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ABSTRACT 

 

A procedure is developed for selecting a subset which is asserted to contain the “best” of several 

multinomial populations with a pre-assigned probability of correct selection. According to a pre-

chosen linear combination of the multinomial cell probabilities, the “best” population is defined 

to be the one with the highest such linear combination. As an illustration, the proposed procedure 

is applied to data relating to the economics of happiness and population income mobility. 
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1.  INTRODUCTION 

 

everal procedures have been proposed in the literature for the purpose of selecting the best of several 

populations. The “best” population is usually defined as the one with the highest parameter of interest 

such as the location or scale parameter. One of the first selection procedures in the literature is that by 

Mosteller (1948) who gave a nonparametric test for the null hypothesis of homogeneity (identical populations) 

against the “slippage” alternative hypothesis (one population has higher location parameter). Paulson (1949) devised 

a rule for classifying several normal populations into a “superior”, and an “inferior” group according to the value of 

their means and Paulson (1994) gave an eliminating procedure for selecting the best one of several Koopman-

Darmois distributions. Bechhofer (1954), Bechhofer and Sobel (1954), Bechhofer (1958), Bechhofer and 

Blumenthal (1962), Swanepoel and Geertsema (1976), and Turnbull et al. (1978) developed sequential and adaptive 

sequential procedures for selecting the best of several normal populations. Guttman (1963) proposed a sequential 

procedure where at each stage one retains fewer populations until a single population is left being the best. Along 

these lines, Bauer (1989) proposed a multiple testing sequential procedure for eliminating the inferior ones of 

several populations. Based on the Hodges-Lehann estimators, Swanepoel and Geertsema (1973) developed 

nonparametric sequential procedures for selecting the best of several populations. Non-sequential procedures were 

introduced by Gupta and Sobel (1958) for selecting a subset which is asserted to contain the best population with a 

pre-assigned probability of correct selection. A Baysian approach to the best population problem is adopted by 

Guttman and Tiao (1964), with special attention to exponential and normal populations. Studden (1967) discussed 

the selection problem in terms of decision functions and characterizes optimal selection subset rules. Recently, 

Hayter (2007) developed a combined multiple comparisons and subset selection procedure. 

 

Regarding discrete distributions, Paulson (1952) gave a procedure for determining the best among binomial 

populations using the inverse sine transformation and Paulson (1967) proposed a sequential procedure for selecting 

the binomial population with the highest probability of successes. Hoel and Milton (1972) made a comparative study 

of sequential procedures for selecting the best binomial population. Taheri and Young (1974) investigated two 

sequential sampling plans (play-the-winner sampling and vector-at-a-time sampling) for selecting the better of two 

binomial populations; they showed that play-the-winner sampling is uniformly better. Levin and Leu (2007) 

compared two procedures (for selecting the best binomial population) based on sequential elimination of inferior 

populations. Bechhofer and Kulkarni (1982) proposed a class of sequential procedures for selecting the best of 

several Bernoulli populations. Regarding multinomial distributions, Bose and Bhandari (2001), Panchapakesan 

(2006), and Ng and Panchapakesan (2007) discussed selection procedures for the most probable multinomial event 
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of a single multinomial population. Reference textbooks on ranking and selection procedures include: Balakrishnan 

et al. (2004), Gupta and Panchapakesan (2002), and Gibbons et al. (1987).  

 

In this paper we propose a procedure for selecting a subset which is asserted to contain the “best” of several 

multinomial populations with a pre-assigned probability of correct selection, P. The proposed procedure assumes 

that there is a linear combination of the multinomial cell probabilities according to which the experimenter desires to 

order the populations. The “best” multinomial population is defined as the one with the highest such linear 

combination. Our proposed procedure may be considered as an extension of Gupta and Sobel (1960) procedure for 

selecting a subset containing the best of several binomial populations. For binomial populations, the “best” 

population is usually defined in the literature as the one with the highest probability of success. We will use the 

tables in Gupta and Sobel (1960) to implement our proposed procedure in practice. 

 

 The rest of the paper is arranged as follows: Section 2 contains the development of the proposed procedure 

for selecting a best multinomial population, Section 3 contains the derivation of the probability of correct selection, 

and Section 4 contains an illustrative numerical example using data pertaining to the economics of happiness data.  

 

2.  A PROCEDURE FOR SELECTING A SUBSET CONTAINING THE BEST MULTINOMIAL 

POPULATION  

 

 In this section we develop the proposed procedure for selecting a subset which is asserted to contain the 

“best” of several multinomial populations with a probability greater than or equal to a pre-assigned value P. 

According to a pre-chosen linear combination of the multinomial cell probabilities, the “best” multinomial 

population is defined to be the one producing the highest such linear combination. The proposed procedure may be 

considered as a multinomial extension of Gupta and Sobel’s (1960) procedure for selecting the best of several 

binomial populations, where they define the best binomial population as the one with the highest probability of 

success. 

