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ABSTRACT 

 

Product analytics is a blend of computational methods with the express purpose of facilitating the 

multifaceted process of decision-making based on demographic and consumer preferences.  This 

complex subject is derived from consensus theory and includes structured analytics, categories, 

and the combination of evidence.  The methodology is applicable to a wide range of business, 

economic, social, political, and strategic decisions.  The paper describes a product allocation 

application to demonstrate the concepts.  
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INTRODUCTION  
 

he efficacy of decisions made under uncertainty on product allocation and selection is dependent 

upon two important concepts: the representation of the problem domain and the completeness of the 

solution space.  A category is a means of representing the problem domain so that relevant structural 

information, based on demographics and consumer preferences, can be determined, resulting in improved decision-

making.  A frame of discernment (Shafer 1976; Katzan 1992, 2006, 2008) is a set of mutually exclusive and 

collectively exhaustive possibilities for the solution space.  We are going to apply analytics to the task of product 

determination as a means of reducing the risk inherent in conventional statistical methods.  

 

Demographics and Preferences 

 

 The selection of a product mix based on client preferences is an exceedingly complex task, because of the 

combinatorics of the independent variables.  In an automobile selection process, for example, the number of 

consumer categories, such as gender, age, and education, is reasonably large, and the structural elements within each 

category are numerous enough to yield a large number of combinations.  With the following categories, for example: 

 

 C = {gender, age, education} 

 gender = {male, female} 

 age = {<=25, 26-55, >=56} 

 education = {none, attended, grad} 

 

the number of combinations of structural elements is 2×3×3 or 18.  In a typical set of eight demographic categories, 

the number of combinations is considerably greater than 2
8
. 

 

 We propose a methodology based on categorical analytics and the use of consensus theory (Katzan 2006) 

for combining information.  The steps that comprise product analytics are: 

 

1. Compute analytic alternatives for each category based on historical data.  With products A and B for the 

gender category the process could yield the following data snippet: 

T 
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Category Structural Element Structural Probability Preference A Preference B 

gender  male 0.4 0.7 0.3 

gender  female 0.6 0.5 0.5 

 

2. Compute composite categorical probabilities by combining the analytic alternatives with preferences, as 

follows: 

 

Category Probability A Probability B 

gender  0.58 0.42 

 

where the value 0.58 is computed as 0.4×0.7+0.6×0.5, and the value 0.42 is computed as 0.4×0.3+0.6×0.5. 

 

3. Combine the resulting set of composite categorical probabilities, such as 

 

Category Probability A Probability B 

gender  0.58 0.42 

age  0.44 0.56 

education 0.46 0.54 

 

using consensus theory yielding a set of probabilities for the solution set from which a decision maker can 

establish a product mix based on posterior probabilities concerning the client is most likely to purchase. 

 

 We call this process the democratization of product offerings based on preference data, because previous 

customers are essentially voting on what products to offer. 

 

Category 

 

 A category is a means of structuring a problem domain with the objective of engaging in a predictive 

modality in which one or more future states may be identified and analyzed.  Let Ci be one of the categories used to 

stratify the problem domain such that the collection 

  

 C = {C1, C2, … , Cn} 

 
represents a complete conceptualization of the dynamics under investigation and n is the number of categories. 

 

 Associated with each category is a set of probabilities representing an assessment of a future outcome 

based on its underlying categorical imperative.  Thus, a category is a mechanism for isolating a single view of the 

problem under consideration.  The ontological definition of a category, as a conceptual entity with no attributes in 

common with other categories, is adopted in this paper.  The mutually exclusive set of possibilities under 

investigation is known as the frame of discernment.  It is covered next, followed by a presentation of an approach to 

the structural analysis of categories.  Finally, a product selection application is used as a demonstrative example that 

gives some insight into how the methods can be applied to other problems. 

 

Frame of Discernment 

 

 A frame of discernment is a means of representing the possibilities under consideration, as in the following 

examples: 

 

 P = {sedan, wagon, roadster} 

 E = {stocks, bonds, gold} 

 

  Clearly, the elements in a frame of discernment are, in fact, propositions that can be interpreted as events or 

states.  Thus, if component si of system S over domain V were associated with the symbol “sedan,” then that state is 
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equivalent to the proposition, “The true value of V for component si is sedan,” or in ordinary language, “si prefers 

sedan.” 

