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ABSTRACT 
 

The Basel regulatory credit risk rules for expected losses require banks use downturn loss given default (LGD) 
estimates because the correlation between the probability of default (PD) and LGD is not captured, even though this 
has been repeatedly demonstrated by empirical research. A model is examined which captures this correlation using 
empirically-observed default frequencies and simulated LGD and default data of a loan portfolio. The model is tested 
under various conditions dictated by input parameters. Having established an estimate of the impact on expected 
losses, it is speculated that the model be calibrated using banks' own loss data to compensate for the omission of 
correlation dependence. Because the model relies on observed default frequencies, it could be used to adapt in real 
time, forcing provisions to be dynamically allocated. 
 
Keywords: Probability Of Default; Loss Given Default; Correlation; Economic Capital; Expected Loss 
 
 

1. INTRODUCTION 
 

redit risk affects the vast majority of financial contracts. The measurement, pricing and management of 
credit risk has received considerable attention from risk managers (to accurately price and manage credit 
risk) and bank regulators (to assemble and institute capital requirements that correctly identify banks’ loan 

portfolio credit risk). During the recent (2008/9) financial crisis, global financial institutions discovered that the 
components of credit risk deteriorated in tandem, which led to credit portfolio losses exceeding predictions determined 
by banks' risk models substantially. Credit portfolio risk is calculated using parameters such as probabilities of default 
(PD), loss rates given default (LGD), exposures at default (EAD) and dependence variables such as asset and default 
correlations and loan maturities. These parameters are often modelled independently; dependence structures are added 
thereafter.  
 
From a regulatory perspective, total credit losses in bank portfolios comprise expected losses and unexpected losses. 
Unexpected losses lie outside the scope of this research: they are excluded from this investigation because they are 
affected and influenced by different parameters and, because of multiple conditional dependencies, they require 
copulae to describe the joint probabilities that define the losses. Copious literature has been produced post credit crisis 
regarding unexpected losses – the cause of the underestimation in regulatory credit risk capital (e.g. Jorion, 2009; 
Rohde, 2011), how to correct for this failing (e.g. Avgouleas, 2009; Arewa, 2011), recalibration of parameters 
influencing the UL (e.g. Bhansali, Gingrich, & Longstaff, 2008; Bassettoa, Cagettid, and de Nardi, 2015), and so on. 
EL studies have been largely ignored in the literature. 
 
The regulatory approach to EL (and LGD in particular) has been to ignore dependence between PDs and LGDs (BCBS, 
2006) and install instead a downturn LGD, i.e. one determined during a period of economic stress. As a result, most 
credit risk models assume LGD is a constant proportion of any credit loss (i.e. that it is a fixed value) and ignore the 
fact that LGD is itself a critical constituent of portfolio credit risk because of its dependence on economic cycles. 
Using downturn LGD appears to provide the requisite conservativeness to correct for the consequences of ignoring 
PD/LGD correlation. In adverse economic conditions, GDP diminishes as default frequencies increase and asset prices 
decrease. As a result, recovery rates decreases (and losses given default increase). When economic prosperity resumes, 
the situation reverses. The capital requirements under these conditions would swing wildly, so to stabilise credit risk 
capital requirements, through-the-cycle PDs and LGDs are often used.  

C 
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Most risk practitioners, however, argue that downturn LGD represents a flawed implementation of the phenomenon 
that, during an economic crisis, realised loss rates increase in tandem with default rates (see, for example, Pykhtin, 
2003; Tasche, 2004; Folpmers, 2012). In addition, because the downturn LGD is calibrated during recessionary 
periods, it is a biased loss estimate. Consequently, instead of relying on the flawed approach, capital requirements 
calculated using unbiased LGDs and PD/LGD correlation are becoming more popular (e.g. Rosch & Scheuler, 2014; 
Eckert, Jakob & Fischer, 2016). 
 
A potential solution lies in modelling increasing loss rates in bad economic states (accompanied by increasing default 
frequencies) explicitly. This article analyses the impact of the implementation of a model which takes into account 
observed default frequencies and adjusts the economic capital model accordingly, taking these into account. The model 
was first proposed by Moody's Analytics (2010) and then adapted by Folpmers (2012) who argued that ignoring this 
fact risked introducing asymmetry to estimated losses, undermining the normality assumptions and ultimately rending 
the estimated LGDs inaccurate and invalidating any exogenous calibration. The key input variables in the Folpmers 
(2012) model are explored to identify their effect on credit portfolio losses. Using empirical data obtained during 
several financial crises, it is possible to determine broad parameter ranges, outside of which portfolio losses become 
unrealistic. 
 
