Extreme Risk, Value-At-Risk And Expected Shortfall In The Gold Market
Main Article Content
Keywords
Gold Prices, Generalised Pareto Distribution, Value-At-Risk, Expected Shortfall, Kupiec, Christoffersen
Abstract
Extreme value theory (EVT) has been widely applied in fields such as hydrology and insurance. It is a tool used to reflect on probabilities associated with extreme, and thus rare, events. EVT is useful in modeling the impact of crashes or situations of extreme stress on investor portfolios. It describes the behavior of maxima or minima in a time series, i.e., tails of a distribution. In this paper, we propose the use of generalised Pareto distribution (GPD) to model extreme returns in the gold market. This method provides effective means of estimating tail risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES). This is confirmed by various backtesting procedures. In particular, we utilize the Kupiec unconditional coverage test and the Christoffersen conditional coverage test for VaR backtesting, while the Bootstrap test is used for ES backtesting. The results indicate that GPD is superior to the traditional Gaussian and Student’s t models for VaR and ES estimations.