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ABSTRACT 
 

This paper is devoted to the application and comparison of linear (VAR) and nonlinear Multiple 

Adaptive Regression Splines (MARS) forecasting models, in estimating, evaluating, and selecting 

among linear and non-linear forecasting models for economic and financial time series.  We 

argue that although the evidence in favor of constructing forecasts using non-linear models is 

rather sparse, there is reason to be optimistic.  Nonlinear models reduce nonlinearity and 

Gaussianity in the residuals of the linear models.  Linear models, however, demonstrate better 

forecasts than nonlinear.  However, much remains to be done.  Finally, we outline a variety of 

topics for future research, and discuss a number of areas which have received considerable 

attention in the recent literature, but where many questions remain. 
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1. INTRODUCTION AND LITERATURE REVIEW 
 

his article examines the forecasting ability of the dividend growth rate and dividend yield for stock 

returns, in linear and non-linear settings.  Previous work has typically only considered predictability 

in a linear framework, ignoring the substantial evidence of non-linear dynamics in stock returns, 

dividend growth and dividend yield.  Predictability of returns has been extensively studied with arguments for and 

against it.  Among the plethora of research papers, in support of linear models, are Campbell and Shiller (1988a,b) 

and Fama and French (1988).  Campbell and Shiller (2001) and Campell and Yogo (2006) have shown and 

supported that returns are predictable using financial variables such as the dividend yield.  Cochrane (2008) presents 

additional evidence in support of the predictability of the dividend yield and dividend growth. 
 

One of the primary uses of nonlinear models, is for their forecasting ability and it is in terms of their 

forecasting performance that are usually judged.  The overall conclusion of the existing literature suggests, that the 

forecasting performance and accuracy of such models, over rival linear models, is not particularly superior.  De 

Gooijer and Kumar (1992), M.P. Clements et al (2004) concluded that there is no clear evidence in favor of non-

linear over linear forecasting performance.  A possible problem may be that nonlinear models do not capture reality 

better than linear.  Although, non-linear models do not perform better than linear (overall), we insist using them 

because we believe that linear models cannot capture certain types of economic behavior (such as expansions and 

recessions), or economic performance at certain times, or periods of high and low volatility, or self-exciting or 

catastrophic behavior in financial markets (Hamilton1989; Sichel 1994).  Diebold and Nason (1990) give a number 

of reasons why non-linear may fail to outperform linear models.  Some of the most commonly used non-linear 

models are the ARCH type models (Engle 1982, Bollerslev 1986, Nelson 1991, Bollerslev, Engle, and Nelson 

1994). M. Islam,L E.Ali, N.  Afroz (2012) used ARCH-type models to forecast volatility in the Bangladesh stock 

market index, show that linear dominate non-linear models.  D. McMillan and M. E. Wohar (2008) used the ESTR 

introduced by Kapetanios et al (2006) model to predict stock returns.  Results support the asymmetric ESTR model 

in forecasting.  S. Corlay (2013) presents a new method the B-Spline techniqueto model volatility, using simulated 

data. 
 

In this paper we use the MARS (Multiple Adaptive Recursive Splines), a non-linear technique (Breiman 

(1991), Stokes (1996)) to forecast stock returns in the NIKKEI-225 stock market index from 1/1/1955-12/30/2005.  

The overall results favor linear models. 

T 
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2. METHODOLOGY, DATA ANALYSIS, VARIABLES IN THE SYSTEM, DEFINITIONS, AND 

HYPOTHESES TO BE INVESTIGATED 

 

To analyze data with the Multiple Adaptive Splines (MARS) method someone has to develop a technique to 

start with.  Since nonlinear is some combination of linear, we start with a linear model.  MARS can be considered as 

being a generalization of VAR models.  In our technique we will start with a Vector Autoregressive (VAR) model such 

as proposed by Tiao and Box (1981).  The Hinich tests will follow then, to check for nonlinearity, and last if the VAR 

fails Gaussianity and Linearity we will proceed with the MARS methodology. 