The remainder of this paper proceeds as follows: Section 2 provides a literature study which covers the evolution of 
ideas regarding PD/LGD dependencies. The data used and methodology adopted are given in Section 3, while Section 
4 presents and discusses the results. Section 5 concludes. 
 

2. LITERATURE SURVEY 
 
Pykhtin (2003) and Tasche (2004) identified systemic recovery rate volatility as a major source of unexpected credit 
losses. Other studies argued that default risk (PDs) was linked to economic recoveries (or LGD) (Hu & Perraudin, 
2002; Dullmann & Trapp, 2004) as shown in Figure 1.  
 
 

Figure 1. Global corporate default and recovery rates, 1983-2015. 

 
 

Source: Moody’s Global Corporate Finance (2016). 
 
Ignoring these possibilities could lead to the amplification of economic shocks and could lead to significant 
underestimation of credit losses. The estimation of PD/LGD correlation is non-trivial, however, and data limitations 
pose a considerable challenge to banks. Thus, ever since the introduction of the Basel II accord in 2008, regulatory 
rules have required banks to use downturn LGD in their estimation of credit risk capital (BCBS, 2006). The BCBS 
proposed a principle-based approach in which banks are required to identify relevant downturn conditions and then 
determine the adverse dependencies between default rates and recovery rates. These must then be incorporated into 
the bank's credit risk models such that the values identified for the bank's exposures are consistent with observed 
downturn conditions.  
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The motivation behind the stipulation of a downturn LGD is that Basel II's Pillar I requirements do not adequately 
capture the correlations between the probability of default (PD) and the LGD, so the capital requirements for credit 
risk are underestimated. To compensate for this deficiency, a degree of conservatism should be embedded in the 
average LGD and an acyclical LGD component should be introduced (see e.g. Pykhtin, 2003, Dullmann & Trapp, 
2014; Altman et al. 2005; Giese 2005).  
 
Miu and Ozdemir (2006) found that incorporating a cyclical LGD measure was sufficient to introduce the requisite 
conservatism to account for the lack of PD/LGD correlation. Two types of correlation were also identified (a PD/LGD 
correlation between the same borrower and pairwise correlations in LGD risk among a group of borrowers). Results 
indicated values of 0.53 for the former and 0.06 for the latter amongst large and mid-market corporate borrowers in 
the 1990s. The mean unbiased estimate of the LGD needed to increase by 37% to reach appropriate levels (i.e. in line 
with actual losses recorded) of economic capital (Miu & Ozdemir, 2006). 
 
Hillebrand (2006) proposed the use of robust statistical techniques to establish an LGD model that had a 'reasonable 
economic interpretation' and that could be calibrated using market data. Hillebrand's (2006) model assumes that the 
LGD is linearly dependent upon several standard normally distributed systemic market factors (Altman et al. 2002) 
proposed such a model dependent on macroeconomic factors). A multifactor, latent (unobserved) variable framework 
was used which requires the estimation of fewer parameters and the use of smaller data sets. Hillebrand's (2007) LGD 
model provided an excellent fit of corporate loss data and addressed the observation that default rates and expected 
LGD values required two different factors to provide the appropriate fit. 
 
Kim, Kim and Kim (2007) mapped long term average LGDs to downturn LGDs. The mapping employed was quite 
general, so distributional assumptions could be applied. A 𝛽 distribution (which has the desirable property that the 
domain is [0, 1]) was used: parameters for this distribution were established using moment matching of historical 
LGD averages and variances of realised loss data. The conditional LGD was found to be 42% greater than the 
standalone LGD, but it was an increasing function of PD, being 32% for PD	< 5% and 61% for 5% ≤ 𝑃𝐷 ≤ 100%. 
 
