
International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

105

Analysis Of The Effectiveness Of Error

Detection In Data Transmission Using

Polynomial Code Method
Daniel N. Owunwanne, Howard University, USA

ABSTRACT

Data transmitted from one location to the other has to be transferred reliably. Usually, error

control coding algorithm provides the means to protect data from errors. Unfortunately, in many

cases the physical link can not guarantee that all bits will be transferred without errors. It is then

the responsibility of the error control algorithm to detect those errors and in some cases correct

them so that upper layers will receive error free data. The polynomial code, also known as Cyclic

Redundancy Code (CRC) is a very powerful and easily implemented technique to obtain data

reliability. As data transfer rates and the amount of data stored increase, the need for simple and

robust error detection codes should increase as well. Thus, it is important to be sure that the

CRCs in use are as effective as possible. Unfortunately, standardized CRC polynomials such as

the CRC-32 polynomial used in the Ethernet network standard are known to be grossly suboptimal

for important applications, (Koopman, 2002). This research investigates the effectiveness of error

detection methods in data transmission used several years ago when we had to do with small

amount of data transfer and data storages compared with the huge amount of data we deal with

nowadays. A demonstration of erroneous bits in data frames that may not be detected by the CRC

method will be shown. A corrective method to detect errors when dealing with humongous data

transmission will also be given.

Keywords: Data Transmission, Error Detection, Polynomial Code, Cyclic Redundancy Code, CRC Method,

Checksum

1. INTRODUCTION

he Cyclic Redundancy Code, or CRC, is a technique for detecting errors in digital data, but not for

making corrections when errors are detected. It is used primarily in data transmission. In the CRC

method, a certain number of check bits, often called a checksum, are appended to the message being

transmitted. The receiver can determine whether or not the check bits agree with the data, to ascertain with a certain

degree of probability if an error occurred or not in the transmission. If an error occurred, the receiver sends a

“negative acknowledgement” (NAK) back to the sender, requesting that the message be retransmitted.

The technique is also sometimes applied to data storage devices, such as in a disk drive. In this situation

each block on the disk would have check bits, and the hardware might automatically initiate a reread of the block

when an error is detected, or it might report the error to software. The material that follows speaks in terms of a

“sender” and a “receiver” of a “message,” but it should be understood that it applies to storage writing and reading

as well.

 The aim of an error detection technique is to enable the receiver of a message transmitted through a noisy

(error-introducing) channel to determine whether the message has been corrupted. To do this, the transmitter

constructs a checksum which is a function of the message, and appends it to the message. The receiver can then use

the same function to calculate the checksum of the received message and compare it with the appended checksum to

see if the message was correctly received. For example, if we chose a checksum function which was simply the sum

T

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

106

of the bytes (numbers) in the message modulo 256 i.e., 2
8
 (8-bit register), then it might go as follows (all numbers

are in decimal):

Message: 6 23 4

Message with checksum: 6 23 4 33

Message after transmission: 6 27 4 33

 In the above, the second byte of the transmitted message was corrupted from 23 to 27 by the

communications channel. However, the receiver can detect this by comparing the transmitted checksum (33) with

the computer checksum of 37 (6 + 27 + 4). If the checksum itself is corrupted, a correctly transmitted message might

be incorrectly identified as a corrupted one. However, this is a safe-side failure. A dangerous-side failure occurs

where the message and/or checksum is corrupted in a manner that results in a transmission that is internally

consistent. Unfortunately, this possibility is completely unavoidable and the best that can be done is to minimize its

probability by increasing the amount of information in the checksum, that is, by widening the checksum from one

byte to two bytes, (Williams, 1993).

There are several techniques for generating check bits that can be added to a message. Perhaps the simplest

is to append a single bit, called the “parity bit,” which makes the total number of 1 bits in the code vector (message

with parity bit appended) even or odd. If a single bit gets altered in transmission, this will change the parity from

even to odd (or vice versa). The sender generates the parity bit by simply summing the message bits in modulo 2

arithmetic, that is, by using XOR method. It then appends the parity bit (or its complement) to the message. The

receiver can check the message by summing all the message bits in modulo 2 and checking that the sum agrees with

the parity bit. Equivalently, the receiver can sum all the bits (message and parity) and check that the result is 0 (if

even parity is being used). This simple parity technique is often said to detect 1 bit error. Actually it detects errors in

any odd number of bits, including the parity bit.

