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ABSTRACT 
 
In light of the rapidly spreading COVID-19 virus, the FDA has suggested pooling of samples in order to reduce the 
cost of testing a large population. Under this approach, several samples are pooled, and the pooled samples are first 
tested. If the pool tests negative, then the lab would have successfully tested many samples while consuming only the 
resources needed for a single test. If the pooled sample tests positive, then each sample that comprised the pool is 
individually tested. In this context, an important question for people in the field is “Given a certain overall infection 
rate among the population, what is the optimum pool size so that we can minimize the overall number of tests for a 
given number of individual samples?” In this paper, we derive this number both empirically and analytically. We also 
address the related question “Given a certain pool size, what is the maximum infection rate for which we can still 
gain in terms of the number of tests?” 
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INTRODUCTION 
 

OVID -19 has affected virtually everyone on Earth and has touched nearly every aspect of life. As of this 
writing, more than six months into the pandemic, it has sickened more than 13 million people worldwide, 
and killed over 570,000. The United States has had over 3.5 million confirmed cases and 139,000 deaths, 

about 4.6% (New York Times, July 5, 2020). However, the World Health Organization has estimated that actual cases 
may be as many as ten times the number of confirmed cases. If so, it would place the fatality rate closer to 0.5%. The 
CDC has determined that the best way to diminish the spread of the virus is through testing and contact tracing.   
 
To increase test coverage while simultaneously reducing the cost, the government is recommending pooled testing. In 
the form of pooled testing that we consider, each sample to be tested is divided into two parts and one part is put away 
safely. The remaining part of a group of samples (say, s of them) are combined into a pool and the pool is tested as a 
whole. If the pool tests negative, then all the samples that comprise the pool are cleared as negative, thereby enabling 
a single test to cover s samples. Instead, if the pool tests positive (which will happen if even one of the samples in the 
pool is positive), then the second part of each individual sample that formed the pool must be tested separately.  
 
We can call the above method “two-stage pooled testing” because each sample could potentially need to be tested 
twice.  Using this method would enable a university or business, for example, to test every individual on a regular 
basis (New York Times, July 1, 2020; Wall Street Journal, June 30, 2020). It would also make feasible the testing of 
hundreds of thousands, or even millions of people as needed. The FDA has published guidelines giving the technical 
requirements for pooled testing and has posted template updates regarding validation to be used for pooled samples 
(FDA, June 16, 2020). 
 
It is quite clear that pooled testing will be most efficient when the percentage of the population infected is low. The 
higher the percentage infected, the greater the probability that the pool will test positive, and thus the less benefit there 
is.  In fact, at a certain point, pooling will increase the total number of tests necessary rather than decreasing it.   
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Pooled testing has been widely studied in the biological sciences (see for example Pritchard & Tebbs, 2011 and 
Pilcher, Westreich & Hudgens 2020). To the best of our knowledge, the problem of finding the optimal pool size as a 
function of the infection rate has not been studied thus far. The purpose of this paper is to find the optimal pool size 
for a given population infection rate. We assume that dividing the original sample into two parts does not affect the 
reliability of the test. We present empirical and analytical approaches for finding the optimal pool size and also derive 
a formula for finding the highest infection level for which a given pool size yields some benefits by way of reduced 
number of tests. 
 

EMPIRICAL SOLUTION 
 
We first show an empirical method for finding the optimum pool size for a given infection rate.  
 
We will use the following notation: 
 
N: population size 
p: percentage of population infected 
s: pool size.   
 
With the above notation in place, if a pool tests negative, then only one test need be done for the pool.  If a pool tests 
positive, then each sample that formed the pool will be tested separately and hence require s+1 tests in total.   
 
The probability that a pool tests negative is (in Excel notation) BINOMDIST(0,s,p,0).   
 
The probability that a pool tests positive is 1- BINOMDIST(0,s,p,0).   
 
