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ABSTRACT 

 

We evaluate the design of individuals and moving range charts through extensive simulations. Via 

a SAS program using 8000 replications, average run length is assessed for several shifts in 

process mean and variation. From these computations recommendations are made concerning 

when to use the individuals chart only, when to use a combined individuals and moving range 

chart, and the optimal design parameters when the combined approach is used. The paper 

includes discussion, recommendations, and examples concerning the monitoring of accounting 

data. 
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INTRODUCTION 

 

ome processes are such that forming subgroups is impossible or undesirable. For example, ongoing 

accounting data such as weekly, monthly, or quarterly sales totals are impossible to subgroup. In these 

cases, individual measurements are typically plotted in an individuals chart, sometimes called an X chart. 

Sometimes, the moving range (i.e., the difference between the current period and the previous period) is plotted in a 

moving range chart, known as an MR chart, and presented in combination with the individuals chart (which situation 

we shall call a combination chart or an XMR). In general, the X and MR portions are used to monitor the process 

mean and variability, respectively. On other occasions, the individuals chart is used alone. There is much 

disagreement as to whether the individuals chart alone or an XMR is best. Moreover, if the XMR is employed, there 

is the practical matter of the design of the chart, i.e., what combination of control limits is optimal.  

 

Leading textbooks (e.g., Montgomery, 2009) often suggest an XMR but raise doubt about the usefulness of 

the MR portion. Practitioner-oriented publications often use XMR (e.g., Conklin, 2002) but fail to mention the 

ongoing debate over the design of the XMR, or if the MR portion should be included at all.   

 

MONITORING WEEKLY SALES 

 

Weekly sales (in thousands of dollars) for Company A are found in Table 1. The mean and standard 

deviation of weekly sales are 25 and 3, respectively. Figure 1 illustrates the use of an XMR with 3-sigma control 

limits. The process is deemed to be in control since both the X portion and the MR portion of the chart are in 

control. 

 

As a second example, consider the weekly sales (in thousands of dollars) for Company B, also located in 

Table 1. Again, the mean and standard deviation of weekly sales are 25 and 3, respectively. The XMR chart in 

Figure 2 indicates an out-of-control process. In week 18, the sales total of 35 is above the upper control limit, and 

the moving range of 10, the difference between 35 and 25, is also above its upper control limit. This illustration of 

both the X and MR signaling an out-of-control situation at the same time is not unusual; in fact, it is quite common. 

When an individual value is large enough, or small enough, to be outside the limits, it usually produces a moving 

range value above the upper control limit. Thus, the value of including the MR portion with the X portion is highly 

debatable.  
 

S 
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Table 1: Weekly Sales (in thousands of dollars) used in XMR Charts 

Week Company A Company B 

1 25 25 

2 22 22 

3 24 24 

4 29 29 

5 27 27 

6 22 22 

7 24 24 

8 27 27 

9 27 27 

10 24 24 

11 25 25 

12 24 24 

13 25 25 

14 22 22 

15 25 25 

16 24 24 

17 25 25 

18 25 35 

19 29 29 

20 25 25 

 

 

Figure 1:  In Control Process Monitored with 3-Sigma Control Limits 
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Figure 2:  Out of Control Process Monitored with 3-Sigma Control Limits 
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LITERATURE REVIEW 

 

Although originally designed for manufacturing data, the application of control charts for accounting data 

has become relatively common in the last 20 years. Krehbiel, Havelka, and Scharfenort (2007) list five major areas 

where transactional processes lend themselves to control charts: financial reporting, internal auditing, external 

auditing, tax accounting and business operations.  Other applications of control charts in accounting are found in 

Reeve and Philpot (1988), Roth (1990), Bruch (1994), Long, Castellano, and Roehm (2002), Davies (2004) and 

Grabski (2004). Dull and Tegarden (2004) argue that use of control charts on accounting data will become more 

common as companies increase the frequency of reporting.  