Keijsers (2012) also demonstrated dependencies between macroeconomic variables and LGD using a state space 
method. Keijsers (2012) constructed a latent variable from observed default rates and LGDs and asserted that this 
variable could be interpreted as a macroeconomic variable (and thus, it reflects a 'state of the world'). The Kalman 
filter model results could also be used to adjust LGD to account for cyclicality. 
 
Frye (2013) derived LGD as a function of PD. This approach does not require the calibration of new parameters and 
simulations showed that LGD function predictions were more accurate than those derived from regression studies. 
This approach was proposed as a means of reducing forecast noise and it takes PD/LGD correlations into account 
intrinsically (Frye, 2013). 
 
A joint estimation approach for forecasting PDs and LGDs was proposed by Rosch & Scheuler (2014). This work 
involved modelling dynamic, consistent and unbiased credit portfolio risks. Measures of economic capital using 
unconditional parameters were underestimated by up to 17% compared with measured using conditional parameter 
values. 
 
Eckert, Jakob & Fischer (2016) asserted that empirical evidence exists for dependence between recovery rates, PDs 
and EADs. A credit portfolio framework, which allowed for the dependencies between these variables – and allowed 
for the segmentation of LGDs into secured and unsecured recovery rates – was assembled. Using simulated data, 
Eckert, Jakob and Fischer (2016) found that the portfolio economic capital increased by 31% under dependence 
between systematic factors compared with independent risk parameters. 
 
Folpmers (2012) argued that the idea of a downturn LGD represented a flawed approach because it was calibrated 
during economic recessions. Economic reasoning suggests that PD/LGD is dependent upon the economic cycle: 
downturns caused by a decrease in consumption result in increased PDs, a decrease in the market value of collateral 
and an associated increase in LGDs. The combination of increased PDs and LGDs leads to the inevitable increase in 
regulatory credit risk capital. In times of economic prosperity, the above situation is reverse.  
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To stabilise the capital requirement, Folpmers (2012) asserted that using through the cycle LGDs may be preferable 
to static LGDs scaled by a factor to account for 'downturns'. Through the cycle LGDs, however, do not take tail risk 
into account and are thus significantly influenced by the co-movement of observed default frequencies and realised 
loss rates. The solution proposed was to model LGD increases with increasing PDs in severe economic conditions 
explicitly (Folpmers, 2012).  
 
In the remainder of this article, Folpmers' (2012) work is used to explore further consequences of the approach on 
simulated portfolios. The results are compared with observations made during the credit crisis of 2008/9 and in times 
of economic prosperity.  

 
3. METHODOLOGY AND DATA 

 
3.1 Methodology 
 
Folpmers (2012) adapted work originally suggested by Moody’s Analytics (2010). This framework is then extended 
and applied to an example portfolio to demonstrate that PD/LGD correlations affect not only EC but also expected 
loss (EL).  
 
Moody’s model (Moody’s, 2010) uses a Merton model to determine an obligor's asset returns (𝑟-): 
 

𝑟- = 𝑅- ⋅ 𝜑- + 1 − 𝑅-4 ⋅ 𝜀- (1) 

 
where 𝑅- is the factor loading for the systematic risk, 𝜑- is the normally distributed systematic risk driver 
(𝜑-~𝑁(0,1)) and the random variable, 𝜀-, is the driver for the idiosyncratic risk (also normally distributed 
𝜀-~𝑁(0,1)). The systemic 𝜑-  and idioscyncratic 𝜀-  risks are independent. Within each scenario, for each 
defaulted loan, a loss rate is determined based on the loan’s LGD (simulated from a 𝛽 distribution with expected value 
= 𝐿𝐺𝐷 as shown in Figure 2). 
 
 

Figure 2. 𝛽 distribution used to simulate LGDs with 𝜇 = 40%, 𝜎 = 2.2%. 

