. Moreover, because a peer 
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performance or relative efficiency measure to identify the most efficient DMU is being suggested, an envelopment 

model is adopted, which establishes relationships among DMUs or peers. Figures 1 and 2 illustrate the decision 

support systems using DEA methodology. These models will be used to assess the performance of each company in 

the first and second runs, respectively. 

 

Figure 1:  Process Flow for Measuring Carbon Reduction Efficiency - First Run 

 

 

Figure 2:  Process Flow for Measuring Carbon Reduction Efficiency - Second Run 

 

The process flow depicted in Figures 1 and 2 treats the number of employees a bank has and the banks’ 

operating costs as input variables. Carbon emissions is the output variable as shown in Figure 1 whilst paper usage, 

electricity usage, and business travel mileage are used as output variables to calculate efficiency scores for each 

bank in Figure 2. An evaluation of each bank against the other banks is performed using similar inputs and outputs 

that are established for both performing and non-performing banks. By incorporating the variables associated with 

the above processes into the fractional forms in the methodology section, the following remains: 
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Table 1 summarizes the data used to analyze the banks’ performance in terms of carbon emissions 

reduction. 

 
Table 1:  The Banks’ Data Used for the DEA Analysis 

 

Operating 

Costs (ZAR) 

No. of 

Employers 

Carbon Emissions 

(Mt CO2) 

Electricity 

Usage (Kwh) 

Paper Usage 

(Tons) 

Business 

Travel (Km) 

ABSA 24,949,000,000 43,239 415,000.00 469,000,000 2,377 140,000,000 

Standard 

Bank 
21,441,000,000 30,396 177,289.00 145,015,178 2,755 94,741,060 

Nedbank 16,598,000,000 27,525 213,148.70 83,341,702 1,917 40,776,723 

Firstrand4 38,817,000,000 38,657 311,371.00 330,952,560 1,747 69,357,196 

 

RESULTS AND DISCUSSION 

 

It would have been useful to perform a time series analysis of carbon emissions reduction for all the banks 

in the sample, but the banks began reporting data related to emissions in different years. In addition, most banks 

began measuring the degree to which they reduced carbon emissions in 2009. Figure 3 illustrates each bank’s 

reported carbon emissions. 

 

Figure 3:  Reported Carbon Emissions from 2007 to 2010  
(Source: CDP Reports, 2007, 2008, 2009, 2010) 

 
Figure 3 demonstrates that whereas Standard Bank and Nedbank have been reporting their carbon 

emissions since 2007, ABSA and Firstrand only started reporting theirs in 2009. This makes a balanced comparative 

time series analysis impossible due to different base reporting years. A two-year comparative trend analysis will not 

provide a fair representation of the bank in terms of its success in reducing its carbon emissions. The data show, 

                                                           
4Because Firstrand’s Sustainability Report did not provide data related to raw electricity usage, paper usage, these values were deduced by 
converting them from carbon emission into their respective units of measurement. 
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however, that over the two years in which it reported its emissions, Firstrand successfully reduced its carbon 

emissions between 2009 and 2010. The carbon emissions data for 2009 for ABSA were taken from the CDP report 

of 2009 and they are not present in their Sustainability report of 2009. However, ABSA indicated that the data were 

incomplete, and could therefore not be incorporated into the 2009 sustainability report, and was used for comparison 

basis. Because all banks have different base years for measuring their carbon emissions, a simple measure of carbon 

emissions emitted per employee for each bank is present. This measure facilitates a determination of which firms 

have been successful in reducing carbon emissions per employee (see Figure 4). 

 

Figure 4:  Carbon Emission per Employee 

 

Figure 4 demonstrates that banks which experience big changes in the number of workers they employ 

have similarly experienced a large change in carbon emissions per employee (i.e., ABSA and Firstrand). As of 2010, 

ABSA was the only bank that produced more CO2 per employee than South Africa’s CO2 per capita in 2009 (9.18). 

In addition, those banks that have been reporting since 2007 (i.e., Standard bank and Nedbank) have reduced their 

carbon emissions and maintained only small fluctuations in the number of workers they employ and CO2 emissions 

per employee. From this, it can be concluded that CO2 per employee indicates the optimum number of employees 

that each bank should have to minimize its negative influence on the environment. 