 

2.1 Vector Autoregressive (VAR) Method 

 

In time series analysis econometricians assume, without testing, that the selection of the appropriate lag 

length removed all autocorrelation in the residuals of each VAR model.  Although, linear models are considered a 

good estimation technique to study time series processes, it is important to test the non-linearity and non-gaussianity 

of the process.  Non-linearities hidden in the data may contain useful information that may be exploited.  Neuburger 

and Stokes (1991), and Stokes and Neuburger (1996) have shown that linearity can be rejected for monthly stock 

returns.  Therefore, further testing is needed to determine whether non-linearity remains in the residuals of the VAR 

models.  If the residuals of the VAR model of stock returns show non-linearity, we might extend our research to 

nonlinear models to reduce the residual sum of squares and the non-linearity in stock returns.  The linear 

econometric method we employ, the (VAR), estimates unrestricted reduced form equations that have uniform sets of 

the lagged variables of every equation as regressors and are free of prior restrictions on the structure of relationships. 

 

Assume that the unrestricted VAR model is: 

 

Xt = 
n
i=1AiXt-i+ut (1) 

 

where X = (RS,D/P)': the vector of variables used in the model, RS = real stock returns, D/P = the dividend price 

ratio, u = (u
RS

t, u
D/P

t) are serially and cross-equation uncorrelated. 

 

From (1) we get the reduced form: 

 

Xt = 
n
i=1GiXt-i+et (2) 

 

or 

 

RSt = d11 RSt-1 + d12 D/Pt-1 + e1t (2.a) 

 

D/Pt = d21 RSt-1 + d22 D/Pt-1 + e2t (2.b) 

 

In the above model the returns equation is given by (2.a). 

 

2.2 The Hinich Test 

 

To detect non-linearity, we applied a statistical technique involving the estimation of the bispectrum of the 

observed time series, the Hinich (1982) test.  Linear modeling methods such as VAR or OLS require that the values 

of the error term be normally distributed.  The basis for this assumption is that statistical errors are the sum of a 

number of independent effects.  If the normality assumption is violated, problems in model specification are often 

present.  There is a need therefore, when we use linear models such as VAR or OLS, to verify that the behavior of 

the residual is linear, or close to linear rather than assuming it.  The Hinich procedure uses the bispectrum to test a 

series for three way systematic relationships.  The autocorrelation tests whether xt and xt-k are related, the Hinich test 

however, examines whether xt, xt-k and xt-j are jointly related for k#j.  Let X(n) be a stationary time series with mean 

zero, mx = E[X(n)] = 0, let the autocovariance of X(n) be Cx(n)=E[X(t+n)X(t)] and let Cxx(n,m) 

=E[X(t+n)X(t+m))X(t)] be the third order moments of {X(N)}, which is also called bicovariance signal.  To decide 

whether a series is white noise researchers examine the covariance of the series Cx(n).  If Cx(n) = 0 for all n not zero, 
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the series is white noise.  By assuming that the errors of their models are Gaussian in testing for white noise, 

researchers ignore information regarding possible nonlinear relationships that are found in the third order moments, 

(Stokes 1991).  Hinich and Patterson (1985), have argued that although a series may be white noise if it is not 

Gaussian, X(n) and X(m) cannot be independent.  This can create biased parameter estimates in statistical analysis.  

If the distribution of X(n) is multivariate normal then the series in addition to being white noise is also Gaussian.  

Stokes (1991), defines a white noise series as a pure white noise if in addition to being white noise is also Gaussian, 

pre-assuming that X(n1),...,X(nt) are independent and identically distributed random variables for all values of 

n1,...,nt.  All pure white noise series are white, but not all white noise series are pure white unless they are also 

Gaussian.  Brocket, Hinich and Patterson (1988), argue that it is possible for a series to be linear without being 

Gaussian, but all stationary Gaussian series are linear.  The Hinich procedure uses the bispectrum of X(n) which is 

defined as the (two-dimensional) Fourier Transform of the third-moment function of X(n).  If a series fails the 

Hinich linearity test then it indicates that a linear model cannot describe the series.  The test generates two values: 

the Z value for linearity and the G value for Gaussianity.  For values smaller that two the probability that the series 

is linear and Gaussian at the 95% confidence interval is very strong.  See also Lim and Hinich (2005b) and Hinich 

and Patterson (2005). 

