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ABSTRACT 

 

Decision tree induction and Clustering are two of the most prevalent data mining techniques used 

separately or together in many business applications. Most commercial data mining software tools 

provide these two techniques but few of them satisfy business needs.  There are many criteria and 

factors to choose the most appropriate software for a particular organization. This paper aims to 

provide a comparative analysis for three popular data mining software tools, which are SAS® 

Enterprise Miner, SPSS Clementine, and IBM DB2® Intelligent Miner based on four main 

criteria, which are performance, functionality, usability, and auxiliary Task Support. 
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1.  INTRODUCTION 

 

usinesses face challenges such as growth, regulations, globalization, mergers and acquisitions, 

competition, and economic changes, which require fast and good decisions rather than guess work. Taking 

good decisions requires accurate and clear analysis such as prediction, estimation, classification, or 

segmentation using data mining techniques. Decision tree induction and Clustering are two of the most important 

data mining techniques that find interesting patterns. There are many commercial data mining software in the 

market, and most of them provide decision trees induction and clustering data mining techniques. There is no doubt 

that commercial data mining software are expensive and costly, and choosing one of them is crucial and difficult 

decision. Therefore, this paper objective is to help organizations to make the decision of choosing one of three pre-

selected famous and giant commercial data mining software by providing comparative analysis among them based 

on selected criteria. These software tools are: SAS® Enterprise Miner, SPSS Clementine, and IBM DB2® 

Intelligent Miner. The analysis is based on four criteria, which are performance, functionality, usability, and 

auxiliary Task Support.  Performance criterion focused on hosting variety, architecture, and connectivity. 

Functionality criterion focused on algorithm variety, and prescribed methodology criterion. Usability Criterion 

focused on user interface, and visualization. Auxiliary task support criterion focused on data cleansing, and binning. 

However, there are many commercial data mining software in the market.  Our choice for SAS® Enterprise Miner, 

SPSS Clementine, and IBM DB2® Intelligent Miner doesn‟t mean that they are the best. In addition, the chosen 

criteria for the comparative analysis are not sufficient to decide which of these tools is the best where there are other 

criteria not covered such as security, price, flexibility and reusability. Also, this paper has covered only two data 

mining techniques, which are decision tree induction and clustering whereas there are many other important 

techniques that are not covered such as Neural Network, association rules, Logistics Regression. Of course, the more 

techniques the tool has, is better. In short, the choice of certain commercial data mining software and the choice of 

certain evaluation criteria depend more on the business objectives and goals.  

 

 

 

B 
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2.  DECISION TREE INDUCTION OVERVIEW 

 

Decision trees are class of data mining techniques that break up a collection of heterogeneous records into 

smaller groups of homogeneous records using a directed knowledge discovery.  Directed knowledge discovery is 

"goal-oriented" where it explains the target fields in terms of the rest of the input fields to find meaningful patterns 

in order to predict the future events using a chain of decision rules
[1]

.  In this way, decision trees provide accuracy 

and explanatory models where the decision tree model is able to explain the reason of certain decisions using these 

decision rules. Decision trees could be used in classification applications that target discrete value outcomes by 

classifying unclassified data based on a pre-classified dataset, for example, classifying credit card applicants into 

three classes of risk, which are low, medium or high. Also, decision trees could be used in estimation applications 

that have continuous outcomes by estimating value based on pre-classified datasets, and in this case the tree is called 

a regression tree, for example, estimating household income. Moreover, decision trees could be used in prediction 

applications that have discrete or continuous outcomes by predicting future value same as classification or 

estimation, for example, predicting credit card loan as good or bad. 

 

2.1  Decision Tree Models 

 

Decision tree models are explanatory models, which are English rules so they are easy to evaluate and 

understand by people. The decision tree model is considered as a chain of rules that classify records in different bins 

or classes called nodes [1]. Based on the model's algorithm, every node may have two or more children or have no 

child, which is called in this case leaf node [1]. Building decision tree models requires partitioning the pre-classified 

dataset into three parts, which are training, test, and evaluation sets. The training set teaches the model by generating 

explanation rules of the target variables in terms of the input variables until it has been constructed. The test set 

makes the model more general by validating and refining it where the validation process avoids the over-fitting 

problem by validating the model each time by a different set of training set and pruning the tree branches. The 

evaluation set measures and assesses the model performance and reliability for applying the model in the future on 

unseen data [1]. Based on the decision tree algorithm, models could generate decision trees. Not all decision tree 

algorithms are the same and usable in all cases. Each decision tree has its own decision tree algorithms‟ features, and 

some features are better than others based on the case. 