 
 
The loan’s recovery rate (𝑟AA) is interpreted as a shock applied to the realised loss rate (𝐿𝑅, drawn from the 𝛽 
distribution). An adjusted loss rate is calculated using:  
 

𝐿𝑅-BC = 𝐿𝑅 ⋅ (1 − ΥEFF ⋅ 𝑟AA) (2) 
 
where ΥEFF is a scaling factor applied to the loss rate. Note that simulations of 𝐿𝑅-BC must be within their logical [0, 1] 
domain.  
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Recovery rate shocks (𝑟AA) are determined using: 
 

𝑟AA = 𝑅AA ⋅ 𝜑AA + 1 − 𝑅AA4 ⋅ 𝜌J ⋅ 𝜀- + 1 − 𝜌J4 ⋅ 𝜀AA  (3) 

 
where 𝑅AA is the factor loading for the recovery rate's systematic risk, 𝜑AA is the driver for the recovery rate's 
systematic risk and is normally distributed (𝜑AA~𝑁(0,1)). Note the similarity with (1). The idiosyncratic component 
of the recovery rate shock is given by 𝜌J ⋅ 𝜀- + 1 − 𝜌J4 ⋅ 𝜀AA which introduces dependency of this component on the 
asset returns, thereby linking default rates and loss rates for the credit capital requirement. By definition, 𝜀AA is 
normally distributed (𝜀AA~𝑁(0,1)) and independent from all other random variables.   
 
The recovery rate shock is driven by:  
 

• the systematic driver of recovery risk, 𝜑AA, which affects all obligors equally for a given scenario and 
which establishes a mutual dependency between recovery rates across defaulted obligors,  

• the idiosyncratic risk of the asset return, 𝜀-, which institutes dependency between defaults and recovery 
rates. Moody’s (2010) specifies this random variable as obligor-specific.  

• the idiosyncratic risk of the recovery rate shock, 𝜀AA, and  
• the correlation between the asset return (𝑟-) and the recovery rate shock (𝑟AA). This is calculated using: 
 

𝜌-,AA = 𝑅- ⋅ 𝑅AA ⋅ 𝜌KL,KFF + 1 − 𝑅-4 ⋅ 1 − 𝑅AA4 ⋅ 𝜌J (4) 

 
From (4), the PD-LGD correlation is an increasing function of the following factors:  
 

• the correlation between the systematic risk drivers for the asset return and recovery rate shock 𝜌KL,KFF . 
Since both default probability and loss rates are affected by correlated drivers, the PD-LGD correlation 
will increase for increasing correlation between their drivers; and  

• the factor-loading 𝜌J (used to determine the recovery rate shock) for the asset return's idiosyncratic risk 
driver. 

 
The exposition thus far was included to re-establish the principles of the original Moody's (2010) model. Folpmers 
(2012) then proposed an important modification to (3).  
 
For each run of a Monte Carlo simulation, a single realisation of a vector of systematic risk drivers, 𝜑- is generated1 
and the idiosyncratic driver 𝜀-, for each loan. Within each simulation: 
 

• an obligor defaults if its asset return 𝑟- < 𝑁MN(𝑃𝐷; 0,1). Obligors default, therefore, as often as predicted 
by their PDs and  

• a realised loss rate, 𝐿𝑅, is established for each defaulting obligor. The realised loss rate consists of a 
draw from a 𝛽 distribution (whose expected value equals the obligor’s LGD). 

 
A shock is applied to the realised loss to reflect the PD-LGD correlation. For each defaulted loan, the loss is determined 
using 𝐿𝑅 ⋅ 𝐸𝐴𝐷.  For each run, the total portfolio loss is the sum of the losses over all defaults. Economic capital is 
difference between the 99.9th percentile and the expected loss.  
 
Using (4), the practical implementation issue arises that a realisation of the shock 𝑟AA is only required for loans that 
have already defaulted. This portfolio subset is characterised by low values of 𝜀-.2 When applying (3), then, 
realisations of 𝜀- are no longer drawn from a standard normal distribution, so 𝑟AA is no longer normally distributed 
which means that shocks applied to realised losses are no longer symmetric. Expected realised losses after the 
																																																													
1 For example, these may be asset returns for combinations of sector and geography. 
2 Low values of 𝜀- are one of two possible causes for default. The second is a low value of the systematic risk driver, 𝜑-. 
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application of the shock, then ≠ 𝐿𝐺𝐷. This is not desirable, since the LGD – as an exogenous data input – has already 
been calibrated.  
 