The CRC algorithms were originally developed for detection of line transmission errors. They were

designed to be fast and easy to implement in hardware. The selection of generator polynomial is the most important

part of implementing the CRC algorithm. The polynomial is chosen to maximize the error detecting capabilities

(minimizing collision probability). The most important attribute of the polynomial is its length (the number of the

highest nonzero coefficient), because of its direct influence of the length of the computed checksum.

There are also communication standards approved by IEEE or ITU organizations, which define CRC

polynomials used in various communication protocols. When creating a new polynomial, the general advice is to use

an irreducible polynomial, which means that the polynomial cannot be divided by any polynomial, except itself with

zero reminder, (Petr Hlávka et al, 2005).

2. BACKGROUND

Cyclic Redundancy Codes (also known as Cyclic Redundancy Checks) have a long history of use for error

detection in computing. W. Peterson (Peterson72) and Shu Lin (Lin83) as well as Andrew Tanenbaum

(Tanenbaum2003) are among the commonly cited standard reference works in CRCs. Actually, CRCs can be used to

detect medium induced errors in messages transferred over communication channels. They are also commonly used

to protect the integrity of data stored in memory. In practice CRCs have been found to be an adequate protection

mechanism for deployment in everyday communication systems for medium induced errors. But, this experience is

insufficient to assure ultra-dependable operation (Paulitsch et al, 2005).

A CRC can be thought of as a (non-secure) digest function for a data word that can be used to detect data

corruption. Mathematically, a CRC can be described as treating a binary data word as a polynomial over GF(2), that

is, with each polynomial coefficient being zero or one and performing polynomial division by a generator

polynomial G(x). CRC polynomials are also known as feedback polynomials which is in reference to the feedback

taps of hardware-based shift register implementations. The remainder of that division operation provides an error

detection value that is sent as a Frame Check Sequence (FCS) within a network message or stored as a data integrity

check.

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

107

Whether implemented in hardware or software, the CRC computation takes the form of a bitwise

convolution of a data word against a binary version of the CRC polynomial, (Koopman, 2002). Error detection is

performed by comparing a FCS computed on a piece of retrieved or received data against the FCS value originally

computed and either sent or stored with the original data. An error is declared to have occurred if the stored FCS and

computed FCS values are not equal. However, as with all digital signature schemes, there is a small, but finite,

probability that a data corruption that inverts a sufficient number of bits in just the right pattern will occur and lead

to an undetectable error. The minimum number of bit inversions required to achieve such undetected errors - the

Hamming Distance (HD) value is a central issue in the design of CRC polynomials. HD is discussed in the next

section.

The essence of implementing a good CRC-based error detection scheme is picking the right polynomial.

The prime factorization of the generator polynomial brings with it certain potential characteristics, and in particular

gives a tradeoff between maximum number of possible detected errors versus data word length for which the

polynomial is effective. Many polynomials are good for short words but poor at long words. There are relatively few

polynomials that are excellent for medium-length data words while still being good for relatively long data words.

Unfortunately, prime factorization of a polynomial is not sufficient to determine the achieved HD value for any

particular message length. While many previous results for CRC effectiveness have been published, no previous

work has attempted to achieve complete screening of all possible 32-bit polynomials.

3. HAMMING DISTANCE

The Hamming Distance (HD) between two strings or codewords of equal length is the number of positions

for which the corresponding symbols are different. That is, it measures the minimum number of substitutions

required to change one into the other, or the number of errors that transformed one string into the other. Another

way to define HD is that, it is the number of bit positions in which two codewords differ. See the following

examples:

Codeword1 Codeword2 HD
i. 1011101 and 1001001 is 2.

ii. 2173896 and 2233796 is 3.

iii. toned and roses is 3.

 This is a cube HD:

 110

 111

 010 011

 100 101

 000 001

 Figure 1: Determining Hamming Distance

As seen in Figure 1 above, following the red path, from 100 to 011, it has distance 3. This is quite obvious

if you count the total number of the paths. Also, following the blue path, from 010 to 111, the distance is 2.