 

2.2  Decision tree algorithms 

 

There are many algorithms for generating decision trees where the selecting particular algorithm or 

splitting criteria depends on many factors such as number of splits, input variables type, and target variables type.  

Decision trees have two types of splits, which are binary splits, and multi splits, and using a combination of input 

variables in binary split is more complex, slower, and increases the tree depth. In the case of using a categorical 

target variable type, the decision tree model classifies records into categorical classes, and the generated tree is 

called a classification tree. In other hand, if the target is a continuous variable type, the decision tree model estimates 

the value, and the generated tree is called regression tree.  Decision-tree algorithms start building a tree by finding 

the best split for each node among target values using the input variable that does best split results. Based on the 

target type, there are two types of best split measures algorithms which are increasing purity measures for 

classification algorithms and reducing the variance measures for regression tree algorithms. 

 

2.2.1  Classification algorithms 

 

Classification algorithms are used as splitting criteria in classification trees by increasing the purity of a 

categorical variable in generated child nodes. There are several splitting measures for categorical variables 

including: Gini (population diversity), entropy (information gain), information gain ratio, Chi-square test. Corrado 

Gini, Italian statistician and economist, has invented a measure for level of economy called Gini which calculates 

the probability of selecting two random items from population being in the same class by calculating the Gini‟s 

score. Gini‟s score is summation of the squares of the classes‟ proportions where 1 probability indicates to pure 

population. Similarly, Gini measure is used to measure the best split of a decision tree node by calculating Gini‟s 

score for the node population. For example, Gini‟s score for a decision tree node contains 4 items from Class A, and 



International Journal of Management & Information Systems – Third Quarter 2010 Volume 14, Number 3 

59 

6 items from Class B is (4/10)
2

 + (6/10)
2

= 0.52. Entropy measures the decision tree node impurity by finding the 

number of conditions or rules that determine system states. In contrast the information gain is reducing these rules 

(Entropy) by adding additional information [3]. ID3 stands for “Iterative Dichotomiser 3”, and it is a decision tree 

tool developed by J. Ross Quinlan to solve the entropy split measure problem, which was creating a bushy tree when 

it handles categorical input variables. The bushy tree is caused by creating splits for every value (intrinsic 

information of a split.), which decreases the entropy value because of reducing the number of values in each node. 

ID3 uses the ratio of information gain to intrinsic information of a split to measure the best split. C4.5 is the later 

version of ID3, and it uses the total ratio of information gain to intrinsic information of a split to measure the best 

split. CHAID stands for Chi-square Automatic Interaction Detector Chi-square test, and it was developed by Karl 

Pearson in 1900. It measures decision tree node split by the higher value of the Chi-square variation which obtained 

by “the sum of squares of the standardized differences between the expected and observed frequencies of some 

occurrence between multiple disjoint samples [3.]” CHAID algorithm requires all input variables be discrete values 

and target variables be binary, and that includes binning interval input variables into categorical classes. 

 

2.2.2  Regression tree algorithms 

 

The second type of decision tree algorithms is regression tree algorithms. The splitting criteria in the 

regression tree are decreasing the variance in the target variable‟s values that have continuous or numeric values in 

generated child nodes. There are many splitting measures for numeric variables including: Reduction in Variance, F-

Test, C5, and AID and SEARCH algorithms. The Reduction in Variance splitting criterion measures the values 

variance from the mean by calculating the sum of square of the deviation. The lowest values of variance are the 

closest to the mean, and the opposite is correct [3]. Ronald A. Fisher has developed the F-Test splitting criterion that 

“provides a measure of the probability that samples with different means and variances are actually drawn from the 

same population.” Therefore, F score is the ratio of the combined sample estimates to the population estimate. The 

highest results are the best splits [3]. C5 is also developed by J. Ross Quinlan but it handles categorical input 

variables on interval target variables using binary split. The best split is determined by maximizing the gain ratio 

 

2.2.3  Classification and Regression Tree algorithms 

 

One of the most famous algorithms that could be used for both Classification and Regression Trees is 

CART algorithm. CART stands for Classification and Regression Trees. It creates binary splits for both categorical 

and continuous target variables by performing multiple validations to improve the accuracy. 

