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ABSTRACT 
 

Leading digits often follow a distribution described by Newcomb (1881) and Benford (1938). We 
apply this phenomenon known as Benford’s Law on cover assets provided by issuers of German 
covered bonds. The main finding of the empirical analysis is that leading digits of these assets seem 
to follow the Benford distribution. Standard statistical evidence, however, might be misleading due 
to effects of large data sets. Consequently, the present paper also provides an example of how to 
deal with large data sets when a Benford distribution is assumed.  
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INTRODUCTION 
 

enford's Law is based on the observation that leading digits rarely follow a uniform distribution, but 
are rather distributed logarithmically. In contrast to many people’s intuition, figures starting with 
lower integers are far more frequently observable than figures with higher integers as leading digits. 

Under Benford, the probability of a 1 as first digit is 30.1% and decreases monotonously for the other digits. 
Eventually, a 9 is much less likely as first digit and only observable in 4.6% of the cases. This regularity was first 
described by Newcomb (1881) and later rediscovered by Benford (1938). Accordingly, the probability for the first 
significant digit is given as 
  

P(D! = d!) = log!"(1 + d!!!) (1) 
 

with   𝑑! ∈ 1,2,… 9 . 
 

Later on, Benford’s Law has become an important tool to detect possible manipulations in balance sheets 
and tax returns. This application was especially promoted by Nigrini (1996a, 1996b, 1999). Besides, it was used for 
the identification of human interactions on figures in the context of empirical research (Diekmann 2007, Toedter, 
2009, among others). 
 

In the present paper, we apply the regularity on asset data provided for German covered bonds (so-called 
Pfandbriefe). We focus on mortgage Pfandbriefe, i.e. bonds which are collateralized by residential and commercial 
mortgage loans. Our goal is to find out whether the distribution is observable and might be used to identify human 
interactions.  
 

A graphical inspection reveals a Benford-like pattern. Due to the high number of single digits in the overall 
sample set, standard Chi2 tests however fail to significantly reveal a Benford distribution at a common confidence 
level. To overcome these issues, we apply additional test procedures. First, we use an approach suggested by Drake 
and Nigrini (2000) based on mean absolute deviations. Second, we utilize a mean test described by Toedter (2009). 
Both tests have in common that they are less sensitive to the sample size and might therefore be appropriate keeping 
in mind the high number of first digits under consideration.  
 

The remainder of the paper is organized as follows. The next section gives an overview of the wide strand 
of literature dealing with applications of Benford’s Law and outlines the methodologies applied in the paper at hand. 
In section 3 we provide an empirical analysis of the collateral pools of German covered Bonds and illustrate to 
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which extent the leading digits conform with the expected distribution. The last section concludes by summarizing 
the key results, i.e. that the cover pools are supposed to follow Benford’s Law.  
 

RESEARCH FRAMEWORK 
 

Related Literature 
 

The distribution which is nowadays known as Benford’s Law has first been described by Newcomb (1881) 
who has realized that in logarithmic books pages with lower digits were more worn out than pages with higher 
digits. He drew the conclusion that numbers tend to begin with lower digits more frequently. Apparently unaware of 
Necomb’s findings half a century before, the same pattern was rediscovered by Benford (1938) who also provided 
empirical evidence supporting his hypothesis that this distribution is widely spread by testing the first digit 
frequencies of a large number of figures drawn from different sources.  

 
Later, Hill (1995) provided a proof for Benford’s law and showed in which cases a set of numbers 

conforms to Benford. He stated that “if distributions are selected randomly (in any “unbiased” way) and random 
samples are then taken from each of these distributions”, the resulting data will converge to Benford even if the 
single distributions do not follow the law individually.  