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

108

The following C++ code computes the Hamming Distance (HD) between two strings of equal distance.

const int m, n;

 int Hd;

 char S1[m];

 char S2[n];

 if (m == n)

 {

 for (int i = 0; i < m; i ++)

 {

 if (S1[i] != S2[i])

 Hd += 1;

 sum = Hd;

 }

 return sum;

 }

The significance of HD is that if two codewords are a Hamming distance d apart, it will require d single-bit

errors to convert one into the other. The error detecting properties of a code depend on its Hamming distance

because to detect d errors, you need a distance of d+1 code.

4. POLYNOMIAL CODES IN DETECTING ERRORS

In data transmission, a simplex channel is not preferred if an error is detected, but most often, error

detection followed by retransmission is preferred because it is more efficient to handle. A polynomial code is a

widespread means of detecting errors in data transmission. Polynomial coding treats each message as a polynomial

equation with each bit in the message representing a coefficient in the equation. Polynomial codes are based on

treating bit strings as representations of polynomial with coefficients of 0 and 1 only. For instance, a k-bit frame is

regarded as the coefficient list for a polynomial with k terms, ranging from x
k-1

 to x
0
. Such a polynomial is said to

be of degree k – 1. The higher order (leftmost) bit is the coefficient of x
k-1

; the next bit is the coefficient of x
k-2

,

and so on. For example, 110001 has 6 bits and thus represents a six term polynomial with coefficients 1, 1, 0, 0, 0,

and 1 as x
5
 + x

4
 + x

0
.

When the polynomial code method is used, the sender and the receiver must agree upon a generator

polynomial, G(x) in advance, (Tanenbaum, 1989). Both the high order and low order bits of the generator must be 1.

To compute the checksum for some frames with m bits, corresponding to the polynomial M(x), the frame must be

longer than the generator polynomial, G(x).

The basic idea is to append a checksum to the end of the frame in such a way that the polynomial

represented by the checksummed frame is divisible by G(x). If there is a remainder, there has been a transmission

error, otherwise, there is no error if there is no remainder. The following algorithm was used in Andrew

Tanenbaum’s book (Tanenbaum, 2003) in computing the checksum:

a. Let r be the degree of G(x). Append r zero bits to the low order end of the frame

 so that it now contains m + r bits, which corresponds to the polynomial x
r
M(x).

b. Divide the bit string corresponding to G(x) into the bit string corresponding to x
r
M(x) using modulo 2

division arithmetic.

c. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to x
r
M(x) using

modulo 2 subtraction arithmetic. The result is the checksummed frame to be transmitted, called T(x).

For example, calculate the checksum of this frame: 1101011011 with G(x) = x
4
 + x + 1.

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

109

 11 0 0 0 0 1 0 1 0

 10011 1 1 0 1 0 1 1 0 1 1 0 0 0 0 (Four zeros are appended

 1 0 0 1 1 to the frame)

 1 0 0 1 1

 1 0 0 1 1

 0 0 0 0 1

 0 0 0 0 0

 0 0 0 1 0

 0 0 0 0 0

 0 0 1 0 1

 0 0 0 0 0

 0 1 0 1 1

 0 0 0 0 0

 1 0 1 1 0

 1 0 0 1 1

 0 1 0 1 0

 0 0 0 0 0

 1 0 1 0 0

 1 0 0 1 1

 0 1 1 1 0

 0 0 0 0 0

 1 1 1 0 Remainder

Transmitted Frame (Tx): 1101011011 1110

Figure 2: Calculation of Checksum

Generally, in TCP, the algorithm used to calculate the checksum as seen in Figure 2 above by the sending

device is the same algorithm employed by the receiver to check the data received and to ensure that there were no

errors, (Kozierok, 2005).

4.1 Analysis of the Method

Upon transmitting the checksummed frame (see figure 2 above), the receiver divides the T(x) by G(x), the

result is always zero if there was no error. But, if a transmission error occurred such that, instead of the polynomial

for T(x) arrived, T(x) + E(x) was received. The receiver divides the checksummed frame (T(x) + E(x)) by G(x). The

result of the computation is simply E(x)/G(x). Each 1 bit in E(x) corresponds to a single bit that has been inverted.

That is, if there are k bits in E(x), k single-bit errors have occurred. It is very important to know that a polynomial

code with r check bits will detect all burst errors of length ≤ r. Also, it should be noted that when an error burst

longer than r + 1 bits occurs, or several shorter bursts occur, the probability of a bad frame getting through

unnoticed is 1/2
r
 assuming that all bit patterns are equally likely.