 

3.  CLUSTERING OVERVIEW 

 

Clustering is an exploratory data mining technique that finds interesting patterns of data by segmenting a 

collection of heterogeneous records into “natural groups” of homogeneous records called clusters, using “undirected 

knowledge discovery” or “unsupervised learning” based on similarity measures. “Unsupervised learning” is 

grouping the population based on the relationships in the data where there is no target variable to supervise the result 

of clusters based on the target variable domain as in decision tree inductions [3]. This segmentation process is based 

on two aspects. First, objects in each cluster should be alike, and that is called “high cohesion”. Seconds, objects in 

each cluster should be dissimilar to other clusters object, and that is called “low coupling [4].” There are many 

potential applications for clustering data mining technique. Clustering data mining technique could be applied in 

marketing segmentation by determining similar behavior customers.  Marketers could match their promotions to 

their potential customers using historical sales transactions. Also, it could be applied for fraud detection in insurance 

companies by finding fraud patterns in customers‟ data. There are many approaches for clustering interpretation. 

One approach is using decision trees modules supervised by cluster label and using the decision tree rules to assign 

records to each cluster. Another approach is using visualization to explain clusters based on input variables. Also, 

clusters could be explained by examining the input variables distributions [3.] 
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3.1  Clustering algorithms 

 

There are two main methods to segment data in different clusters, which are hierarchical and partitional. 

Hierarchical clustering forms a tree that fits data in a sequence using one of two approaches. First, the bottom-up 

approach uses an agglomerative algorithm. The second top-down approach uses a Divisive algorithm. The 

partitional clustering method segments data using non-hierarchical techniques [2.] It includes k-Means, Expectation 

Maximization, Fuzzy-C-Mean, and Artificial Neural Network algorithms. In the partitional clustering method, a 

certain number of clusters is required to be specified before starting the process. In other hand, it is not required to 

specify the number of clusters in hierarchical clustering method, which may cause failing to clustering process [5]. 

This paper will focus on the algorithms used in the selected data mining tools software, which are SAS® Enterprise 

Miner, SPSS Clementine, and IBM DB2® Intelligent Miner. 

 

3.1.1  K-Means algorithm 

 

K-Means is one of the most common and popular algorithms published first by J. B. Macqueen in 1967. 

From the algorithm‟s name, it‟s required to specify a K number of desired clusters. Then, the algorithm randomly 

selects K data records as initial seeds for clustering. Next, the algorithm assigns the rest of the records to the closest 

seeds. Next, the algorithm calculates the new cluster centroids by taking the average value for every dimension. That 

changes the clusters‟ boundaries. The algorithm repeats the process of calculating new cluster centroids until 

clusters‟ boundaries become stable. There are two major downsides of K-Means algorithm. It is non-overlapping 

algorithm where records can not belong to more than one cluster. Also, it is sensitive to outliers [1.] 

 

3.1.2  Agglomerative algorithm 

 

Agglomerative algorithms start on each single data element in dataset as a cluster in order to merge them   

gradually until reaching one large cluster, and this is called bottom up hierarchical clustering approach. The merging 

process is iterated process based on distance measure between clusters using one of three common approaches: 

single linkage, complete linkage, or centroid distance. Single linkage approach measures distance between two 

clusters by measuring distance between the closest members in these two clusters. Complete linkage approach 

measures distance between two clusters by measuring distance between the most far-away members in these two 

clusters. Centroid distance approach measures distance between two clusters by measuring distance between the 

centroids of these two clusters [1.] 

 

3.1.3  Divisive algorithm 

 

In contrast to agglomerative algorithm, Divisive algorithm start on the whole dataset in order to divide it 

into two clusters, and keep dividing sub clusters reaching smaller clusters, and this is called top-down hierarchical 

clustering approach. This algorithm use purity function to partition segment of data into clusters as decision trees. 