 

 Suppose we have m multinomial populations of k classes each, with unknown cell 

probabilities  1 2, ,i i ik  
 
and probability mass functions   

(pmf)   :bygiven,1,. mifi 
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For arbitrary constants 1a and 2a  such that 21 aa   , define the linear combinations 

 

   1 1 2 , 1i i ir i r ikh a a        ,  (2) 

 

where 1,2, ,i m and r is a positive integer such that1 r k  . The ordered shi '  are denoted 

by      mhhh  21 . It is assumed that the correct pairing of the shi '  with the m populations is not known. 

The “best” multinomial population is defined to be the one associated with  mh , the highest linear combination.  

Note that there is no loss of generality in assuming that 21 aa  , since one can renumber the classes of each 

population so that the first r classes are always associated with the larger  1,2ia i  which we call 1a . An instance 

of the application of this definition of best multinomial is where one is interested in comparing the m populations 
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with respect to a subset, say the first r, of the k classes. Then one chooses 
2a small enough in absolute value, may be 

zero, so that the contribution due to the remaining (k-r) classes to the linear combination h is negligible. For 

example, if the first class is the only class of interest and the population with the highest probability in this class is 

considered to be the best, then the choice 
1 1a  , 

2 0a   and 1r  gives  1 1, ,i ih i m  . 

 Suppose that independent random samples  1, ,i ikn n of sizes 

1

k

i ij

j

n n


  1, ,i m  are drawn 

from the multinomial populations under study. Let the unbiased estimators of the 
ih
 
be  

 

   1 1 2 , 1i i ir i r ikv a p p a p p    ,  (3) 

 

where 
ij

ij

i

n
p

n
  1, , ; 1, ,i m j k  . Let  max 1max , , mv v v .  

Then the proposed procedure is to retain the ith population in best subset if and only if:  

 

maxiv v c  ,  (4) 

 

where c is a non-negative constant depending on  , 1, ,im n i m and P, as will be determined in Section 3.  

 

3.  THE PROBABILITY OF CORRECT SELECTION 

 

We say that a correct selection (CS) is made if and only if the retained subset contains the best population. 

It is required that   PCS ij Pr for all possible configurations of the true 

parameters  1, , ; 1, ,ij i m j k   . The constant c in Eq.4 is chosen to be the smallest nonnegative number 

such that the infimum of  CSPr taken over all 
in and  1, , ; 1, ,ij i m j k   , is greater than or equal to 

P. In order to find  CSPr  , we adopt the convention that when there is more than one population associated with 

 m
h (i.e., more than one best population) we consider one particular “tagged” population as being the best. 

 

 To determine the probability of a correct selection, we write the estimator iv in Eq. 3 as: 

 

   1 1 2 , 1i i ir i r ikv a p p a p p        

   1 1 2 , 1

1
i ir i r ik

i

a n n a n n
n


        

=  1 2 1 2

1
( ) , 1, ,i ir i

i

a a n n a n i m
n

      
 (5)
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Then it is known that 
iu has the binomial distribution  ,;i i rB n Q , where 

 

2
, 1

1 2

i
i r i ir

h a
Q

a a
 


  


, 1, ,i m . (7) 

 

For simplicity we denote ,i rQ by 
iQ . 

 

 Let
 iQ , 

 in ,
 iv , and 

 iu be those particular quantities 
iQ , 

in , 
iv and

iu , respectively, which are 

associated with the population corresponding to  ih 1, ,i m . Note that the subscript notation    does not 

indicate ordered quantities. Then, using the procedure in Eq. 4, a correct selection is made if and only if 

  maxm
v v c   or   cvv m max which is equivalent to  

    cvv mi   for all i m (for i m the inequality is satisfied with probability 1). The last inequality can be 

written as: 

 

           2 2

1 2 1 2 1 2

i i i m i
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Since the 
  '
i

u s are independent binomial  ii QnB ; variables, it can be seen that the probability that (8) holds true, 

i.e.   PCS ij Pr  is equal to 
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Here,  z  denotes the largest integer less than or equal to z. 

 

The problem of interest, now, is to minimize (9). 

 

 Each of the (m – 1) factors in the braces appearing in (9) is a non-increasing function of  iQ  as can be 

seen by expressing each factor as an incomplete beta function. Recalling that 
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 together with the 
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assumption that
1 2 0a a  , we see that the ranking      mhhh  21 is equivalent to the ranking 

     mQQQ  21 . Therefore, for a fixed  mQ  , each factor in the braces is minimized by taking    mi QQ    

, 1,2, ,i m . Then we consider the infimum of (9) over the range of   QQ m   , say, which is 0 1Q   . To 

achieve the absolute minimum of  CSPr  , we must further minimize (9) with respect to 
 m

n  which is an element 

of the set  1 2, , , mn n n . Because all 
iQ are taken equal to Q, any manner of pairing the other (m – 1) 

  '
i

n s with 

the remaining 'in s  (after selecting a value for 
 m

n ) will give exactly the same minimum value for the product of 

the (m – 1) factors. The condition that the infimum of  CSPr  is greater or equal to P, is then  
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For equal sample sizes 
in n   1, ,i m , Eq. (10) becomes 
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The constant 