 

Snee (2004) and Krehbiel, Havelka, and Scharfenort (2007) put forth the argument that control charts in 

financial and accounting functions will become even more common as more companies adopt Six Sigma quality 

initiatives.  Many authors, including Neuschler-Fritsch and Norris (2001), Friedman and Gitlow (2002), and Rudisill 

and Clary (2004 & 2005) discuss accountants’ roles and responsibilities in successful Six Sigma projects. Case 

studies involving successful accounting applications include the elimination of inefficiencies in an accounts payable 

process (Brewer and Bagranoff, 2004) and improvements to the quarterly financial reporting process (Brewer and 

Eighme, 2005; Krehbiel, Eighme & Cottell, 2009). Jones and Hain (2005) set up control charts to monitor key 

performance indicators (KPIs) in the control stage of a Six Sigma project aimed at reducing obsolete inventory in 

the materials management branch of a public works facility, and Falton and Falton (2002) discuss the integration of 

Six Sigma metrics with management dashboards.  Six Sigma applications concerning Sarbanes-Oxley are discussed 

by Hofmann (2005), Liebesman (2005), LaComb and Senturk (2006), Senturk, LaComb, Neagu and Doganaksoy 

(2006), and Nanda (2008). Six Sigma applications involving balanced scorecards are illustrated by Brewer (2004) 

and Nilakantasrinivasan and Nair (2005).  

 

Virtually all the applications mentioned above involve the use of data that are impossible to subgroup, and 

thus lend themselves to individuals and moving range charts. In discussing control charts for individual 
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measurements, Nelson (1982, 1990), argues strongly against the use of moving range charts, given that the moving 

range statistic is correlated, thus making interpretation of the chart quite difficult. Acosta-Mejia and Pignatiello 

(2000) point out that the correlation increases false alarms over the typical range chart for n=2, but conclude that an 

XMR can be a somewhat effective method to identify increases in dispersion. Roes, Does, and Schurink (1993) 

conclude that adding an MR chart can increase sensitivity to changes in variability, but this is insufficient cause for 

support of greater use. Similarly, Rigdon, Cruthis, and Champ (1994) conclude that the individuals chart alone is 

nearly as efficient as the combination chart for detecting changes in variability, and therefore also argue against 

using the MR chart. Trip and Wieringa (2006) conclude that many of the problems in XMR applications result from 

the design of the chart, but that even the best-designed XMR is only slightly better than that of an individuals chart 

alone and therefore advise against using an MR chart.  

 

On the other side of the argument, Crowder (1987a, 1987b) presents significant work concerning design 

possibilities for XMR. Crowder’s work implies that XMR charts, as opposed to individuals charts alone, should be 

used when there is concern about changes in variability. Amin and Ethridge (1998) as well as Adke and Hong 

(1997) conclude that the XMR chart does provide some additional information useful in detecting variation shifts 

and conclude that in some situations it should be used. 

 

The average run length (ARL) of a control chart is the average number of time periods before an out-of-

control signal is observed. If the process is in control and deemed “All-OK,” then the ARL should be as long as 

possible. For a 3-sigma control chart based on normally distributed data (e.g., the individuals chart) the All-OK ARL 

is approximately 370, and a combination XMR chart has an All-OK ARL of approximately 200 (see Montgomery, 

2009). When the process is out of control, a short ARL is desired, i.e., the user wants to be notified as soon as 

possible of this condition. In general, increasing the All-OK ARL (a good thing) usually increases the out-of-control 

ARLs (a bad thing); therefore, optimal design setting for the chart is of great interest.  