This function increases impurity by decreasing inter-cluster distance average value and decreasing intra-cluster 

distance average value [1.] 

 

3.1.4  Self-Organizing Maps algorithm (Kohonen Networks) 

 

Self-organizing maps algorithm is a class of artificial neural networks that known as undirected learning 

neural networks or Kohonen Networks because learning process is unsupervised by target variable, and it has 

invented by the Finnish researcher Dr. Tuevo Kohonen. Self-organizing maps algorithm is not only used for 

business data mining applications such as marketing applications, fraud detection applications etc., but also it is used 

originally for graphical application such as two-dimensional images detection and sounds application such as sounds 

detection. Self-organizing maps neural network consists of two major fully connected layers, which are input layer 

and output layer where each layer contains units of neurons. Input layer‟s neurons are connected to the input 

variables where each neuron corresponds to one input vector. Each output layer‟s neuron is connected to every 

neuron unit in the input layer, and each input record is assigned to the output unit that has the closest weight to that 

record, which called “best matching neuron” process. Self-Organizing Maps algorithm does not require specifying 

the number of outcome clusters in order to segment data [1] [6.] 
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3.1.5  Demographic algorithm 

 

Demographic algorithm segments dataset based on comparison of pairs of records by comparing individual 

fields‟ values, and it measures the distance between those records using voting techniques called Condorcet in order 

to assign objects to specific clusters. This technique judges the objects to be similar according to the degree of 

number of field‟s similarity. Scores of similar pair of record are calculated by getting +1 vote for every identical 

value in same victor, and it gets -1 vote for every dissimilar value in same victor. Based on the overall score, 

algorithm decides to which cluster will assign records. Demographic algorithm has two outstanding advantages. 

First, it could handle both categorical and numerical input variables while numerical input variables needs to be 

partitioned into categorical segments, which is called “predetermined tolerance.” Second advantage is that it does 

not require specifying the number of clusters prior clustering process [7].  

 

4.  EVALUATION CRITERIA 

 

Most organizations have huge data assets that are dispersed across the organization systems such as 

database servers, data warehouse systems, legacy systems, excel files on client machines etc. Therefore, the 

following evaluation criteria are selected to accommodate these various systems and data sources by figuring if data 

mining software is able to provide a complete end-to-end data mining solution for the organization needs. 

 

4.1  Performance Criteria 

 

Performance criterion evaluates the efficiency of the data mining tool where organizations should consider 

data mining software‟s performance ability to provide host variety, architecture, and connectivity [8.] Host variety 

evaluates the ability of the software to be hosted in various platforms such as Windows Linux, UNIX, etc. 

Architecture evaluates the software architecture flexibility what if is client-server architecture or a stand-alone 

architecture? Connectivity evaluates the ability of the data-mining tool to connect to various data sources such as 

ORACLE, SQL Server, Excel sheets, text files, etc.  

 

4.2  Functionality Criteria 

 

Functionality is an assortment of “capabilities, techniques, and methodologies” that facilitate solving a 

variety of problems [8.] Two important functionalities are covered in this paper, which are algorithmic variety and 

pre-described methodology. Algorithmic variety evaluates the data mining software ability to provide various 

algorithms for decision tree induction and clustering. Algorithmic variety will increase the data mining software 

functionality to provide solutions for various real world problems. This paper will focus on algorithms that are 

available on at least in one of the preselected data mining software. In the case of decision tree induction, there are 

three types of algorithms. Algorithms can handle categorical target variables, binary target variables, continuous 

target variables, or both   categorical and continuous target variables. In addition, algorithmic variety includes what 

if the data mining software is able to provide a variety of splitting methods for both binary and multi splits. Finally, 

algorithmic variety criteria include what if data mining software is able to handle categorical and continuous input 

variables. In the case of clustering, there are several algorithms such as K-Means algorithm, Agglomerative 

Algorithm, Divisive Algorithm, Self-Organizing Maps algorithm (Kohonen Networks), and Demographic algorithm.  

K-Mean algorithm requires specifying the number of clusters prior clustering process, and the rest of them are not. 