Folpmers' proposed change to (3) was to introduce a dependency on the observed default frequency, 𝑂𝐷𝐹, to replace 
𝜀-:  
 

𝑟AA = 𝑅AA ⋅ 𝜑AA + 1 − 𝑅AA4 ⋅ 𝜌J ⋅
𝑃𝐷 − 𝑂𝐷𝐹

𝑃𝐷
+ 1 − 𝜌J4 ⋅ 𝜀AA  (5) 

 
In (5), 𝑂𝐷𝐹 is the observed default frequency within each simulation run and 𝑃𝐷 is the portfolio average value ∀	𝑃𝐷s. 
VWMXWY

VW
 is then a scaling factor which adjusts to the changing (observed) default frequency. As 𝑂𝐷𝐹 increases, the 

squared bracket diminishes until, when 𝑃𝐷 = 𝑂𝐷𝐹 the quantity is 0 and (5) becomes: 
 

𝑟AA = 𝑅AA ⋅ 𝜑AA + 1 − 𝑅AA4 ⋅ 1 − 𝜌J4 ⋅ 𝜀AA. 

 
For values of 𝑃𝐷 > 𝑂𝐷𝐹, the quantity 𝑃𝐷 − 𝑂𝐷𝐹 > 0 and overall 𝑟AA increases as a result. When 𝑃𝐷 < 𝑂𝐷𝐹, i.e. 
when the observed default frequency exceeds the average PD, the quantity 𝑃𝐷 − 𝑂𝐷𝐹 < 0 and overall 𝑟AA decreases. 
In this framework, the PD/LGD correlation is dependent upon good and bad macroeconomic states of the world, not 
the correlation between single-obligor level risk drivers. This was originally derived by Moody’s (2010) who asserted 
that "overwhelming evidence shows that recovery in a default event is closely related to macroeconomic conditions. 
Recovery is procyclical: during a recessionary period, recovery tends to be lower than during an expansionary period." 
The BCBS also refers to the LGD dependency on good and bad credit states, rather than on the PD/LGD correlation 
at the single-obligor level (BCBS, 2005).  
 
Within each simulation run (using (5)) the complete set of defaulted loans must first be established before the loss rate 
for each single default may be estimated. This arises because the ODF is an argument in the 𝑟AA specification and 
recovery rates need to take (scenario) PDs into account.  
 
In Folpmers's (2012) amended PD/LGD correlation framework, two types of dependency arise: 
 

• between realised losses within a portfolio due to the systematic driver for recovery risk, and  
• between the default risk for a given state of the economy and the realised loss.  

 
The obligor-specific risk (as a driver for both PD/LGD correlation) is ignored and the situation summarised in Table 
1. 

 
 

Table 1. Summary of dependencies modelled in Folpmers' (2012) adjusted framework. 
PD-LGD correlation 

risk driver Example Model 
parameter 

Systematic driver for the 
recovery risk 

Asset prices that exhibit co-movement independent of business cycle - e.g., due 
to lags (collection process for real estate can take up to several years);

 
sector-

specific collateral values (e.g., stocks, fixed assets) 
𝜑AA 

Correlation between busi-
ness cycle and realised 
loss rate 

During recession, default risk increases and asset prices such as house prices 
(mortgage loans), commercial real estate prices (Income Producing Real Estate 
Loans) and stock collateral (Securities Financing Transactions) decline 

𝜌J 

Obligor-specific 
correlation between PD 
and LGD 

If an SME customer defaults, his enterprise-specific collateral declines in value 
due to bad management 

Not 
modelled 
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3.2 Data 
 
Non-proprietary credit portfolio data are difficult to access and it is more difficult to obtain permission to publish 
results. As a result, simulated data are generated using Monte Carlo simulations.  
 
Folpmers (2012) proposed PD/LGD correlation model can be demonstrated using an example (simulated) portfolio 
with the following properties): 10 000 loans; 𝑃𝐷𝑠 = 3%, 𝐿𝐺𝐷 = 40%, 𝐸𝐴𝐷𝑠 = 100. The economic capital 
calculation has the following parameters:  
 

• confidence level= 99.9% (in accordance with Basel II regulatory capital for credit risk, BCBS (2006));  
• realised loss rates drawn from a 𝛽 distribution with 𝑎 = 𝐿𝐺𝐷 ⋅ 𝑛 and 𝑏 = 𝑛 − 𝑎, 𝑛 = 500 where 𝑛 is 

the “level of certainty” about LGDs. A higher value of 𝑛 means that the loss rates generated using the 𝛽 
distribution are all ≈ 𝐿𝐺𝐷, whereas a low value of 𝑛 means that loss rates are more dispersed across the 
[0, 1] domain, 

• the factor loading for the systematic risk of the asset return 𝑅- is varied  
• the elements of the vector 𝜑- are drawn from a multivariate standard normal distribution using a 

correlation matrix for which all off-diagonal elements equal 40%. This models a situation in which each 
pair of sector returns has 𝜌 = 40%, 

• 10 000 simulation runs, 
• the shock volatility ΥEFF = 20%, (varied for later tests). 