 

 Accordingly, the set S of propositions Si, 

 

 S = {S1,S2,…,Sn} 

 

represents the collection of states of a system under analysis.  Clearly, at an agreed upon point in time, one 

proposition is true and the others are false.   

 

Uncertainty 

 

 Prior to the agreed point in time (τ), we obviously do not know the state of the system under analysis or its 

components with any degree of certainty.  The expectation that a part of the system will be in a particular state at 

time τ p(Si) associated with each of the propositions in the frame S = {Si}, 

i=1,2,…,n, such that 

 

 0p(Si)1 

and 

          n 

  p(Si)1 

       i=1  

 

  This is simply the addition rule for mutually exclusive events. 

 

CONSENSUS THEORY 

 

 Consensus theory is a methodology for combining evidence based on Dempster-Shafer theory (Shafer 

1976; Katzan 1992, 2006) and the mathematical combination of evidence (Dempster 1967).  Dempster-Shafer 

theory has commanded a considerable amount of attention in the scientific and business communities, because it 

allows a knowledge source to assign a numerical measure to a proposition from a problem space and provides a 

means for the measures accorded to independent knowledge sources to be combined.  Dempster-Shafer theory is 

attractive because conflicting, as well as confirmatory, evidence from multiple sources may be combined. 

 

 The basis of Dempster-Shafer theory is the frame of discernment (, introduced previously.  Accordingly, 

a knowledge source may assign a numerical measure to a distinct element of , which is equivalent to assigning a 

measure of belief to the corresponding proposition.  In most cases, the numerical measure will be a basic probability 

assignment.  A measure of belief may also be assigned to a subset of  or to  itself. 

 

Support Functions 

 

 Consider a frame of discernment  and its power set denoted by 2

.  For example, given the frame: 

 

  = {a, b, c} 

 

The power set is delineated as follows: 

 

 2
 

= {{a, b, c}, 

   {a, b}, {a, c}, {b, c}, 

   {a}, {b}, {c}} 

 

In Dempster-Shafer theory, a knowledge source apportions a unit of belief to an element of 2

.  This belief can be 

regarded as a mass committed to a proposition and represents a judgment as to the strength of the evidence 
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supporting that proposition.  When viewed in this manner, evidence focuses on the set corresponding to a 

proposition; this set is called a focal set. 

 

 The support for a focal set is a function m that maps an element of 2

, denoted by A, onto the interval [0,1].  

Given a frame of discernment  and function m: 2

  [0,1], a support function is defined as follows: 

 

 m() = 0, where  is the null set  

 0  m(A)  1, and 

  

  m(A) = 1 

      A2

 

 

The support function m is called a basic probability assignment, which is assigned by the knowledge engineer or 

domain specialist. 

 

 A support function is called a simple support function if it reflects, at most, one focal set not equal to .  A 

simple support function assigns a measure of belief to the focal set A, as follows: 

 

 m(A) 

 m()=1-m(A) 

 m(B)=0, for all B2
 

and BA 

 

The simple support function for a focal set A assigns a portion of the total belief exactly to A and not to its subsets or 

supersets.  The remainder of the belief is assigned to .  Because certainty function must add up to 1, m()=1-m(A). 

 

 It is possible that a body of knowledge or evidence supports more than one proposition, as in the following 

case.  If 

 

  = {a, b, c, d} 

 A = {a, b} 

 

and 

 

 B = {a, c, d} 

 

then the evidence supports two focal sets, which in the example, are A and B.  If m(A)=0.5 and m(B)=0.3, then 

m()=0.2.  A support function with more than one focal set is called a separable support function.  Separable 

support functions are normally generated when simple support functions are combined. 

 

 The notion of combining simple support functions is a practical approach to the assessment of evidence.  

An analyst obtains information from a knowledge source, and it leads to an immediate conclusion – not with 

certainty, but with a certain level of belief.  This is a straightforward means of handling human affairs and is 

precisely what people do.  When additional information comes in, the various pieces of evidence are combined to 

obtain a composite picture of the situation. 