 

Crowder presents a computer program that allows for the design of various XMR combinations which all 

provide All-OK ARLs of desired length. The control limits of the XMR are defined as: 

 

UCLX = μ + Mσ (upper bound on X chart) 

LCLX = μ – Mσ (lower bound on X chart) 

UCLR = Rσ (upper bound on MR chart) 

LCLR = 0 (lower bound on MR chart) 

 

 
Table 2:   Design of XMR Charts 

All OK 

ARL 

X-chart only Very tight X 

Very wide MR 

Tight X 

Wide MR 

 

Balanced 

Wide X 

Tight MR 

Very wide X 

Very tight MR 

50 M = 2.326 M = 2.33 

R = 4.50 

M = 2.40 

R = 3.66 

M = 2.55 

R = 3.41 

M = 2.80 

R = 3.28 
M = 3. 30 

R = 3.24 

100 M = 2.576 M = 2.58 

R = 5.00  

M = 2.65 

R = 4.04 

M = 2.80 

R = 3.77 

M = 3.00 

R = 3.67 

M = 3.50 

R = 3.60 

250 M = 2.878 M = 2.88 

R = 5.00 

M = 2.95 

R = 4.47 

M = 3.10 

R = 4.22 

M = 3.30 

R = 4.11 

M = 3.80 

R = 4.05 

370 M = 3.000 M = 3.00 

R = 6.00 

M = 3.10 

R = 4.57 

M = 3.20 

R = 4.40 

M = 3.40 

R = 4.29 

M = 3.80 

R = 4.23 

500 M = 3.090 M = 3.09 

R = 6.00 

M = 3.20 

R = 4.67 

M = 3.30 

R = 4.53 

M = 3.50 

R = 4.42 
M = 4. 00 

R = 4.36 

750 M = 3.209 M = 3.21 

R = 6.00 

M = 3.30 

R = 4.88 

M = 3.45 

R = 4.66 

M = 3.60 

R = 4.59 

M = 4.00 

R = 4.55 

1000 M = 3.291 M = 3.29 

R = 6.50 

M = 3.40 

R = 4.96 

M = 3.50 

R = 4.82 

M = 3.65 

R = 4.72 

M = 4.00 

R = 4.65 

X-chart:  (LCL, UCL) = μ ± Mσ, MR-chart:  LCL = 0, UCL = Rσ 
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For each ARL considered, various combinations of M and R can be used. Crowder (1987a, p. 101) concludes that in 

the selection of M and R (step one in his design procedure), “If possible changes in the process mean are of primary 

concern, choosing the combination from step one with smallest M will yield a control scheme with smallest ARL 

shifts from nominal in μ. Similarly, if possible changes in the process standard deviation are of primary concern, 

choosing the combination from step one with smallest R will provide the greatest sensitivity to changes in σ.”  Many 

of the design combinations discussed in Crowder are reproduced in Vardeman and Jobe (1999) and included here in 

Table 2. (We add a column to Table 2, the X-chart only case, to give added perspective and to help decide if the MR 

portion is needed at all.) Vardeman and Jobe concur with Crowder that the columns on the left-hand side are best for 

when the major concern is detecting a change in the mean, and the columns on the right-hand side are best for when 

the major concern is detecting an increase in variability.  
 

STUDY DESIGN 

 

Each of the ARLs produced in this study was generated by 8000 replications of a simulation model 

executed by a SAS program, whose logic is as follows.  For given M and R and arbitrarily specified (without loss of 

generality) μ and σ (50 and 10, respectively), control limits for the associated X and MR charts are computed: 

 

UCLX = 50 + 10M  (upper bound on X chart) 

LCLX = 50 – 10M   (lower bound on X chart) 

UCLR = 10R         (upper bound on MR chart) 

LCLR = 0              (lower bound on MR chart) 

 

Then the generation of 8000 ARLs is initiated.  For shifts in σ, the standard deviation (10) is multiplied by either1.5, 