 
There exist several criteria to decide whether a set of numbers may conform to Benford. Qualitative factors 

are for instance described in Durtschi et al. (2004). Hence, the figures shall comprise a large, unrestricted data set 
which is not influenced by human thought. For instance, prices which are set below psychological barriers do 
usually not comply with Benford. Wallace (2002) suggested two quantitative measures to assess whether a 
distribution may be expected to obey Benford’s Law. First, the mean of the observed digits shall be larger than the 
median. Second, the distribution shall exhibit a positive skewness. 

 
Nowadays, Benford’s Law has been applied to auditing and accounting. Based on the assumption, that 

people who fabricate figures probably distribute figures uniformly, Varian (1972) suggested the use of the law as a 
fraud indicator. Against this background, Carslaw (1988) and Thomas (1989) detected earning manipulations for 
New Zealand and US firms respectively. Nigrini (1996a, 1996b, 1999) focused on fraud detection by applying the 
law on American tax declarations. His findings indicated that people tend to understate their income to reduce 
taxation. Quick and Wolz (2003) for instance applied Benford’s Law to financial statements of German companies 
and found that these figures are in line with the expected distribution. Drake and Nigrini (2000) and Durtschi et al. 
(2004) provided operational descriptions how to implement Benford’s law for auditing purposes.  

 
In the meantime, there are several papers applying the anomaly to other areas of interest. Rauch et al. 

(2011) used the distribution on macroeconomic data to identify probably fraudulent data from the Greek government 
before joining the euro area. Marchi and Hamilton (2006) studied environmental law compliance by examining 
discrepancies in air pollution reports. Diekmann (2007) and Toedter (2009) present an application on scientific data. 
While Diekmann (2007) discovered that estimates drawn from four volumes of the American Journal of Sociology 
overwhelmingly did not follow Benford, Toedter (2009) investigated empirical research and forecast data. He found 
that the relative frequencies of the first digits are broadly in line with Benford, whereas second digits of Consensus 
Forecasts show an excess of zeros and fives.   
 
Applied Methodology 
 

One of the most popular test procedures is the application of a standard Chi2 test (see for instance Cleary 
and Thibodeau 2005). The test statistics for the leading digit is defined as 
 

𝐶𝐻𝐼! = 𝑁 (!!!!!!!)!

!!!
!
!!!!  (2) 

 
where hd1 and pd1 are the observed and the expected proportion of digit frequency. The null hypothesis of being 
Benford distributed is rejected if CHI2>χ2

α(8) at a chosen level of significance α. However, the Chi2 test is often 
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unsuitable especially for larger sample sizes as it is sensitive to the number of observations (see for example 
Morrow 2010 and Nigrini 2000) and the null hypothesis of obeying Benford’s Law will eventually be rejected with 
increasing sample size for a given significance level. To overcome this excess power problem two alternative test 
statistics are presented which seem more appropriate to deal with large data sets. First, we test the goodness-of-fit by 
calculating the mean absolute deviation (MAD) which is defined as  
 

𝑀𝐴𝐷 = !
!

ℎ!!!𝑝!!!
!!!!  (3) 

 
In contrast to the χ2-test there are no clear cut-off values. However, according to Drake and Nigrini (2000), 

the following bandwidths in table 1 can be applied to assess whether conformity is given.  
 

Table 1. MAD conformity bandwidths 
Close 0.000-0 004 
Acceptable 0.004-0 008 
Marginally acceptable 0.008-0 012 
Nonconformity > 0.012 
Source: Drake and Nigrini (2000). 
 

Second, we apply the mean test by Toedter (2009), which relates the observed mean of the digits to the 
mean µ(d1) and variation σ2(d1) under Benford’s law as follows 
   

𝑇!! = 𝑁 !!!!,! !!!!! !!!
!!!!

  !! !!
 (4) 

with 𝜇 𝑑1 = 𝑝!! ∗ 𝑑1!
!!!!  and  𝜎! 𝑑1 = (𝑑1 − 𝜇 𝑑1 )! ∗ 𝑝!!!

!!!! . 
 

In contrast to the test proposed by Drake and Nigrini (2000), the mean test allows for clear cut-off levels as 
it is approximately standard normally distributed.  
 