 

Combination of Evidence 

 

 A method of combining evidence is known as Dempster’s rule of combination (Dempster 1967).  Evidence 

would normally be combined when it is obtained from two different observations, each over the same frame of 

discernment.  The combination rule computes a new support function reflecting the consensus of the combined 

evidence. 
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 If m1 and m2 denote two support functions, then their combination is denoted by m1m2 and is called their 

orthogonal sum.  The combination m1m2 is computed from m1 and m2 by considering all products of the form 

m1(X)m2(Y), where X and Y range over the elements of ; m1(X)m2(Y) is the set intersection of X and Y combined 

with the product of the corresponding probabilities. 

 

 For example, consider the frame of discernment 

 

  = {healthy, tests, sick} 

 

and views A and B, based on two different observation over the same frame: 

 

 X = {{healthy},0.6},{{tests},0.3},{{sick},0.1}} 

 Y = {{healthy},0.4},{{tests},0.4},{{sick},0.2}} 

  

  The entries are combined as follows using Dempster’s rule of combination: 

 

      m1m2({healthy}) = 0.24 

     m1m2({tests}) = 0.12 

     m1m2({sick}) = 0.02 

      m1m2({Ø}) = 0.62 

 

Thus, for AiBj=A and m1m2=m, the combination rule is defined mathematically as: 

 

  m(A) = m1(Ai)m2(Bj)(1-m1(Ai)m2(Bj)) 

  AiBj=A                   AiBj=Ø 

 

The denominator reflects a normalization process to insure that the pooled values sum to 1.  So, in this instance, the 

normalization process yields the combination 

 

 XY = {{healthy},0.63},{{tests},0.32},{{sick},0.05}} 

 

after normalization by dividing the combined assessment by (1-0.62) or 0.38.  Because the problem is well-

structured, the representation can be simplified as 

 

 XY = {0.63,0.32,0.05} 

 

  For views A = {A1,A2,…,An} and B={B1,B2,…,Bn}, the combination rule can be simplified as   

 

      AB = {A1B1/k,A2B2/k,…,AnBn/k} [1] 

  N 

 

where k =  AiBi 

  i=1 

 

We will refer to equation [1] as the simplification rule.  An example of the preceding concepts is demonstrated 

through the elicitation of expert opinion. 

 

Elicitation of Expert Opinion 

 

 Typically, experts do not agree, especially when system failure is concerned.  A typical example might be 

the crash of an expensive fighter aircraft or the collapse of a building.  Consider a situation where the frame of 

discernment is {A,B,C} denoting that the failure could be caused by Component A, Component B, or Component C.  
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Expert #1 believes the failure is due to Component A with probability 0.75, Component B with probability 0.15, or 

Component C with probability 0.10.  Expert #2 believes the failure is due to Component A with probability 0.30, 

Component B with probability 0.20, or Component C with probability 0.50.  The support functions are: 

 

 Expert #1 = {{{A},0.75}, {{B},0.15}, {{C},0.10}} = {0.75, 0.15, 0.10} 

 Expert #2 = {{{A},0.30}, {{B},0.20}, {{C},0.50}} = {0.30, 0.20, 0.50} 

 

Table 1 summarizes the application of the simplification rule to this problem.  The opinion of the experts is 

summarized and reflects the differing opinions. 

 

 
Table 1:  Elicitation of Expert Opinion 

 

Support Function Probability Assignment Entropy 

 

Expert #1 (=X) {0.75, 0.15, 0.10} 1.05 

Expert #2 (=Y) {0.30, 0.20, 0.50} 1.49 

X×Y {0.738, 0.098, 0.164} 1.08 

 

   

The strong opinion of Expert #1 in favor of Component A, reflected in the low entropy (Theil 1967), has a major 

influence on the consensus.  

 

STRUCTURAL ANALYTICS 
 

 A problem domain is composed of categories, each of which is defined by a set of alternate structures.  In a 

product example, for example, the category gender could be defined as  

  

 gender = {male, female} 

 

based on a structural assessment, such as demographics.  In this instance, the category gender is one of many 

viewpoints of an underlying decision situation, which could be a vote in an election or a position on an important 

issue.  We are going to argue that in many unstructured decision-making problems, the probabilistic outcome can be 

based on structural, rather than, preferential elements.  What makes an unstructured decision so complex is that 

there are usually several categories “tugging at the decision maker.”  We are going to show how categorical 

assessments can be combined to form a composite assessment of a decision under consideration.  Through the 

technique known as structural analysis, we are going to assign probabilities to the elements of the frame of 

discernment from a given category, and then use consensus theory to combine the probabilities from the various 

categories.  For example, a choice based on gender could go one way and a choice based on age could go another 

way.  A realistic assessment would involve the combination of the two factors. 