2, or 2.5, known as λ.  Shifts in μ are achieved by adding 10k (k = 0.5, 1, 1.5, or 2) to the mean (50).  In other words, 

k is the shift of the mean in standard deviation units, and λ = σ'/σ, where σ' is the new standard deviation, represents 

the relative increase in process variation. A succession of random observations from a normal distribution is 

produced according to the formula X = μ* + z(σ*), where μ*, and σ* refer to the shifted values just described, and z 

comes from the SAS function RANNOR.  Examples of X are 55 + 10z (k = 0.5) and 50 + 20z (λ = 2.0).  The 

moving range (MR), the absolute difference between two adjacent observations, is computed, and for a given 

replication, run length (RL) is established if either MR > UCLR or X < LCLX or X > UCLX.  Through PROC 

MEANS the mean (ARL) and standard deviation of the 8000 simulated run lengths are found. 

 

 The appropriate number of replications for a study may be set as that value which achieves a satisfactorily 

small relative error in the estimation of the critical output, that is, half-width of the estimating confidence interval 

divided by the mean.  In this case the standard deviation of RL is always equal to or just below the mean, so a 

sample size of 8000 could always produce a relative error in the vicinity of 0.02 in every case, judged to be an 

indicator of excellent precision in every case.
1
 

 

RESULTS 

 

Table 3 shows ARLs using the format of Vardeman and Jobe’s chart for various settings of k and λ, plus 

the X-chart only case.  As expected, the ARL relative to k rises from left to right since detection of the shift becomes 

increasingly difficult.  There is little distinction to be observed between the X-chart only and Very Tight X/Very 

Wide MR cases.  On the far right (Very Wide X/Very Tight MR), the simulated ARLs are approximately the All-

OK ARLs.   

 

By contrast, ARL relative to shifts in variability follows a parabolic path from left to right, ending with 

values approximating those of an MR chart only since at that point the control limits on the X chart are of little 

consequence. The increase in ARLs in the far right columns compared to the middle columns of Table 3 is both 

counter intuitive and contradictory to Crowder’s assertion. Our results indicate that the X chart has become so wide 

at this point that it loses almost all ability to detect increases in process variation while the tighter MR chart is only 

slightly more sensitive. The result is that these combination charts are actually worse at detecting an increase in 

process variation. For example, when using an All-OK ARL of 50, the Very Wide X/Very Tight MR design detects 

a doubling of the process variation in 4.05 subgroups on average, while the balanced design takes only an average of 
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3.49 subgroups. Moreover, the Very Wide X/Very Tight MR design is extremely slow at detecting changes in the 

mean. Of great interest is that the designs in the last three columns (Balanced, Wide X/Tight MR, and Very Wide X/ 

Very Tight MR) are statistically equal to or worse than the first three columns for all 21 combinations of ARLs and 

increased variability the study investigated.
2
 

 

 

Table 3: ARLs for k = (0.5, 1, 2) and  λ = (1.5, 2, 2.5) 

All 

OK 

ARL 

X-chart only Very tight X 

Very wide MR 

Tight X 

Wide MR 

 