All these algorithms are suitable for numeric input variables except demographic algorithm is suitable for both 

categorical input variables and partitioned numeric input variables. Also, some algorithms provide hierarchical 

clustering such as Agglomerative and Divisive algorithms. The second functionality criterion covers prescribed 

methodology that evaluates the data mining software to follow data mining methodology such as CRISP-DM. 

 

4.3  Usability Criteria 

 

Usability criteria evaluate data mining software simplicity of learning curve and usage. One criterion is 

user interface criterion that evaluates how much the data mining software is user-friendly? The other criterion is 

visualization criterion that evaluates data mining software ability to visualize results in clear charts, and graphs.  
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4.4  Auxiliary Task Support Criteria 

 

Data mining process requires some auxiliary tasks before, during, and after conducting data mining 

process. One of the important auxiliary tasks is data preparation. This criteria focus on some important tasks that 

prepare the dataset for modeling, which are data cleansing and binning. Data cleansing criterion evaluates data 

mining software ability to handle defective data that make noise such as missing values and outliers. Binning 

criterion evaluates data mining software ability to partition numeric values into categorical values. 

 

5.  SAS® ENTERPRISE MINER OVERVIEW 

 

SAS® Enterprise Miner is one of the end-to-end enterprise analytic solutions for data mining, introduced 

by SAS Corporation. This software is one part of SAS Analytics, which is “an integrated environment for predictive 

and descriptive modeling, text mining, forecasting, optimization, simulation, and experimental design.” Also, SAS 

Analytics supports decision makers by leveraging existing data and infrastructures into business intelligence 

environments [9.] 

 

SAS Enterprise miner software evaluation 

 

5.1  Performance Criteria: 

 

-  Hosting variety criterion: 

 

SAS Enterprise Miner is platform independent software where it could be run on any platform. 

 

-  Architecture criterion: 

 

SAS® Enterprise Miner is stand-alone architecture. 

 

-  Connectivity criterion: 

 

SAS® Enterprise Miner uses Input Data Source node that can extracts data from wide variety of data 

sources: relational database, legacy mainframe systems, and ODBC, with the ability of scheduling, filtering, sorting, 

and data format conversions [10.] Input Data Source node reads the data source records from SAS data set or from 

import Wizard in order to create a dataset metadata automatically. Metadata identify variable attributes by assigning 

a level of measurement and role for each variable. In addition, Input Data Source node provides statistics summary 

for both interval-valued and categorical valued.  

 

5.2  Functionality Criteria 

 

- Algorithmic variety for decision tree induction:  

 

Algorithmic Variety: SAS® Enterprise Miner provides a variety of decision tree algorithms which are 

CART, CHAID, and C4.5, and it provides three multi split classification algorithms that split for categorical target 

variables. Two of these algorithms split categorical and continuous input variables, which are Gini and entropy, and 

the last one splits only categorical input variable, which is Chi square test. In addition, SAS Enterprise Miner 

provides two other multi-split algorithms for regression tree that split for numeric target variables, which are 

Reduction in Variance and F-Test.  

 

-  Algorithmic variety for clustering:  

 

SAS® Enterprise Miner provides a variety of clustering algorithms. It provides the three hierarchical 

agglomerative algorithms. Also, it provides K-Means algorithm, and Self-Organizing Maps algorithm (Kohonen 

Networks). 
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-  Prescribed Methodology criterion: 

 

Enterprise Miner uses SEMMA data mining methodology, which stands for Sampling, Exploring, 

Modifying, Modeling, and Assessing. See table 1.  

 

 
Table 1: 

 
 

 

5.3  Usability Criteria: 

 

- User interface criterion: 

 

SAS Enterprise miner provides user friendly interface where building models doesn‟t cost more than 

simple clicks and drag and drop objects into framework area. 