 

2.3 Multiple Adaptive Splines (MARS) Method 

 

Breiman (1991) introduced a methodology for nonlinear regression modeling, the Multivariate Adaptive 

Regression Splines (MARS), which fits splines into the model instead of simple functions.  Assume a linear model: Y = 

f(x1,...,xk) + _ (4), where (x1,...,xk) are the right-hand side variables with N observations on each variable.  _ is a random 

error variable with zero mean and variance _
2
.  The error variable reflects the dependence of Y on other quantities than 

x.  The goal of the MARS methodology is to find an estimate f
^
 to approximate the nonlinear function f(x

1
,...,x

k
).  The 

MARS estimate is f
^
(x) = 

s
j=1cjKj(x).  Here Kj(x) is a basis function associated with s subregions {R}

s
j=1, cj is the 

coefficient for the j
th
 product basis function.  For a given set of product basis functions the coefficients {cj}

s
j=1, can be 

determined by an OLS regression.  The MARS methodology can identify the subregions where the coefficients are 

stable and detects interactions up to a maximum number of possible interactions (Neuberger and Stokes 1996).  The 

MARS methodology makes an assumption on levels. 

 

For example assume a model: 

 

Y =  + 1 + _ for x > 100 (5) 

 

 =  + 2 + _ for x < 100 

 

MARS model will be: 

 

Y = 
'
 + 1(x-

*
)+- 2(x-

*
)+ _ (6) 

 

where ( )+ is the right (+) truncated spline function.  The MARS model uses a knot which is a function of the right 

truncated spline function (x-
*
).  In the above equation the first knot is K1(X) = (x-

*
)+ and the second K2(X) = (

*
-x)+.  If 

the expression in the parenthesis is greater than zero then it takes its real value, if it is smaller than zero then it is equal to 

zero. At x = 
*
 there is no solution.  Assume 

*
 = 100, then the MARS model will be: Y = 

'
+ 1 (100 - x)+ - 2 (x - 

100)++ _.  To determine the exact value of Y Friedman (1991) uses a linear or cubic approximation.  Both estimation 

techniques are estimated and the one with the lowest sum of squares is selected.  With the MARS models we can get 

very complex interactions.  Example of an interaction model for Y = f (x, z): 

 

Y = 
'
+ 1(x-1

*
) + 2(1

*
- x)++ 3(x-

*
1)+(z-

*2
)++_ (7) 

 

which implies: 
 

Y =  + 1x - 11
*
 + _ for x > 

*
1and z < 2 (7a) 

 

 =  + 2x + 2
*
1 + _ for x < 

*
1 (4.8.4b) 
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 =  + 1x - 1
*
1+ 3(xz-

*
1z-

*
2x+

*
1

*
2) + _ for x > 

*
1and z > 

*
2. (7b) 

 

To find the degree of complexity of the model, we use a modified generalized cross validation criterion 

(MGCV) Friedman (1991). 
 

MGCV = [(1/N) 
N

i=1(Y - f (x))
2
 ] / [1 - [ C(M)

*
] / N]

2
 

 

where N is the number of observations, f
^
(xi) = Y

^
iand C(M)

*
is a complexity penalty.  C(M)

*
can be expressed as: C(M)

*
 

= C(M) + d.M, where the parameter d = 3 by default, C(M) is the number of parameters being fit and M is the number of 

nonconstant basis functions in the MARS model.  The MGCV statistic is used to eliminate parameters that do not 

improve the model.  The MARS model is powerful for low order interactions and large number of right-hand variables. 
 

3. EMPIRICAL RESULTS 
 

3.1 Causality and Hinich Test Results for VAR, MARS 
 

In this section first, the results of the Hinich test for the MARS model along with the R
2
 are compared with 

those of the VAR model.  Second the Granger F-statistic is obtained for the MARS model, using the same procedure as 

in the VAR model, which enhances the predictability of stock returns we found in the linear models.  The results of the 

Hinich test are reported in Table 1. 
 

These test statistics are normally distributed, if G or L is greater than or equal to 2, we can reject the assumption 

of normality or linearity at the 95% level.  For the VAR models, the R
2
 values are quite low; the G and L scores are well 

above 2 indicating that the residuals of the VAR models have failed the non-Gaussianity and linearity tests in every 

market.  The MARS model however, performs better increasing significantly the R
2
 in every model.  The linearity and 

non-Gaussianity scores are improved compared to VAR.  For example, in model (RJP,D/P)', the G and L scores were 

decreased from 6.051 and 4.37 of the VAR model to 3.364 and 1.93 respectively.  The R
2
 increased from .2445 to .5038. 