 
Representative credit losses for such a portfolio are shown in Figure 3. 
 
 
Figure 3. Histogram of characteristic simulated credit portfolio losses, generated using the BCBS (2006) asymptotic single risk 
factor (ASRF) model. 

 
 
 

4. RESULTS AND DISCUSSION 
 
Table 2 presents the inputs used for the base case scenario. For later results, 𝐿𝐺𝐷  and 𝑛 are not altered. Changing 
the average LGD only changes the average level in Figure 3 – 5 and changing 𝑛 adjusts the spread of simulations. 
Higher 𝑛 leads to a "tighter" distribution of simulated values in Figures 3 – 5. Neither of these variables yields any 
useful insight into the effects of parameter changes on economic capital. 
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Table 2. Inputs used to produce Figures 3 and 4. 
Parameter Value 

𝐿𝐺𝐷 40% 
𝑛 10 
𝑅AA 0.2 
𝜌J 0.3 
𝑃𝐷 3% 
ΥEFF  0.2 
𝑅- 0.3 

 
 

4.1 Base Case 
 
For the base case scenario, PD/LGD correlation ΥEFF = 0 — i.e., no shock is applied to the loss rate drawn from the 
𝛽 distribution – see Figure 4. Although these results are obtained for the Moody's 𝐿𝑅bBC case, the identical results 
were – as expected – obtained for the Folpmers' 𝐿𝑅bBC model. The realised loss rate is unaffected by the observed 
default frequency when the shock is 0. 
 
 

Figure 4. Moody's adjusted loss rates, using (3) – no shock volatility applied, i.e. ΥEFF = 0. 

 
 
 
Adjusting the shock factor, ΥEFF, has a more dramatic impact on Folpmers (2012) realised loss rate than on Moody's 
(2010) as seen in Figures 5 and 6 respectively. The Folpmers (2012) approach embeds the observed default frequency 
explicitly with the result that, increasing the shock factor strongly influences the realised loss rate. The impact 
increases linearly with increasing observed default frequency. Note that for every observed default frequency the 
accompanying distribution of realised loss rates is a beta distribution.  
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Figure 5. Original Moody's adjusted loss rates, using (3) with shock volatility ΥEFF = 0.2. 

 
 
 

Figure 6. Folpmer's adjusted loss rates, using (5) with shock volatility ΥEFF = 0.2. 

 
 
 
To establish the relative impact of Folpmers (2012) suggestion, a portfolio with the requisite features (see Section 3) 
was assembled, the simulations run and four sets of possible portfolio losses examined. The four portfolios were as 
described in Table 3.  
 
The standard Basel EL was used as the benchmark against which all other ELs were measured, so four relative ELs 
were obtained – see Table 3. 
 
 

Table 3. Four EL types calculated from 10 000 loan portfolio simulations. 
Loss type EL calculation (𝐸𝐴𝐷	 = 	1) Relative ELs 

Basel EL using fixed (downturn) LGD 𝐸𝐿	 = 	𝑃𝐷 ⋅ 𝐿𝐺𝐷cdefB Basel EL/Basel EL 
Basel EL using LGD sampled from a 𝛽 distribution 𝐸𝐿	 = 	𝑃𝐷 ⋅ 𝐿𝐺𝐷g Basel ELb/Basel EL  
Moody's (2010) EL using 𝑟AA from (3) 𝐸𝐿 = 𝑃𝐷 ⋅ 1 − ΥEFF ⋅ 𝑟AA ⋅ 𝐿𝐺𝐷g Moody's EL/Basel EL 
Folpmer's (2012) EL using 𝑟AA from (5) Folpmers' EL/Basel EL 

 
 
The effect of varying input parameters from (3) and (5) was explored on each of these EL ratios. In each case, the 
benchmark – the Basel EL (Basel EL/Basel EL) = 1 for all ranges of input parameters. The relative impact of changing 
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input parameters on the other three ELs is then demonstrated. In each of the figures below (Figure 7 and 8), the same 
vertical scale is used for comparison. 
 