 

- Visualization criterion: 

 

SAS® Enterprise Miner provides a variety of clustering results‟ graphs and charts. For decision tree 

induction, it provides tree diagram that contains root, nodes, and leafs. The tree diagram explains decision tree‟s 

rules. Also, this software provides some important charts for lift. In clustering technique, it provides normalized 

means graph that ranks input variables based on their spreads on clusters where the input variable that have big 

spread comes first. The second graph is called distance graph that provides clusters‟ sizes and the relationships 

among them. Third graph is categorical variable profile that displays a three-dimensional profile grid for categorical 

variables. Fourth graph is same as third one but for Interval Variables. Fifth graph is extremely useful where it gives 

insight and interpretation of clusters by running a Tree node behind the scenes, and uses the cluster ID 

(_SEGMENT_) as a target variable. This graph shows hierarchical tree view contains a list of numbers and 

percentage of each cluster population. Also it contains a list of rules that assign the records to each tree node. Sixth 

graph is statistics graph that shows three-dimensional chart contains the input variables‟ statistical information for 

every cluster. In addition, SAS® Enterprise Miner provides Report node that consolidates the nodes‟ results within 

the process flow diagram in an HTML report, which could be displayed in a Web browser. 
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5.4  Auxiliary Task Support Criteria: 

 

- Data cleansing criterion: 

 

SAS Enterprise Miner provides many ways to solve missing values issues. It provides replacement node 

that fill missing values according to some accurate statistics.  In decision trees, it is possible to treat missing values 

as an acceptable value. In clustering node, SAS Enterprise Miner provides two options for handling missing values. 

One option is excluding all objects that contain missing values during the clustering process, and the second option 

is replacing the missing values using one of the imputation methods which are Seed of Nearest Cluster, Mean of 

Nearest Cluster, and Conditional Mean. In addition, SAS Enterprise Miner provides Filter Outliers node to removes 

outliers or missing values from the current training dataset with two options: “eliminating rare values from the 

process flow diagram and keeping missing values in the analysis”. Also, it removes categorical valued variables 

situations that do not happen. Moreover, it allows removing outside various ranges of observations in interval-

valued variables. Moreover, it allows removing interval-valued variable‟s values by settings a variety of interval 

such as the standard deviation from mean, median absolute deviance, modal center, and extreme percentiles. 

 

- Binning criterion: 

 

SAS Enterprise Miner provides Transform Variables node for transforming the interval-valued variables in 

the current training dataset, and this node provides three transformation options: buckets, quantile, and Optimal 

Binning for Relationship to Target Transformation. Bucket binning is dividing the values into equally intervals 

whereas quantile binning is dividing the values into equally classes. Optimal Binning for Relationship to Target 

binning is splitting a variable into groups with a binary target. 

 

6.  SPSS CLEMENTINE OVERVIEW 

 

Integral Solutions Ltd (ISL) has developed Clementine before its acquisition by SPSS. SPSS Clementine 

provides a wide assortment of data mining techniques associated with data preparation and visualizations tools. 

SPSS Clementine provides Application Templates (CATs) that encapsulated best practices and a variety of out-of-

the-box functionalities, as add-on modules.  

 

SPSS Clementine software evaluation 

 

6.1  Performance Criteria: 

 

- Hosting variety criterion: 

             

SPSS Clementine could run on any platforms.  

 

-  Architecture criterion: 

 

SPSS Clementine is a stand-alone architecture, and some versions can run on server environment and some 

on client machine. 

 

-  Connectivity criterion: 

 

For data extraction, Clementine provides Front-end connectivity for databases that has kernel support such 

as SQL Server, DB2 and Oracle. Also, Clementine‟s provides SQL pre-processing for table joins in users‟ SQL 

queries by Clementine‟s SQL optimization to improve its performance. 
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6.2  Functionality Criteria: 

 

Algorithmic variety for decision tree induction:  

 

SPSS Clementine provides a variety of decision tree algorithms, which are CART, CHAID, and C4.5.  

CART provides binary split classification and regression tree algorithms that split both categorical and interval 

target variables. CHAID provides multi split classification algorithms that split binary target variables. 

 

Algorithmic variety for clustering:  

 

SPSS Clementine provides a two clustering algorithms, which are K-Means algorithm, and Self-Organizing 

Maps algorithm (Kohonen Networks). SPSS Clementine has two major weaknesses: first it cannot cluster data 

hierarchically. Second, it cannot cluster dataset that has categorical input variables. In other hand, it can cluster 

dataset with specifying the number of clusters prior the process using K-Means algorithm. Also, it can cluster 

dataset without specifying the number of clusters prior the process using Kohonen Network algorithm. 