 

The Granger F value is obtained by just comparing the residual sum of squares for the constrained model: RSt = 

a0 + a1RSt-1 ....+ RSt-k + t, and unconstrained regression model RSt = a0 + a1RSt-1 +....+ RSt-k + b1(D/P)t-1 +....+(D/P)t-k + 

t.  The appropriate test statistic is: FM,T-K-1 = [(RSSR - RSSU) / M] / [(RSSU / T-K-1) or FM,T-K-1 = [(R
2
U - R

2
R) / M)] / [(1 - 

R
2
R) / (T-K-1)].  Where: M is the number of the constrained independent variables indicating the degrees of freedom in 

the denominator, K is the total number of independent variables, and T is the total number of observations.  (T-K-1) 

indicates the degrees of freedom in the denominator.  We test whether the informational variables (D/P) predict stock 

returns, using the F distribution at the level of significance of 5% or 10%.  Results in Table 2, show that the F values are 

more significant in the MARS (F = 45.670) than in the VAR (F = 11.515) model. (Note: this result enhances the relative 

importance of variables in the MARS model.)  We also find that in all models the dividend growth rate predicts real 

stock returns (explanations of variables (RJP, DG) are available upon request. 
 

Table 1:  Comparison of Hinich Test Results for VAR and MARS Models 

Variables VAR Models MARS Models 

(RJP, DG)' 

G = 8.032 

L = 5.710 

R2 = .3594 

G = 1.906 

L = 1.789 

R2 = .5144 

(RJP, DP=JPD/JPS)' 

G = 6.051 

L = 4.370 

R2 = .2445 

G = 3.364 

L = 1.930 

R2 = .5038 

Note:  The above table presents and compares the Hinich test results and the R2 of two-variable VAR and MARS models. 

 

Table 2:  Comparison of Granger Causality Results for VAR and MARS 

Variables VAR Models MARS Models 

(RJP, DG)' F = 15.972 (1.00) F = 11.940 (.999) 

(RJP, DP=JPD/JPS)' F = 11.515 (1.00) F = 45.670 (1.00) 

 

The Granger F-test statistic is given by: FM,T-K-1 = [(R
2
U - R

2
R) / M)] / [(1 - R

2
R) / (T-K-1)] where, R

2
U = 1 - 

RSSU / TSSU and R
2
R = 1 - RSSR / TSSR; M is the number of the constrained independent variables indicating the 
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degrees of freedom in the denominator, K is the total number of independent variables, and T is the total number of 

observations.  (T-K-1) indicates the degrees of freedom in the denominator.  R
2
U is the unrestricted R

2
, R

2
R is the 

unrestricted R
2
; RSSU is the unrestricted residual sum of squares TSSU is unrestricted total sum of squares, RSS

R
 is the 

restricted residual sum of squares and TSSR is the restricted total sum of squares. 

 

3.2 Empirical Results (MARS) 

 

3.2.1 Equation #1 (Estimation of MARS Model: (RJPt vs D/P)) 

 

RJPt = 0.04237 - 13.03(DPt-1-0.0007)+ + 9.068(0.0007-DPt-1)+- 7.978(DPt-3-0.2051E-20) + 19.46(0.2051E-20-DPt-3)+ + 

-1.856(RJPt-1-0.1210)+ - 0.410(0.1210-RJPt-1)+ + 558.6(RJPt-4-0.04438)+(DPt-1-0.0007)+ + 256.3(0.04438-RJPt-4)+(DPt-1-

0.0007)+ + 69.26(DPt-5-0.0002)+(0.1210-RJPt-1)++ 451.1(0.04994-RJPt-1)+(DPt-3-0.2051E-20)++265.2(RJPt-

3+0.02343)+(DPt-3-0.2051E-20)+-381.0(RJPt-3+0.05326)+(DPt-1-0.0007)+-287.9(0.05326-RJPt-3)+(DPt-1-0.0007)+-

166.9(RJPt-1-01589)+(0.2051E-20-DPt-3)++357.4(0.01589-RJPt-1)+(0.2051E-20-DPt-3)+- 177.1(0.07872-RJPt-

5)+(0.2051E-20-DPt-3)++ 174.4(0.09222-RJPt-1)+(0.0007-DPt-1)+ - 5.154(-0.01127-RJPt-4)+(0.1210-RJPt-1)++2926(-

0.3881-RJPt-1)+(DPt-4-0.0001)++84.38(RJPt-4+0.04492)+(DPt-4-0.0001)++ 424.0(-0.04492-RJPt-4)+(DPt-4-0.0001)+ + εt 

 

R2 = .5038 MGCV = .001469 SSR = .5116 

 