EMPIRICAL ANALYSIS 
 

Data Set 
 

Pfandbriefe are issued by credit institutions as collateralized interest-bearing bonds. Depending on the type 
of assets to secure these payments, they are referred to as Mortgage Pfandbriefe, Ship Pfandbriefe, Aircraft 
Pfandbriefe or Public Pfandbriefe. All cover assets are recorded in a cover register and belong to the respective 
cover pool. In what follows, we rely on Mortgage Pfandbriefe that are usually covered by various single loans. The 
analysis is based on data provided by the Association of German Pfandbrief Banks (vdp), an umbrella organization 
which comprises basically all issuer of legally defined German Covered Bonds. Our data set is made up of figures 
from the fourth quarter 2008 to the fourth quarter of 2014 for 39 different credit institutions. Hence, the analysis 
covers approximately 25 thousand significant leading digits. The data set seem to allow the assumption of a Benford 
distribution as it is a large and unrestricted one based on a combination of different distributions, for instance stock 
of real estate multiplied by real estate prices. Furthermore, the measures proposed by Wallace (2002) also support 
this assumption as illustrated in table 2, i.e. the mean of the data exceeding its median and the skewness is positive.  
 

Table 2. Data set measures 
Mean 3.4 
Median 3.0 
Skewness 0.7 
Source: Own calculation. 
 
Testing Benford 
 

Following Cleary and Thibodeau (2005) we focus on the significant first digit distribution by providing a 
Chi2 and mean tests for the cover pool assets. As described by Baryla (2012), the first significant figure is the first 
non-zero digit of a number starting from the left side. Figure 1 depicts that the empirical distribution is by and large 
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rather similar to the theoretical one suggested by Benford even though integer 1 is more often observed than 
expected while in particular a 2 and a 9 is not observed as frequently as implied by Benford.  
  

Figure 1. First digit distribution for cover pools (Q4.2008 – Q1.2014) 

 
 

To gain further insights, we first apply a standard Chi2 test. For the overall sample, the Chi2 test clearly 
rejects the null of a Benford distribution. This seems reasonable, due to the sample size and the characteristic of the 
test statistic which tends to reject the null as a type II error becomes less likely for large data sets. The null of a 
Benford distribution is also rejected on a yearly basis at common confidence levels. However, the rejection is not 
that clear for single years. Conscious of the size of the data set, we also apply both MAD and mean test which is 
dedicated to be applied on large data sets. In both cases, for the overall sample as well as the individual subsamples, 
the null of being Benford distributed cannot be rejected. The results are summarized in table 3. 
 

Table 3. Yearly and overall distribution of cover assets 
Year 2009 2010 2011 2012 2013 2014 Overall 

N 3,311 3,584 3,894 4.391 4,352 3,132 23,787 
Chi2 36.1 16.5 16.8 44.6 36.7 14.7 87.7 
MAD 0.010 0.006 0.006 0.008 0.005 0.004 0.006 
Mean 1.12 0.80 0.96 0.38 0.16 1.53 1.03 
Source: Data drawn from vdp, own calculations. Overall data cover first digits from the fourth quarter 2008 to the fourth quarter 
of 2014.  
 

CONCLUSION 
 

To our knowledge, this is the first paper to investigate whether Benford’s Law holds for the cover assets of 
German covered bonds. In our analysis, we focus on mortgage Pfandbriefe, i.e. bonds secured by individual 
commercial and residential loans.  
 

Taking the sample size explicitly into consideration, we provide some additional test statistics based on 
MAD and mean tests which are dedicated to be applied on large data sets. By doing so we provide some evidence 
for the hypothesis that Benford’s Law is applicable on the cover assets. Furthermore, we provide an example for 
how standard Chi2 test might be misleading in the presence of large sample sizes. We therefore contribute to the 
mitigation of potentials shortcomings of the test.  
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