 

-  Prescribed Methodology criterion 

 

Clementine supports CRISP-DM (Cross Industry Standard Process for Data Mining) methodology: 

Business understanding, Data understanding, Data preparation, Modeling, Evaluation, and Deployment. See Table 2. 
 

 

 
 

 

6.3  Usability Criteria: 

 

- User Interface criterion: 

 

SPSS Clementine provides user friendly Interface using simple clicks and drags and drop objects with 

changing these objects setting. 
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- Visualization criterion:  

 

SPSS Clementine provides many graphical visualization tools for tables, distribution displays, plots and 

multi-plots, histograms, webs matrices, animation graphs. Furthermore Clementine provides evaluation visualization 

including Gains, Lift, Response, Profit and ROI charts. Clusters‟ results could be illustrated graphically using one of 

graphical tools such as plots. 

 

6.4  Auxiliary Task Support Criteria: 

 

- Data cleansing: 

 

SPSS Clementine handles missing values by filling in missing values based on predefined intervals or class 

levels in the current training dataset using one of three options. One option is keeping data missing. Second option is 

estimating the missing data using simple method. Third option is estimating the missing data using complex method. 

Also, SPSS Clementine reduces „skew‟ values (outliers). 

 

- Binning criterion: 

 

SPSS Clementine provides four binning options: Equal-Range, Equal-Sized Bins, Bins Based on Gaps, and 

Bins Based on Knowledge/Theory. 

 

7.  IBM DB2® INTELLIGENT MINER OVERVIEW 

 

IBM Intelligent Miner is a set of "statistical, processing, and mining functions" to analyze data. IBM's 

Intelligent Miner contains three main products Intelligent Miner Modeling, Intelligent Miner Scoring, and Intelligent 

Miner Visualization. Intelligent Miner Modeling develops analytic models such are Associations, Clustering, 

Decision trees, and Transform Regression PMML models via SQL API. Intelligent Miner Scoring performs scoring 

operation for the models that created by Intelligent Miner Modeling. Intelligent Miner Visualization present data 

modeling results for analysis using one of the following: Visualizers: Associations Visualizer, Classification 

Visualizer, Clustering Visualizer, and Regression Visualizer. IBM's Intelligent Miner provides a variety of data 

mining techniques: predictive modeling, database segmentation or clustering, link analysis (associations), neural 

classification, neural clustering, sequential patterns, similar sequences, Radial Basis Function (RBF)-Prediction, and 

deviation detection (outliers). 

 

IBM DB2 Intelligent Miner evaluation 

 

7.1  Performance Criteria: 

 

- Hosting variety criterion: 

 

IBM DB2® Intelligent Miner could run on many platforms where the server can run on OS/390, OS/400, 

AIX, Sun/Solaris, or Windows NT, and the client can run on either of AIX, OS/2, Windows NT, or Windows95. 

 

- Architecture criterion: 

 

IBM Intelligent Miner consists of two parts: server and client, and it contains nine main components: user 

interface, environment layer, visualizer, data access, database tables and flat files, processing library, mining bases, 

mining kernels, mining results, result API, and export tools. User interface component allows users to define data 

mining functions using graphical interface. Environment layer API component is a collection of API functions, 

which defined and executed by the user interface component to control the mining execution and results. Visualizer 

component is a wide assortment of visualization tools to display the mining results. Data access component provides 

an access to database tables and views, or to flat files. Database tables and flat files component is the object that 

defined as an input or an output data, and it has logical descriptions of the physical data in order to be processed 

using the Intelligent Miner or other components. Processing library component provides access to database 
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functions. Mining bases component contains objects that build the data-mining model. Mining kernels component 

contains algorithms that run a data mining function. Mining results, result API, and export tools component is the 

output data running a mining tool or function, which could be presented by visulizer tools.  

 

- Connectivity criterion: 

 

Integration Server extracts data from wide variety of data sources: flat files or database tables in IBM DB2 

tables, and Open Database Connectivity (ODBC) for other sources such as Oracle, Sybase, Informix, and/or SAS. 