G = 3.364 L = 1.930 F5,438 = 45.67 

 
Table 3:  Relative Importance of Each Variable 

# Variable RI ΔMGCV # Variable RI ΔMGCV 

1 RJPt-1 93.22 .001746 6 DPt-1 100.0 .001787 

2 RJPt-2 0.0 .001469 7 DPt-2 0.0 .001469 

3 RJPt-3 45.45 .001534 8 DPt-3 78.18 .001663 

4 RJPt-4 57.80 .001575 9 DPt-4 47.21 .001540 

5 RJPt-5 28.46 .001494 10 DPt-5 9.047 .001471 

 
Table 4:  ANOVA Decomposition for 11 Basis Functions of the Model 

Function S.D. ΔMGCV # Basis Variables 

1 .01809 .001559 1 DPt-1 

2 .02535 .001546 2 DPt-3 

3 .01965 .001688 1 RJPt-1 

4 .01656 .001525  RJPt-4,DPt-1 

5 .004843 .001471 1 RJPt-1,DPt-5 

6 .02069 .001572 2 RJPt-1,DPt-5 

7 .01177 .001520 1 RJPt-3,DPt-3 

8 .01186 .001472 2 RJPt-3,DPt-1 

9 .01125 .001494 1 RJPt-5,DPt-3 

10 .007506 .001495 1 RJPt-1,DPt-1 

11 .009998 .001537 1 RJPt-1,RJPt-4 

12 .008197 .001517 1 RJPt-1,DPt-4 

13 .008481 .001500 1 RJPt-4,DPt-4 

Note:  The relative importance estimate (RI) measures the importance of each variable used in the model.  ΔMGCV is the modified 

GCV score a specific variable or function were removed from the model.  The column variables indicates the variables used in the 

model.  ANOVA decomposition measures the effect on the MGCV if the indicated function were removed from the model.  The 

S.D. gives a measure of the relative importance of the function to the model. Footnotes 2, 3 

 

3.2.2 Interpretation of Equation #1 

 

Equation 1 shows the response structure of Japanese stock returns in relation to dividend yields.  The MARS 

model improves non-Gaussianity and eliminates nonlinearity from 6.051 and 4.370 of the linear models to 3.364 and 

1.930 respectively, shown on Table 1.  The R
2
 increases substantially from .2445 to .5038.  The order of the importance, 

table 3, for variables in this model is DPt-1(100.0), RJPt-1(93.22), DPt-3(78.18), RJPt-4(57.80), DPt-4(47.21), RJPt-3(45.45), 

RJPt-5(28.46), DPt-5(9.407).  Even though the most important variables are DPt-1 and RJPt-1, variables DPt-5 and DPt-4 
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which are very important in the VAR model (not shown) are less important in the nonlinear model.  This however, 

implies that the nonlinear model does not lose any information contained in the VAR model.  The ΔMGCV suggests that 

if DPt-1 were removed from the model MGCV would increase to .001787 from .001494, if RJPt-1 were removed the 

MGCV would increase to .001746 from .001469, but if DPt-5 were removed the MGCV would increase to .001471 from 

.001540.  This confirms the relative importance score of each variable.  Variables that are more important weigh more on 

the nonlinear model. 

 

Analyzing the MARS model we see more relationships between RJPt and these variables, shown in table 4.  

The term -13.03(DPt-1-0.0007)+ shows that if DPt-1 > 0.0007 then RJPt declines while, the term +9.068(0.0007-DPt-1)+ 

indicates that if DPt-1 < 0.0007 then RJPt increases.  If these terms were removed the MGCV would increase to .001559.  

This suggests that for different threshold patterns DPt-1 affects RJPt differently.  The term -7.978(DPt-3-0.2051E-20)+ 

indicates that if DPt-3 > 0.02051E-20 RJPt diclines but, the term 19.46(0.2051E-20-DPt-3)+ shows that when DPt-3 < 

0.2051 RJPt rises.  If the terms were removed the MGCV increases to .001546.  This also implies that for certain 

thresholds the effect on RJPt is different.  In contrast to linear models which constrained these effects to be nonsignificant 

the MARS procedure allows us to detect these effects.  The terms 558.6(RJPt-4-0.04438)+(DPt-1-0.0007)+ and 

256.3(0.04438-RJPt-4)+(DPt-1-0.0007)+ indicate that RJPt continuously increase if DPt-1 remains above a threshold DPt-1 > 