4.2 Effect of changing 𝑹𝑹𝑹 and 𝑹𝑨 
 
Recall that 𝑅AA is the factor loading for the recovery rate's systematic risk. Low values of this parameter imply that 
there is low (or no) systematic risk component, all recovery rate risk is idiosyncratic. The opposite is true for high 
values of 𝑅AA – i.e. that the recovery rate comprises only systematic risk. The results shown in Figure 7 (left panel) 
indicate that the models behave as expected for changes in 𝑅AA. Basel's 𝐸𝐿g is unaffected, and Moody's and Folpmer's 
ELs are higher for low 𝑅AAs and the same as the Basel EL for high 𝑅AAs. This is because the Basel EL treats the LGD 
as wholly idiosyncratic by assuming it is a fixed, single value. There is no systematic impact of LGD in the Basel 
formulation. Moody's and Folpmers take these effects into account, and as the factor loading shifts from the systematic 
to idiosyncratic component, the impact on EL diminishes and, when the entire recovery rate is assumed idiosyncratic, 
both Moody's and Folpmer's ELs are identical to Basel's. 
 
The factor loading for the systematic risk, 𝑅- (from (1)) is manifest principally through (4). When 𝑅- is small (or 0), 
there is no systematic component for asset returns: all risk arises from the idiosyncratic component. This is implicitly 
modelled in the Basel formulation, which uses Merton's approach in the asymptotic single risk factor model (BCBS, 
2006; Kim, Kim & Kim, 2007) but only for the unexpected loss component of credit losses. As the value of 𝑅- 
increases, the idiosyncratic component becomes dominant – leaving Basel ELs unchanged but increasing both 
Moody's and Folpmers' EL (in the latter case, depending on parameter choices, by up to a factor of ≈ 3.5). This large 
difference from the Basel ELs has implications for bank's provisions and pricing and is discussed in the next section. 
 
 
Figure 7. Ratio of normalised ELs for varying values of factor loading for recovery rate systematic risk 𝑅AA (left panel) and factor 
loading for systematic risk of asset return 𝑅- (right panel). 
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4.3 Effect of Changing 𝝆𝜺 and 𝚼𝒓𝑹𝑹 
 
The factor-loading 𝜌J for the asset return's idiosyncratic risk driver, influences the recovery rate shock through (3). 
Note that the idiosyncratic component of the recovery rate shock is  
 

𝜌J ⋅ 𝜀- + 1 − 𝜌J4 ⋅ 𝜀AA 
 
(the terms have been defined previously). This component, then, is partially dependent on the asset return, which 
establishes a dependency between default and loss rates for the credit capital requirement. For low values of 𝜌J, the 
impact on EL is negligible, but as this value increases, so does the impact on EL for both Moody's and Folpmers. In 
both cases, the change is roughly linear, up to ≈ 1.5 and ≈ 3, respectively (see left panel of Figure 8). These changers 
are dependent upon other input parameters, but it is clear that this is a significant variable in the formulation of EL. 
 
Finally, the shock scaling factor applied to the loss rate, ΥEFF, influences ELs in the way shown in the right hand panel 
of Figure 8. Again, the impact is roughly linear and similar in magnitude to that observed for changes in 𝜌J (and again, 
dependent upon values chosen for other relevant parameters). The size of the shock factor clearly plays a significant 
role in the value of EL.  
 
Figure 8. Ratio of normalised ELs for varying values of the factor-loading 𝜌J for the asset return's idiosyncratic risk driver (left 
panel) and the shock scaling factor applied to the loss rate, ΥEFF  (right panel). Note that all vertical scales are the same for 
comparison. 

 
 
 
The effect of the combination of two important variables (the factor loading for the recovery rate systematic risk, 𝑅AA 
and the scaling factor applied to the loss rate, ΥEFF) on the normalised Folpmers (2012) EL is shown in Figure 9. The 
combination of effects – which also depend on other input values – peaks at ≈ 3.5× the original, unscaled Basel EL. 
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Figure 9. Impact on normalised Folpmers (2012) EL of factor loading for recovery rate systematic risk, 𝑅AA and scaling factor 
applied to the loss rate, ΥEFF . 