 

7.2  Functionality Criteria: 

 

- Algorithmic variety for decision tree induction:  

 

Intelligent Miner provides one algorithm for classification, which is (modifiedCART regression tree) 

algorithm. 

 

- Algorithmic variety for clustering:  

               

Algorithmic Variety: provides two clustering algorithms, which are Demographic algorithm, and Self-

Organizing Maps algorithm (Kohonen Networks.) IBM DB2® Intelligent Miner has two major weaknesses: first, it 

cannot cluster dataset hierarchically. Second, it cannot cluster dataset based on predefined number of clusters. In 

other hand, it has a strong advantage that it can cluster dataset that has categorical input variables using 

Demographic algorithm. 

 

- Prescribed Methodology criterion: 

 

IBM DB2® Intelligent Miner does not follow standard methodology. 

 

7.3  Usability Criteria: 

 

- User Interface criterion: 

 

User interface component provides a collection of graphical objects icons for creating data mining model. 

These objects are Data objects, mining and statistics settings objects, preprocessing settings objects, result objects, 

discretization objects, name mapping objects, or value mapping objects. Database objects are logical descriptions of 

physical data in a database or in a flat file. Mining and statistics settings objects are analytical functions, which are 

used to apply data mining technique after identifying the input data using data object.  Result objects can present the 

results. Result objects present output data from a mining or statistics settings object, and an Intelligent Miner 

visualizer can view the result objects, or API programs can access them. 

 

- Visualization criterion: 

 

Two components of IBM DB2® Intelligent Miner are extremely important, which are Classification and 

Clustering Visualizer. Classification Visualizer provides quality view, Gains/Lift view, and the tree view. Clustering 

Visualizer provide three main views: Graphics, Text, and Details for models that are created by Intelligent Miner 

Modeling component. The graphics view illustrates clusters‟ size and their fields‟ values distributions. The graphics 

view gives users more control to change background colors, sort keys and orders, renaming clusters, specifying chart 

type (histogram, pie-chart, or tables), etc. 

 

7.4  Auxiliary Task Support Criteria: 

 

- Data cleansing: 

      

Intelligent Miner handles missing values by filling in missing values based on predefined intervals or class 



International Journal of Management & Information Systems – Third Quarter 2010 Volume 14, Number 3 

68 

levels in the current training dataset. Outliers could be detected by predefining the values limits for each field, and 

they are treated as missing values. 

 

- Binning criterion: 

 

Intelligent Miner discrete objects convert range or continuous numeric field values into discrete-numeric 

categorical values by mapping these values to various separates intervals. 

 

8.  COMPARATIVE ANALYSIS 

 

After analyzing each of the pre-selected data mining software according to the pre-selected criteria, I have 

rated each software tool in each criterion by a value from zero to three where zero is the worse, and three is the best. 

Then I have calculated the weighted average for each criterion where weights for performance, functionality, 

usability, and Auxiliary tasks support are 30%, 40%, 20%, and 10% respectively as shown in table 3. According to 

the comparative analysis results for SAS® Enterprise Miner, SPSS Clementine, and IBM DB2® Intelligent Miner, 

the Weighted Averages were 2.72, 2.49, and 1.56 respectively. Therefore, SAS® Enterprise Miner is the best data 

mining software among them for both decision tree induction and clustering techniques.  
 

 

Table 3: Comparative Analysis’ results 

 
 

 

9.  CONCLUSION 

 

There is no doubt that data mining software is an important factor for organization success, and it is very 

important to choose the appropriate data mining software that satasifies organization business needs. SAS® 

Enterprise Miner, SPSS Clementine, and IBM DB2® Intelligent Miner are three of giant data mining software. After 

evaluating these data mining software based on the chosen criteria, which are performance, functionality, usability, 

and auxiliary task support, I found out that the best tool is SAS® Enterprise Miner. These criteria are selected under 

most common considerations that most organizations have vast data assets in many data sources such as database 

servers, data warehouse systems, legacy systems, excel files on client machines etc, and the required data mining 
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software should provides solutions to perform data mining techniques using decision tree induction and clustering 

on the organization data. 
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