1 2

nc
d

a a



 is taken to be the smallest non-negative integer such that (11) is satisfied. The values of 

d satisfying (11) have been tabulated by Gupta and Sobel (1960, pp. 242-45) to carry out their procedure for 

selecting a subset containing the best binomial population, where they define the best binomial population as the one 

with the highest probability of success. The tables give the values of d for P = 0.75, .90, .95, 0.99; n = 1 (1) 20, 25 

(5) 50, 50 (10) 100, 100 (25) 200, and 200 (50) 500; m =1 (1) 20, 25 (5) 50.  After obtaining 

1 2

nc
d

a a



 from the 

tables, we solve for c which enables us to carry out the procedure in Eq. (4), that is to retain only those populations 

for which maxiv v c  . Better still, the procedure in Eq. (4) in the case of equal sample sizes can be put in the 

form: Retain the ith population if and only if max

1 2

i

nc
u u

a a
 


 , where 

 
 2

1

1 2

i

i i ir

n v a
u n n

a a


   


 

and  max 1max , , mu u u . This last form of the proposed procedure is more convenient for computations than 

the first, because it is easier to compute the iu rather than the iv   1, ,i m . 

 

 In the case of unequal sample sizes, there is no general rule as to which particular value of  m
n  minimizes 

the left hand side of (10), above. Gupta and Sobel (1960, pp. 230-231) empirically found that for some interval of 

the constant-value,  00,d , the left hand side of (10) is minimized by taking  m
n  to be the largest of the 
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 1, ,in i m . But this is not true when d is larger than
0d . In practical applications, they suggested to take the 

arithmetic mean n  of the sample sizes as the common sample size and to use the appropriate table with n n  to 

obtain the value of the constant; this value may be improved by further computations depending on the specific 

situation. Since the present case of multinomial populations is similar to that of binomial populations, we follow this 

approach of taking n n  to deal with situations in which the sample sizes are not equal. 

 

4.  APPLICATION TO POPULATION INCOME MOBILITY 

 

We illustrate our proposed procedure with the economics of happiness data in Graham and Pettinato (2002) 

that shows the income mobility up and down the economic ladder of individuals in each of four countries: Peru, 

USA, Russia, and S. Africa. The economic ladder is divided into five parts (quintiles: Q1, Q2, Q3, Q4, and Q5). 

Table 1 displays the selected data from Graham and Pettinato (2002, Tables 3-2 through 3-5) that pertains to the 

income mobility of individuals starting in quintile 1 (at or below poverty level) in each of the four countries. For the 

data on S. Africa, Graham and Pettinato (2002, Table 3.5), we lumped the data for individuals below 0.5 PL and 

1PL into quintile 1, where PL stands for poverty level. 
 

Table 1. Income Mobility Data of Individuals in Quintile 1 in Four Countries 

 Q1 Q2 Q3 Q4 Q5 Total 

Peru Q1 45 25 19 6 5 100 

USA Q1 61 24 9 5 1 100 

Russia Q1 39 26 16 10 9 100 

S. Africa Q1 66 8 7 17 3 100 

 

Table 1 represents samples of equal size (n =100) selected from four (m = 4) multinomial populations 

made up of five (k = 5) classes each.  In our example, the “best” population is the one that has the highest rate of 

income mobility of individuals from Q1 (at or below poverty level) to a higher quintile (above poverty level). The 

best population would then be the one depicting highest cell probabilities in Q2 through Q5.  In Table 2, we 

rearrange Table 1 so that Q2 through Q5 become the first four classes and Q1 becomes the fifth class. 

 

The best multinomial population is the one with the highest linear combination, ih , given by 

 

   4243211 iiiiii aah    . 

 

Choosing ,0and1 21  aa we get  

 

 4321 iiiiih   . (12) 

 

Let 4321 iiiii nnnnu  , then the proposed procedure in Section 3, retains the ith population if and only if  

 

duu i  max .     (13) 

 

The values of the iu  and maxu are shown in Table 2. 

 
Table 2. Rearrangement of Table 1 

 C1(Q2) C2(Q3) C3(Q4) C4(Q5) C5(Q1) Total 
iu  

Peru Q1 25 19 6 5 45 100 55 

USA Q1 24 9 5 1 61 100 39 

Russia Q1 26 16 10 9 39 100 
max61 u  

S. Africa Q1 8 7 17 3 66 100 34 
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Referring to Gupta and Sobel (1960, Table 2) with number of populations = 4, sample size =100 and 

various probabilities (P) of correct selection, we find the following values for the constant d: 

 

  975.0 Pd ;   1290.0 Pd ;   1595.0 Pd ;   1999.0 Pd . 

 

The decisions are displayed in Table 3. 
 

 

Table 3. Subset Containing Best Multinomial Population 

P d du max  Subset with Best population 

0.75 9 52 Russia and Peru 

0.90 12 49 Russia and Peru 

0.95 15 46 Russia and Peru 

0.99 19 42 Russia and Peru 

 

 

In conclusion, Russia and Peru are the countries with the highest probability of income mobility from 

poverty to a higher economic level. 
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