 

However, there exist a number of factors that must be considered when attempting to determine which 

banks are successful in reducing their carbon emissions. Using the DEA approach, a relative efficiency score for 

each of the four banks using a scale from 0 to 1 (or 0% to 100%) is calculated. In this study, however, a bank that 

operates at 100% efficiency minimizes inputs, but maximizes carbon emissions. Whereas a traditional DEA would 

consider this bank efficient, it is deemed inefficient as per this study due to its impact on the environment. In other 

words, the company that minimizes inputs and experiences a corresponding reduction in outputs is deemed as being 

efficient. 
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In the first run, the DEA input-oriented model with a CRS is applied. CRS refers to a one-to-one 

relationship between inputs and outputs; doubling inputs would similarly double outputs. This first run seeks to 

analyze the degree to which banks are being cost effective in reducing carbon emissions. The inputs in this analysis 

are the bank’s number of employees and operating costs; the output is carbon emissions. Efficiency scores for this 

first run are shown in Table 2. 

 
Table 2:  Efficiency Scores for the First Perspective - Carbon Emissions as Output 

Input-Oriented CRS 
Sum of Lambdas RTS 

Optimal Lambdas With 

Benchmarks DMU No. DMU Name Efficiency 

1 ABSA 1.00000 1.000 Constant 1.000 ABSA 

2 Standard Bank 0.60771 0.427 Increasing 0.427 ABSA 

3 Nedbank 0.80683 0.514 Increasing 0.514 ABSA 

4 Firstrand 0.83922 0.750 Increasing 0.750 ABSA 

 

In this case, ABSA is the only bank that demonstrates an increase in carbon emissions rather than a 

reduction. It is the benchmark DMU in terms of increasing carbon emissions instead of reducing them. Therefore, as 

a contrast, Standard Bank is 60.77% efficient in reducing its carbon emissions in relation to ABSA. Standard Banks 

lambda value of 0.427 indicates that Standard Bank will need to achieve 42.7% of the capacity ABSA for it to 

become inefficient in reducing its emissions. The slack values in Table 3 indicate which variables should be adjusted 

for each back to be as ineffective as ABSA in reducing emissions. Standard Bank, for example, would need to 

increase its operating costs by ZAR 2.4 billion to increase its carbon emissions in relation to ABSA. However, it 

should be noted that greater expenditure on reducing carbon emissions typically yields greater efficiency. For 

example, Standard Bank has experienced a significant decrease in its operating costs and number of employees from 

the period 2009 to 2010, as shown in Figure 4, to become the most efficient DMU in reducing its carbon emissions. 

This can be observed from the amount of costs it incurs related to carbon emissions. Some companies have low 

operating costs but generate high levels of carbon emissions. This indicates that the cost structure involves no 

spending related to reducing carbon emissions. 

 
Table 3:  Slack Values for the First Run - Carbon Emissions as Output 

DMU No. DMU Name 
Input Slacks Output Slacks 

Operating Costs (ZAR) No. Of Employers Carbon Emissions 

1 ABSA 0.14 0.00 - 

2 Standard Bank 2,371,532,674.70 - - 

3 Nedbank 577,702,125.58 - - 

4 Firstrand 13,857,108,483.06 0.00 - 

 

For the second run, carbon reduction efficiency, as a function of the actual sources of carbon emissions, is 

evaluated. This is referred as to the operational efficiency of the banks to effectively reduce carbon emissions at the 

sources or at points were carbon emissions are generated. For this run, the inputs remain the same as the first model, 

but outputs are paper usage, electricity usage, and business travel. The results for the second run are summarized in 

Table 4. 

 
Table 4:  Efficiency Scores for the Second Run - Resource Usage as Outputs 

Input-Oriented CRS Sum of 

Lambdas 
RTS Optimal Lambdas With Benchmarks 

DMU No. DMU Name Efficiency 

1 ABSA 1.00000 1.000 Constant 1.000 ABSA 
  

2 Standard Bank 1.00000 1.000 Constant 1.000 Standard Bank 
  

3 Nedbank 0.89886 0.696 Increasing 0.696 Standard Bank 
  

4 Firstrand 0.80448 0.729 Increasing 0.695 ABSA 0.034 Standard Bank 

 

The results of the first run differ from those of the second. However, the interpretation of both runs is 

identical. That is, a company with a score of 1 (100%) is deemed inefficient with respect to reducing carbon 

emissions. Lower scores (and corresponding percentages) are indicative of greater efficiency in that regard. The 

second run demonstrates that ABSA and Standard Bank are inefficient given their number of employees and 

operating costs. They are characterized by higher outputs of generators of carbon emissions (i.e., electricity usage, 
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paper usage, and business travel). It is interesting to note that Standard Bank was deemed efficient in the first run, 

but ABSA was found to be inefficient in both runs. Nedbank and Firstrand were found to be efficient in both runs. 

Moreover, Firstrand’s lambda values suggest that the firm must achieve 69.5% of ABSA’s production capacity (or 

3.4% of Standard Bank’s capacity) to reach the inefficiency frontier of not reducing carbon emissions. 