0.0007 irrelevant of whether RJPt-4 takes a value greater or smaller than 0.04438.  If these terms were removed the 

MGCV would increase to .001656.  This pattern explains a market overreaction (see Endnote 1) to good news about 

dividend yields (or a "price pressure effect") which can also explain temporary components in stock prices.  Term -

381.0(RJPt-3-0.05326)+(DPt-1-0.0007)+ and term -287.9(0.05326-RJPt-3)+(DPt-1-0.0007)+ show a different effect.  Here, 

we can identify an interaction effect between two related two way terms given the value of the one-month lag of 

dividend yields is greater than 0.0007.  First, if the three-month lag of stock returns is greater than 0.0532 current stock 

returns (RJPt) decline by -381.0 and if the four-month lag in stock returns is smaller than 0.0532 RJPt declines by -287.9.  

ANOVA analysis indicates that if these terms were removed, the MGCV would increase to .001472.  This result can be 

interpreted as showing that for certain threshold patterns, the market oversells bad news.  The following three related two 

way interaction terms show a more complicated subtle effect.  Term 2926(-0.03881-RJPt-1)+(DPt-4-0.0001)+ indicates that 

if DPt-4 > 0.0001 while RJPt-1 < -0.03881 current stock returns rise.  Term 84.38(RJPt-4+0.04492)+(DPt-4-0.0001)+ shows 

that if DPt-4 > 0.0001 and RJPt-4 > -0.04492 RJPt increases more.  Finally, term 424.0(-0.04492-RJPt-4)+(DPt-4-0.0001)+ 

shows that if DPt-4 > 0.0001 and RJPt-4 < -0.04492 RJPt rises even more.  If these terms were removed the MGCV would 

increase to .001525 for the first term or .001500 for the second and third.  The economic interpretation of these terms is 

that the more constrained dividend yields are, the higher the valuation of firms by the market, therefore the higher the 

share prices. 

 

3.2.3 Comparison of the Residuals between VAR and MARS Models 

 

The residuals of VAR and MARS models are plotted and compared in Figure 1, for model (RJP, D/P)' of the 

Nikkei-225, market.  The figure consists of, and compares four graphs:  Graph I, contains the plot of the actual (Y) and 

estimated real stock returns (YHAT) for an estimated VAR model.  Graph II presents Y and YHAT for an estimated 

MARS model.  In these graphs the vertical axis depicts the rate of stock return while the horizontal axis depicts time 

period.  The dashed line is series Y, and the solid line is series YHAT.  Graphs III and IV present the plots of residuals 

series, which is given as the difference between Y and YHAT, for the estimated VAR and MARS models.  The vertical 

axis depicts the rate of returns for residuals, and the horizontal axis depicts time period. 

 

As shown, in Graphs I and II, the Y (dashed line) and YHAT (solid line) series for the VAR and MARS 

models fluctuate between -16 and 16, but the plot of YHAT series is smoother than the plot of Y.  In Graphs III and IV 

the residuals of the VAR model fluctuate between -16 and 20 but, those of the MARS model are between -12 and 12.  

Therefore, the residuals of the MARS model are less fluctuant.  In Graph II the series Y and YHAT of the model (RJ, 

D/P)' fluctuate within the range -40 to 55 with the YHAT series more fluctuate than the Y series.  Note however, that in 

Graphs III and IV the residual series of the MARS model being between -17 to 16 is much less fluctuant than the 

residuals of the VAR model being in the range -20 to 25.  Interpreting the remaining figures by the same way, we 

observe that the residual series for the MARS models are less fluctuant (smoother) than for those of the VAR models 

indicating that the MARS model improves the fitness of the data compared to VAR.  The better performance of MARS 

versus VAR models may be supported by the success of the residuals of MARS models, to reduce substantially or 

eliminate nonlinearities. 
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Graph I:  Plot of Y and YHAT for VAR for Japanese Market 

 

Graph II:  Plot Y and YHAT of MARS for Japanese Market 

 

Graph III:  Plot Residuals of VAR for Japanese Market 

 

Graph IV:  Plot of Residuals of MARS Model for Japanese Market 

 

Figure 1:  Comparison of VAR and MARS Models 
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3.2.4 Over-Fitting Linear and Non-Linear Models 

 

Although the MARS model gives substantially better within sample fits than the VAR model (see the graphs of 

Y, YHAT and Residuals that compare the goodness of fit between VAR and MARS models) there is always concern of 

over-fitting these models.  As Stokes and Neuburger (1996) have stated: “by over-fitting, we mean modeling noise as if 

it were part of the structure of the model”.  To test the fitness of the models we generate out-of sample forecasts for both 

the VAR and MARS models.  For the VAR models we generate 48 in and out of sample forecasts (see Endnotes 2, 3).  