The following three polynomials are commonly used and have become international standards

(Tanenbaum, 1989):

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

110

CRC-12 = x
12

 + x
11

 + x
3
 +

x

2
+ x + 1

CRC-16 = x
16

 + x
15

 + x
2
+ 1

CRC-CCITT = x
16

 + x
12

 + x
5
 + 1

All the three polynomials above have x + 1 as a prime factor. CRC-12 is used when the character length is

6 bits. The other two are used for 8-bit characters. A 16-bit checksum such as CRC-16 or CRC-CCITT catches all

single and double errors.

As can be seen, the above polynomials can only be used effectively in error detections when the character

bits are 8 or less. But, when the character bits are 16, 32, or more as we deal with humongous data transmission

these days, then, there is a need for a more robust error detection polynomial code that can handle the transmission

of such frames effectively. Polynomial codes such as the following should be standardized by ISO to effectively

handle error detection in a frame of higher capacity.

CRC-32 (IEEE) x
32

 + x
26

 + x
23

 + x
22

 + x
16

 + x
12

 + x
11

 + x
10

 + x
8
 + x

7
 + x

5
 + x

4
 + x

2
 + x + 1

CRC-64 x
64

 + x
62

 + x
57

 + x
55

 + x
54

 + x
53

 + x
52

 + x
47

 + x
46

 + x
45

 + x
40

 + x
39

 + x
38

 (ECMA) + x
37

 +

x
35

 + x
33

 + x
32

 + x
31

 + x
29

 + x
27

 + x
24

 + x
23

 + x
22

 + x
21

 + x
19

 + x
17

 + x
13

 + x
12

 + x
10

 + x
9
 + x

7
 + x

4
 + x + 1

The above generator polynomial are more robust than the conventional ones and they are necessary for

multimedia applications especially as the amount of IP-based traffic increases. The polynomial used in IEEE 802,

that is CRC-32 has the property that detects all bursts of length 32 or less and all bursts affecting an odd number of

bits, (Tanenbaum, 2003).

4.2 Undetected Erroneous Bits

There are certain times when some erroneous bits in data frames may be transmitted undetected by CRC as

a result of the transmission assumptions used in that system. Paulitsch et al did an enormous work in this area. They

stated that some communication protocols compute the CRC frame check sequence (FCS) over several fields but

send only some fields as part of the message, (Paulitsch et al, 2005). For example: the figure below shows a

calculated FCS frame at the Source and Destination as well as the transmitted message. If the data at the Source

(data A) is the same as the Destination data (data A’), then the ability of CRCs to detect errors in the communication

line is not influenced.

 Source:

 FCS calculated over data A and data B :

 Transmission:

 data B and FCS are sent

 Destination:

 FCS calculated over data A’ and data B :

Figure 3: Calculation of an Extended CRC Check

 data A data B

 data A’ data B

FCS

 data B FCS

FCS’

FCS

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

111

The only consequence of including data A in the CRC calculation is the need to consider the overall length

(length of data A and data B) for the achievable Hamming distance (HD). One of the reasons for including some

information (data A) into the CRC calculation but not transmitting it might be that this data is already part of a

different protocol layer (e.g. the address in TCP/IP), or that the agreement on a protocol version needs to be

enforced without the expense of communication bandwidth. The CRC Frame Check Sequence (FCS) calculation

with additional data that is not sent was called an extended CRC check.

If the data included in the CRC calculation but not sent - is different at the source and the destination: data

A and data A’ (in Figure 3), then the ability of the CRC to detect failure in transmitted data is decreased. The

decrease is dependent on the number and positioning of bits that are different between data A and data A’. Even a

single bit error in data transmission can lead to an undetectable error if more than HD - 1 bit differs in the unsent

data.

Another example is the Implicit Acknowledgement in Time Triggered Protocol/ Communication (TTP/C).