 
 
 

The recent (2008) credit crisis provides an opportunity to calibrate Folpmers (2012) model. In the period leading up 
to the crisis expected losses greatly exceeded provisions provided by banks triggering demands for enhanced 
monitoring of provisions and an investigation into alternative models for expected losses (Financial Reporting 
Council, 2013; Harris, Khan & Nissim, 2013).  
 
Median losses were underestimated by a factor of between 2 to 6 from the actual provisions held by banks (Edmonds, 
Jarrett & Woodhouse, 2010; Ong, 2014) – or in different terms, the Basel EL estimated at the time should have been 
between 2 to 6 times larger to provide suitable protection from EL. This is well within the increase in scale suggested 
by Folpmers' (2012) model. With more data – real not simulated – individual banks could plausibly calibrate the 
parameters that constitute the Folpmers (2012) model to provide a more accurate, reliable measure of their EL. Since 
EL depends on observed default frequencies, it could, in principle, be updated and recalibrated as new loss data are 
recorded – and the EL (and hence provisions for the EL) updated accordingly. In a sense, this could provide a measure 
of countercyclicality, not unlike the capital buffers proffered by the BCBS to protect banks from the problem of 
procyclicality (BCBS, 2010) – as demonstrated in Figure 10.  
 
 

Figure 10. EL and UL using the Basel formulation and Folpmers proposal. 
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As observed default frequencies increase, the EL would automatically adjust to the new loss environment: provisions 
could be consequently adjusted. It is plausible that the Folpmers (2012) formulation could increase EL without 
necessarily increasing the UL. This would mean regulatory capital could, in principle, remain the same even in a 
deteriorating credit environment, while provisions would constantly be adjusted, swelling to absorb losses when 
required and diminishing (and thus releasing capital) in benign periods.  
 

5. CONCLUSIONS 
 
Shortly after Basel II's introduction in 2008, criticisms began to emerge about the lack of PD/LGD correlation in the 
adaptation and formulation of Vasicek's ASRF model. Practitioners complained that the omission penalised them 
during favourable economic times and academics argued that the use of downturn LGD neither compensated for the 
cyclicality of the variables, nor addressed the magnitude of the dependency. To date (August 2016) the credit-risk 
regulatory methodology for taking into account the correlation between these factors remains in place in the current 
version of the accords. The reason is because of the inherent complexity involved in the mathematical modelling of 
the relationship and practical obstructions (involving, amongst others, a scarcity of reliable data). 
 
Several methodologies have been introduced since 2008 to address the issue – each comes with associated pros and 
cons: some are easily implemented, but fare no better than Basel's downturn LGD approach. Others are reasonably 
accurate and incorporate cyclicality and other known features of the relationship, but are intractable and complex. To 
date, no universally-accepted solution has emerged.  
 
Moody's (2010) attempt to model correlations between PD and LGD showed promise, but were quickly superseded 
by Folpmers (2012) more robust approach which struck upon the idea of using empirical data in the PD/LGD 
correlation formulation. Folpmers (2012) idea was to scale the correlation according to observed default frequencies. 
As these change, the level of dependency adapts.  
 
This article explored the dependence of the parameters required as inputs into Folpmers' (2012) model on one another 
and, since Folpmers (2012) made no suggestions for the effective calibration of these parameters, the 2008/9 credit 
crisis (and others), were used as a convenient benchmark against which to test known results with theoretical 
predictions. The calibration was conducted against the backdrop of expected portfolio losses. Since these are now 
known, historically, in some detail, the effect of the Folpmers (2012) model (and the magnitude of the input 
parameters) on EL can be ascertained. The calibration values obtained in this article give approximate values and 
ranges to be expected during both economically favourable and unfavourable conditions. However, banks will 
ultimately have to undertake this themselves, depending on their own in-house loss experiences. The process is not 
onerous, however. 
 
Suggestion for future work could involve explicit calibration for specific bank loss data, suitably anonymised. In 
addition, results could be compared for expected losses obtained during both upturn and downturn economic 
conditions to establish cyclicality (or lack thereof) in the results. 
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