 

Structural Elements 
 

 Each category Ci is comprised of a set of structural elements Si = {Si1, Si2, Si3, …, Sik}, where k is the 

number of structural elements in category Ci.  Consider the previously given universe defined as: 

 

 C = {C1, C2, C3} = {gender, age, education}, where 

 S1 =  gender = {male, female}, and  

 S2 =  age = {<=25, 26-55, >=56} 

 S3 = education = {none, attended, grad} 

 

where S1, S2, and S3 are defined respectively as  

 

 S11 = male S21 = <=25 S31 = none 

 S12 = female S22 = 26-55 S32 = attended 
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 and k = 2 S23 = >=56 S33 = grad 

  and k = 3 and k = 3 

 

 Each problem domain is represented by a set of categories, each of which is a special lens into the 

underlying problem.  Each category is defined as a set of structural components that define it.  The categorical 

demographics in an election, for example, could be party, gender, age, and so forth.  In the immediate example, the 

categories are gender, age, and education.  

 

Structural Probabilities 
 

 Each structural element has a demographic probability p(Sij)  
 k 

where  p(Sij)  = 1 for category i and structural element j in category i  
 j=1 
 

and k is the cardinality of Si.  Accordingly, for category Ci and its structure Si, the probability set would be expressed 

as: 

 

 Pi = {p(Si1), p(Si2), …, p(Sik)} 

 

For example, the probability set for category #1 (gender), could be 

 

 P1 = {0.4, 0.6} 

 

representing male and female, respectively.  Each Pi represents the “probability of occurrence” in the universe of 

study of the structural elements of category i.  This is demographic information. 

 

Analytic Alternatives 
 

 In this form of analysis, each category Ci has an associated probability set Pi.  Each structural element has a 

corresponding probability p(Sij) in Pi.  That probability represents the likelihood that an object selected at random 

from category Ci would be Sij.  Another interpretation is that a value in Pi gives the proportion of the corresponding 

structural element in Ci.  Table 2 gives another example: 

 

 
Table 2:  Analytic Alternatives 

 

Category Structural Element Probability 

age <25 0.4 

age 26-55 0.4 

age >=56 0.2 

   

 

  The structural probabilities, alternately regarded as structural proportions, give a means of describing the 

environment in which a decision is to take place.  In a product analysis, the environment would be the consumer 

demographics. 

 

Preference Set 

 

 Each structural element is assigned a preference set over the frame of discernment from a knowledge 

source, such as a poll, survey, or statistical data.  The probabilities in the preference set are the decision variables.  

For example, we might know that male person prefers product A with probability 0.7 and product B with probability 

0.3.  The set {0.7, 0.3} is known as the preference set. 
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Thus, for each structural element Sij for all categories, there exists a preference set 

 

 ps(Sij) = {pij(Ө
1
), pij(Ө

2
), …, pij(Ө

t
)}, where t is the cardinality of the frame of discernment,  

and 

 

 Ө
k
 = {Ө

1
, Ө

2
, …, Ө

t} 

 

   t 

 Clearly,   pij(Ө
k
) = 1 for all i and j. 

 k=1 

 

Composite Probabilities 
 

 Composite categorical probabilities for each element in the frame of discernment are computed by 

combining the structural probabilities and corresponding preference set as follows: 

 
               t 

P(Өit) =  ∑ ((p(Sij) · ps(Sij)) [2] 
  j=1 

 

where the index i runs through the categories and the index t runs through the alternatives in the frame of 

discernment. 

 

Categorical Probabilities 

 

 The composite probabilities represent a summation of the preference for each element of the frame of 

discernment for each category.  The result is a set of independent categorical assessments of the problem domain 

from different viewpoints represented as probabilities, as follows: 

 

 Ci = {P(Өi1), P(Өi2), …, P(Өit)} 

 

 

where t is the cardinality of the frame of discernment, as defined previously.  Using the simplification rule [1], we 

derive a combined assessment of categories Ci and Cj of the form  

 

 Ci  Cj 

 

So that if   

 

 C1 = {0.54, 0.46} and C2  = {0.58, 0.42} 

 

Then 

 

 K = Ci  Cj = {0.62, 0.38} 

 

The evidence is complementary, and that fact is reflected in the combined assessment. 
 