The Hamming Distance (HD) of TTP/C is at least 6 (TTTech, 2004) for frames that use the CRC to protect 2024 bits

or fewer. For certain types of frames, TTP/C calculates the CRC over the data and header (including the version

number/schedule identifier and the membership vector), but the version number and the membership vector are not

transmitted. Because of the implicit acknowledgment mechanism in TTP/C, when a sending node experiences a fault

that prevents any receiver from receiving its frame, it is placed into a separate group from other transmitters, and the

membership vector of nodes in these different groups can differ by up to two bits. Sending nodes then compute their

transmitted FCS based on these different membership vectors. Because the Hamming Distance of the TTP/C CRC is

at least 6, and 2 bits of Hamming Distance can be consumed by membership vector differences, this leaves only a

Hamming Distance of 4 bit inversions to detect possible bit errors in transmitted data. This clearly increases the

probability of an undetected error, (Paulitsch et al, 2005).

4.3 Analysis of CRC Method

As stated earlier, a polynomial code is a widespread means of detecting errors in data transmission. Since,

the probability of erroneous frames getting through the transmission links undetected by the CRC is: 1/2
r
. In this

section, we calculate the probability of erroneous data (usually in frames) passing through the system undetected

using various degrees of the generator polynomial, G(x), which is the same as r.

 i) When r = 8

 The prob. = (1/2)
8

 = 0.004

 ii) When r = 16

 The prob. = (1/2)
16

 = 0.000015

 iii) When r = 32

 The prob. = (1/2)
32

 = 2.33
-10

 iv) When r = 64

 The prob. = (1/2)
64

 = 5.42
-20

We can see that the higher the degree of the generator polynomial G(x), the lower the error in the

transmission system and the more impeccable the system becomes.

International Journal of Management & Information Systems – Second Quarter 2010 Volume 14, Number 2

112

5. CONCLUSION

The selection of generator polynomial G(x) is the most important part in implementing the CRC algorithm.

The polynomial must be chosen to maximize the error detecting capabilities while minimizing overall collision

probabilities. As established in section 4 above, the probability of a bad frame getting through unnoticed is 1/2
r
 and

r is the degree of G(x), therefore, CRC-16, CRC-32, and CRC-64 has a probability of failure equal to 0.000015,

2.33
-10

, and 5.42
-20

 respectively. This means that the more robust the generator polynomials are, the more effective

they are in detecting bad frames even when transmitting humongous data. The length (the number of the highest

nonzero coefficient) of the polynomial is another important attribute in implementing the CRC algorithm because of

its direct influence in the length of the computed checksum.

AUTHOR INFORMATION

Dr. Daniel Owunwanne is an Assistant Professor at Howard University, Washington DC, USA. His areas of

research interest are Data Interoperability in Federated Databases, Software Fault Tolerance, and Data Transmission.

Dr. Owunwanne has presented many papers in these areas of his research interest and as well as in an

interdisciplinary areas in both national and international conferences. He has also published many papers in

conference proceedings and refereed journal articles. He teaches Databases, C++, Software Design, Data

Communications and Networks, and Systems Analysis and Design.

REFERENCES

1. Koopman, Philip (2002), 32-Bit Cyclic Redundancy Codes for Internet Applications, The International

Conference on Dependable Systems and Networks (DSN) 2002.

2. Kozierok, C. M. (2005), TCP/IP Checksum Calculation. Retrieved. TCP/IP Guide:

www.tcpipguide.com/free/t_TCPChecksumCalculationandtheTCPPseudoHeader.htm

3. Paulitsch, Michael et al (2005), Coverage and the Use of Cyclic Redundancy Codes in Ultra-Dependable

Systems. Dependable Systems and Networks, 2005.

4. Petr Hlávka, et al (2205), CRC64 Algorithm and Verification. The CESNET Technical Report, December

15, 2005.

5. Tanenbum, Andrew S. (1989), Computer Networks (2
nd

 Edition), Prentice Hall.

6. Tanenbaum, Andrew S. (2003), Computer Networks (4
th

 Edition), Prentice Hall PTR, www.phptr.com

7. TTTech Computertchnick GmbH, Time-Triggered Protocol Communication, TTP/C, TTTech Comp.

GmbH, Austria 2005.

8. Williams (1993), A Painless Guide to CRC Error Detection Algorithms, RockSoft
tm

 Pty, Ltd,

www.geocities.com/CapeCanaveral/Launchpad/3632/CRCguide.htm

http://www.geocities.com/CapeCanaveral/Launchpad/3632/CRCguide.htm