 

The slack values in Table 5 demonstrate the extent by which the efficient banks (i.e., Nedbank and 

Firstrand) must worsen so as to become inefficient in reducing their carbon emissions. Nedbank will need to 

increase its number of employees by 3,600, its electricity usage by 17,564,000 kilowatt hours, and its business travel 

by 25,150,000 kilometers to increase the carbon emissions from their present level to be at the same level as 

Standard Bank. 

 
Table 5:  Slack Values for the Second Run - Resource Usage Values as Outputs 

DMU  

No. 
DMU Name 

Input Slacks Output Slacks 

Operating Costs No. Of Employees Electricity Usage Paper Usage 
Business 

Travel 

1 ABSA 0.10 - - - - 

2 Standard Bank - 0.00 - - - 

3 Nedbank 0.01 3,590.67 17,563,596.09 - 25,146,548.05 

4 Firstrand 13,148,945,141.19 - - - 31,208,852.55 

 

This means that the second run has shown ABSA and Standard Bank to be the most inefficient among the 

sample banks. However, Firstrand has about ZAR13.15 billion in operating costs, part of which is geared toward 

reducing carbon emissions. By reducing the operating costs that reduce carbon emissions, Firstrand risks becoming 

as inefficient as ABSA. The scores attained in this analysis corroborate ratings provided by the CDP Report of 2010 

(see Table 6). Nedbank is ranked second in all instances and seems to maintain a steady performance with regard to 

reducing carbon emissions by balancing operating costs and number of employees. 

 
Table 6:  CDP Report 2010 Scores 

 
Nedbank Standard Bank FNB ABSA 

Performance Band A B B C 

Disclosure Score 88% 74% 93% 64% 

GHG Target in place Yes Yes Yes Yes 

GHG Emission Verified  Yes No Yes Yes 

Carbon Disclosure Leadership Index Ranking 3 17 1 24 

 

The results reported above indicate that Firstrand is the most efficient bank in terms of reducing emissions. 

Nedbank is second-most efficient, followed by Standard Bank. ABSA is the least efficient in this regard. Despite 

being ranked second in these analyses, however, Nedbank has been graded in band A, indicating that compared to its 

peers, it has more robust initiatives in place to control its production of generators of carbon emissions. This is also 

seen in its slack values of operating efficiency. Since 2007, Nedbank has been efficient in its generation of carbon 

emissions. In turn, the firm has maintained low operating costs and a low number of employees. 

 

CONCLUSION 

 

In this study, DEA is used to measure the carbon reduction efficiency for four major South African banks. 

Specifically, an input-oriented DEA model is twice employed using the Banxia Frontier Analysis DEA software. 

The first run used number of employees and operating costs as system inputs and carbon emissions as system output. 

The second run again included number of employees and operating costs as inputs, but instead incorporated 

electricity usage, paper usage, and business travel as outputs. Results of these analyses were interpreted in reverse, 

such that banks achieving higher scores were deemed inefficient in reducing their carbon emissions. Both runs 

produced mixed results. The first run demonstrated ABSA to be the most inefficient bank in reducing carbon 

emissions, while the other banks were not on the inefficient frontier. The second run showed ABSA and Standard 

Bank as being the foremost in being inefficient frontier, while Nedbank and First National Bank were shown to be 

efficient. 

 



International Business & Economics Research Journal – January/February 2014 Volume 13, Number 1 

Copyright by author(s); CC-BY 82 The Clute Institute 

The primary drawback of these analyses relates to DEA’s inability to calculate absolute efficiency. Still, the 

benchmarking process is able to identify the company with the best practices. In the current study, the company with 

the best practices is the one that is the most efficient in reducing carbon emissions. The panel data of 2010 that use 

Data Envelopment Analysis show Firstrand to be the most efficient of the four banks, followed by Nedbank, 

Standard Bank, and ABSA, respectively. One limitation associated with my development of a robust measure for 

gauging carbon emissions reductions efficiency relates to the number of firms in the sample. A greater number of 

DMUs in the sample would yield a more robust measure of efficiency performance. In the current study, the focus to 

local banks (of which there are only 11 in South Africa) was limited. Out of these eleven banks, only six reported 

their generation of carbon emissions. Of the remaining six banks, two were excluded from the analysis because their 

activities were of a different type than the banks included. Investec is a specialist bank that concentrates on wealth 

management and investment banking, and African Bank focuses primarily on credit and is not a deposit-taking 

institution. 

 

The DEA approach utilized in this study was simplistic given the variables available. With more accurate 

measurements, a greater amount of data, and increased reporting on carbon emissions by other financial institutions, 

future studies can more comprehensively evaluate the environmental performance of the banking sector in South 

Africa. The only difficulty associated with undertaking more robust and complex measurements of environmental 

performance of South African banks relates to the lack of high quality carbon emissions data and a lack of uniform 

reporting of the same. 
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