Table 5 lists and compares the out-of-sample forecasts of the VAR and MARS models.  As shown in the table the 

correlations between the forecasted and actual values of stock returns vary by models.  For instance, in the case of model 

(RJP,D/P)' the correlation values of the VAR model is .1771 while the correlation of the MARS model for the same 

variables is .2378 with variance of forecast error .00157 and .00101, respectively.  This indicates that the VAR 

significantly outperforms the MARS model.  Examining Graphs III and IV of Figure 1 where the residuals of the VAR 

and MARS models are presented, we can see that the MARS model fits the data better than the VAR in the in sample 

forecasts.  Looking at Graphs III and IV on page 7, we see that MARS outperforms the VAR in both in and out-of-

sample tests.  The superiority of the MARS model over the VAR for the in-sample forecasts is not confirmed by the out-

of sample tests.  This suggests that some of what appears to be structure is actually noise that has been included in the 

model as a result of over-fitting. 

 
Table 5:  Out-Of-Sample Forecasts of VAR and MARS Models 

Validation Of Out-Of-Sample Forecasts of VAR and 

MARS Models Variables 

Correlation 

(Between Forecasted And Actual Returns) 

Variance of 

Forecast Error 

 VAR MARS VAR MARS 

(RJP,DG)' .3374 .04548 .00399 .01142 

(RJP,DP=JPD/JPS)' .1771 .2378 .00157 .00101 

Note:  We examine the first equation of the two-variable (basic) VAR models for each country of the form: RSi,t = α0 + Σn
j=1 aj RSi,t-j 

+ Σn
j=1 βj Xi,t-j + εt, where RSi,t is real stock returns of each country at time t, and Xi,t-j is dividend growth rate (DG) or the dividend-

price ratio (D/P, or LD/P) in each country at time t-j.  "Significance" is the joint significance of all the coefficients other than the 

constant. Note: comments regarding model (RJP, DG)', are available upon request from the author. 

 

4. THE ECONOMIC IMPORTANCE OF MARS MODELS' RESULTS 

 

The application of the MARS to model predictability of returns is statistically significant, but what is its 

economic significance? Why do we observe this behavior in stock markets? We begin by referring to bubble models of 

Diba and Grossman (1987), (1988) where they suggest that their bubble tests should allow for nonlinearities.  Or the 

rational bubble model of Blachard and Watson (1982) which allows the bubble to grow by the exact amount needed to 

compensate investors that the price will crash and the stock price will revert to the small initial bubble.  The rational 

bubble model of Blachard and Watson allows for the unexpected price changes from two sources: a) unexpected changes 

in the bubble and b) unexpected changes in the fundamental value
1
.  The overreaction hypothesis (Endnote 1) can also be 

considered to explain the results of the nonlinear models.  De Bondt and Thaler (1985) have shown that if prices 

systematically overshoot, then their reversal should be predictable based on past information alone.  They observed that 

extreme stock price movements are followed by subsequent price movements in the opposite direction and that the more 

extreme the initial price movement, the greater will be the subsequent adjustment.  Other causes of nonlinearities might 

include the possibility that the effects of shocks in financial and economic data (business cycles or periods of high and 

low volatility) accumulate until the process explodes (self-exciting or catastrophic behavior Hamilton (1989) and 

Clements (2004)).  MARS analysis also shows that, stock market indexes are characterized by "runs" such as in McQeen 

and Throley (1994) that assuming nonlinearities are predictable.  Also "price pressure effects" may be able to cause the 

behavior of stock prices that we observed in the previous sections. 

 

ENDNOTES 

 

1. See McQueen and Thorley (1994) for more on speculative bubbles, predictability of stock returns and 

nonlinearities. 

 

                                                 
1 The forecasts were generated by using the FORECAST comment of the B34S statistical package. 
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2. I only test a representative model for the market. Results and interpretation of results for models (RJP, DG and 

RJP, LD/P) are available upon request from the author of this paper. 

3. The forecasts were generated by using the FORECAST comment of the B34S statistical package. 
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