Balanced 

Wide X 

Tight MR 

Very wide X 

Very tight MR 

50    27.46      8.14 

   10.69      4.07 

     2.72      2.86 

   27.90        7.93 

   10.90        3.74 

     2.73        2.49 

   29.44       7.54 

   12.01       3.47 

     2.88       2.33        

  34.76         7.51 

  15.14         3.49 

    3.44         2.34 

  41.21         7.79 

  21.89         3.65 

    4.65         2.42  

  48.63       8.58 

  39.17       4.05 

    9.65       2.58   

100    50.03    11.50 

   17.34      5.01  

     3.59      3.34    

  50.32      11.32 

    7.49         4.71 

    3.61         2.99 

   54.60     10.51 

   19.61       4.38 

    3.91        2.72 

  65.23       10.60 

  25.51         4.37 

    4.72         2.71 

  79.72       11.13 

  36.39         4.54 

    6.28         2.82 

  96.13     12.04 

  71.64       5.01 

  14.45       3.05 

250 111.09     18.11 

   32.96      6.62 

     5.27      3.99  

109.11       17.91 

  33.15         6.31 

    5.29         3.64 

123.78      16.30 

  38.71        5.83 

    5.87        3.31 

153.84       16.56 

   52.21        5.80 

     7.33        3.34 

189.46       17.26 

  77.79         6.10 

  10.28         3.46 

250.90     19.19 

174.18       6.73 

  26.75       3.83 

370 155.48     21.85 

  43.99       7.40 

    6.35       4.33 

155.55      21.75 

  43.96        7.18 

    6.35        4.04 

185.55      19.63 

  54.80        6.52 

    7.36        3.60 

212.13       19.66 

  67.35         6.50 

    8.70         3.62 

271.89       20.75 

103.86         6.77 

  12.41         3.77 

376.90     22.67 

217.24      7.48 

  27.32      4.06 

500 200.37     25.10 

  53.89       8.05 

    7.26       4.59 

200.24      24.96 

  55.00        7.79 

    7.25        4.27 

243.80      22.57 

  70.71        7.12 

    8.72        3.85 

284.49      22.85 

  86.59        7.19 

  10.35        3.87 

369.48       23.94 

139.78         7.52 

  14.91         4.03 

504.10     26.86 

470.48       8.31 

  43.33       4.47 

750 288.78     30.34 

  73.04       9.07 

    8.92       4.98 

286.87      30.08 

  72.92        8.75 

    8.88        4.60 

342.90     27.38 

  89.93       8.00 

  10.36       4.16 

433.79       27.42 

128.79         8.09 

  13.67         4.20 

528.72       28.70 

189.63         8.38 

  18.27         4.37 

749.70     32.20 

334.37       9.31 

  42.19       4.79 

1000 372.56     34.72 

  89.21       9.85   

  10.14       5.27 

365.86      34.60 

  90.96        9.61 

  10.19        4.97 

458.75     31.36 

116.72       8.70 

   12.49      4.41 

549.77       31.73 

149.91         8.78 

  14.97         4.45 

660.89       32.53 

215.54         9.06 

  20.34         4.57 

997.90     35.33 

426.29       9.80 

  43.19       4.97 

The first column of numbers in a cell represent k = 0.5, 1, and 2, respectively, when λ = σ'/σ = 1, and the second column of 

numbers in a cell represent λ = σ'/σ = 1.5, 2, and 2.5, respectively, when k = 0. 

 

 

RECOMMENDATIONS 

 

The moving range chart alone is seen to be of little value since its benefit, a marginal ability to detect shifts 

in process variation, is overwhelmed by a substantial insensitivity to shifts in the mean. Further, in contrast to 

suggestions made by other researchers, we find that pertaining to detection of increased process variation, the 

combined charts having narrow moving range control limits are actually inferior to those with wider limits. Based 

on the results of our simulations, we offer the following recommendations: 

 

1. An X-chart only is the most sensitive to changes in the mean. The chart is also relatively sensitive to 

increases in variability.  

2. Adding a MR-chart decreases the chance of detecting a change in the mean.  

3. Adding a MR-chart slightly increases the chance of detecting a change in the process variation. 

4. As a direct result of 1-3, there is very little value from using the MR-chart, since the substantial loss of 

sensitivity to mean changes overshadows the slight gain in sensitivity to variation changes. 

5. In specific instances where the analyst is more concerned with increases in variation than mean shifts, the 

Tight X/Wide MR combinations of an XMR chart are appropriate. 

6. Combinations on the right-hand-side of Table 2 or Table 3 (e.g., Balanced, Wide X/Tight MR, Very Wide 

X/Very Tight MR) are actually equal to or worse at detecting changes in the process variation that those 

charts in the middle. Therefore, we recommend that these three columns never be used. 