PRODUCT ALLOCATION APPLICATION 
 

 One of the most familiar unstructured decision applications is the prior assessment of the products that 

customers will purchase.  The major determinants of what products people will purchase can be combined into four 

well-known categories: gender, age, education, and race.  The structural elements for each of the categories are 

given in Sheet 1, along with the respective structural probabilities.  The columns are titled “Demographics.”  For the 
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category gender, the structural element male has a probability (or proportion), for example, of 0.4.  Associated with 

each structural element is a preference set for that element over the frame of discernment, which is {A, B}.  In this 

case, a person in gender/male, would choose product A with probability 0.7 and B with probability 0.3. 

 

 Categorical probabilities are calculated as a set of composite probabilities using equation [2], as shown in 

Sheet 2, which gives spreadsheet functions that compute the respective probabilistic elements in the category 

probability set.  Sheet 1 gives the computed probabilities for this example in the “Categorical Probabilities” section. 

 

 Finally, the consensus probabilities are computed using the simplification rule (equation [1]) in the 

“Consensus” section of Sheet 2.  The results of the actual calculations are given in the “Consensus” section of Sheet 

1.  The probabilities are combined from top down, starting with the gender category and ending with race. 

 

 The results are more sensitive to demographics than they are to the preferences, as evidenced through 

experimentation with the spreadsheet recalculation facility.  

         

SUMMARY 
 

 An admixture of methods has been given to structure a problem domain into categories and to compute 

categorical probabilities from structure elements and preference sets.  The categorical probabilities are then 

combined using Dempster’s rule of combination to obtain a composite assessment of the decision landscape.  A 

demonstrative product allocation application is given.  A sales organization must make an assessment of the 

products to stock, and product analytics provides a methodology of formalizing the selection process.  The methods 

can be applied to product features, as well as to products. 
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Sheet 1:  Spreadsheet for the Product Allocation Application showing Demographics, Preferences, Categorical Probabilities, and the Product Consensus  

for products A and B 

 

1

2

3

4

5

6

7

8

9

10

11

12

B C D E F G H I J K L M N

0.58 0.42 Gender 0.58 0.42 Gender Male 0.4 0.7 0.3

Female 0.6 0.5 0.5

0.520391517 0.479608483 Age 0.44 0.56 Age <=25 0.4 0.2 0.8

26-55 0.4 0.5 0.5

>=56 0.2 0.8 0.2

0.480327332 0.519672668 Education 0.46 0.54 Education None 0.4 0.2 0.8

Attended 0.2 0.5 0.5

Grad 0.4 0.7 0.3

0.530447127 0.469552873 Race 0.55 0.45 Race B/C 0.1 0.2 0.8

Cauc 0.8 0.6 0.4

other 0.1 0.5 0.5

Product Consensus (A/B) Categorical Probabilities (A/B) Demographics Product Preferences (A/B)

 
 

 

 
Sheet 2:  Spreadsheet for the Product Allocation Application Giving Functions for the Calculations in Sheet 1 

 

1

2

3

4

5

6

7

8

9

10

B C D E F G

=F2 =G2 Gender =K2*M2+K3*M3 =K2*N2+K3*N3

=(B2*F4)/(B2*F4+C2*G4) =(C2*G4)/(B2*F4+C2*G4) Age =K4*M4+K5*M5+K6*M6 =K4*N4+K5*N5+K6*N6

=(B4*F7)/(B4*F7+C4*G7) =(C4*G7)/(B4*F7+C4*G7) Education =K7*M7+K8*M8+K9*M9 =K7*N7+K8*N8+K9*N9

=(B7*F10)/(B7*F10+C7*G10) =(C7*G10)/(B7*F10+C7*G10) Race =K10*M10+K11*M11+K12*M12 =K10*N10+K11*N11+K12*N12

Product Consensus (A/B) Categorical Probabilities (A/B)

 
 

 

 

 