7. Since accounting data are typically collected weekly, monthly, or quarterly, the All-OK ARLs should be 

much shorter than those typically used in the data-rich manufacturing environment. If collection occurs 
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once a month, a false alarm every 370 time periods equates to one about every 31 years, whereas, a 

frequency of four collections each hour produces one about every 4 days.  

8. In the common case that only an X chart is employed, changes in the mean and increases in variation will 

be detected. The analyst, however, needs to investigate the nature of the out-of-control signal to determine 

if the process is experiencing a change in the mean or an increase in variation. The two examples that 

follow illustrate the concept. 

 
Table 4: Weekly Sales ( in thousands of dollars) used in X Charts 

Week Company C Company D  

1  27  27   

2  23  23   

3  24  24   

4  27  27   

5  23  23   

6  23  23   

7  25  25   

8  24  24   

9  27  27   

10  27  27   

11  22  22   

12  24  26   

13  35  31   

14  23  22   

15  28  26   

16  27  30   

17  28  23   

18  25  19   

19  25  28   

20  23  23   

 
Figure 3. Out of Control Signal Due to a Change in the Mean 
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Figure 4:  Out of Control Signal Due to an Increase in Variation 

191715131197531

32

30

28

26

24

22

20

Week

In
d

iv
id

u
a

l 
V

a
lu

e

_
X=25

UCL=30.152

LCL=19.848

X Chart for Company D

 
 

 

EXAMPLES 

 

 Company C designs an X chart with an All-OK ARL of 100. The mean and standard deviation of weekly 

sales are 25 and 3, respectively. Thus the upper control limit is placed 2.576 sigma above the mean and the lower 

control limit 2.576 sigma below the mean. The sales for 20 weeks are located in Table 4 and the control chart 

appears in Figure 3. The out-of-control signal is produced by a one-time increase in central tendency, and the 

variation around the center line appears not to increase before or after the spike. 

 

 Company D designs an X chart with an All-OK ARL of 100. Once again, the mean and standard deviation 

of weekly sales are 25 and 3, respectively, and the control limits are the same as above. The data are located in Table 

4 and the control chart in Figure 4 indicates an out-of-control signal. In this example, the variability around the 

center line approximately doubles after week 10. Although the X chart picked up the out-of-control condition, the 

mean of the last 10 days was still 25. The increased variability was detected because of the tight control limits on the 

X chart made possible by omitting the MR chart. 

 

SUGGESTIONS FOR FUTURE RESEARCH 

 

Although individuals and moving range charts are easily designed and implemented and relatively 

effective, recent advancements in process monitoring in the manufacturing sector using highly sophisticated 

techniques may be adaptable to accounting data. In particular, exponentially weighted moving average charts with a 

fast-initial-response (FIR) enhancement and the similarly constructed cumulative sum chart with an FIR 

enhancement warrant investigation. 
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NOTES 

 

1.  The relative error is calculated as follows for a 95% confidence interval:  

(1 / mean) ∙ ((1.96 ∙ stdev) / (√8000)).   

 

As examples, in column 5 of Table 3 with in-control ARL of 1000 and lambda of 2.5, the mean 4.572 and 

standard deviation 4.513 give a relative error of 0.0216.  In column1 (in-control ARL equal to 250 and 

lambda of 1.5), the mean 18.110 and standard deviation 17.752 produced a relative error 0.0215.  In 

column 3 (in-control ARL equal to 50 and k = 1), the mean 12.013 and standard deviation 11.545 give a 

relative error 0.0211. 

2.  Hypothesis tests comparing ARLs at the 5% level of significance were conducted. Column 3 (Tight X, 

Wide MR) was found indistinguishable from column 4 (Balanced), i.e., the null hypothesis of equal ARLs 

was not rejected in all 21 cases.  Column 5 (Wide X, Tight M) was found to be inferior to Column 3, i.e., in 

all 21 cases the null hypothesis was rejected. Likewise, Column 6 (Very Wide X, Very Tight M) was found 

to be inferior to Column 3. 
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