Therefore, the expected number of tests (ntests) that will be needed for a single pool of size s is: 
 
𝐵𝐼𝑁𝑂𝑀𝐷𝐼𝑆𝑇(0, 𝑠, 𝑝, 𝑜) +	(𝑠 + 1) ∗ (1 − 𝐵𝐼𝑁𝑂𝑀𝐷𝐼𝑆𝑇(0, 𝑠, 𝑝, 0))  (Eq 1) 
 
The total number of tests needed for a population of size N is N/s times this number. Table 1 shows the results for p 
between .01 and .50 and s between 2 and 20 for N = 1000. 
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Table 1. Computing the pool size yielding the smallest number of overall tests for various infection rates (p) and pool sizes (s) for 
N = 1000 

Expected Number of tests for each pool size/infection rate combination 
 Pool Size 
Min No 
of tests 

Opt pool 
size p 2 3 4 5 6 7 8 9 10 

196 11 0.01 520 363 289 249 225 211 202 198 196 
274 8 0.02 540 392 328 296 281 275 274 277 283 
334 6 0.03 559 421 365 341 334 335 341 351 363 
384 6 0.04 578 449 401 385 384 391 404 419 435 
426 5 0.05 598 476 435 426 432 445 462 481 501 
466 5 0.06 616 503 469 466 477 494 515 538 561 
502 4 0.07 635 529 502 504 520 541 565 591 616 
534 4 0.08 654 555 534 541 560 585 612 639 666 
564 4 0.09 672 580 564 576 599 626 655 683 711 
594 4 0.10 690 604 594 610 635 665 853 724 751 
719 3 0.15 778 719 728 756 790 822 957 879 903 
821 3 0.20 860 821 840 872 905 933 1025 977 993 
911 3 0.25 938 911 934 963 989 1009 1067 1036 1044 
990 3 0.30 1010 990 1010 1032 1049 1061 1074 1071 1072 
1005  0.31 1024 1005 1023 1044 1059 1068 1079 1076 1076 
1019  0.32 1038 1019 1036 1055 1068 1076 1079 1080 1079 
1033  0.33 1051 1033 1048 1065 1076 1082 1084 1084 1082 
1046  0.34 1064 1046 1060 1075 1084 1088 1089 1087 1084 
1050  0.35 1078 1059 1071 1084 1091 1094 1093 1090 1087 
1050  0.40 1140 1117 1120 1122 1120 1115 1108 1101 1094 
1050  0.45 1198 1167 1158 1150 1139 1128 1117 1107 1097 
1050  0.50 1250 1208 1188 1169 1151 1135 1121 1109 1099 

 
Expected Number of tests for each pool size/infection rate combination 

 Pool Size 
Min No 
of tests 

Opt pool 
size p 11 12 13 14 15 16 17 18 19 20 

196 11 0.01 196 197 199 203 207 211 216 221 226 232 
274 8 0.02 290 299 308 318 328 339 350 360 371 382 
334 6 0.03 376 389 404 419 433 448 463 478 492 506 
384 6 0.04 453 471 489 507 525 542 559 576 592 608 
426 5 0.05 522 543 564 584 603 622 641 658 675 692 
466 5 0.06 585 607 630 651 671 691 710 727 744 760 
502 4 0.07 641 665 688 709 730 749 768 785 801 816 
534 4 0.08 691 716 739 760 780 799 817 833 848 861 
564 4 0.09 737 761 783 804 824 841 858 872 886 898 
594 4 0.10 777 801 823 843 861 877 892 905 918 928 
719 3 0.15 924 941 956 969 979 988 996 1002 1007 1011 
821 3 0.20 1005 1015 1022 1027 1031 1034 1036 1038 1038 1038 
911 3 0.25 1049 1052 1053 1054 1053 1052 1051 1050 1048 1047 
990 3 0.30 1071 1069 1067 1065 1062 1059 1056 1054 1051 1049 
1005  0.31 1074 1072 1069 1066 1063 1060 1057 1054 1052 1049 
1019  0.32 1077 1074 1070 1067 1064 1060 1057 1055 1052 1050 
1033  0.33 1079 1075 1071 1068 1064 1061 1058 1055 1052 1050 
1046  0.34 1081 1077 1072 1068 1065 1061 1058 1055 1052 1050 
1050  0.35 1082 1078 1073 1069 1065 1061 1058 1055 1052 1050 
1050  0.40 1087 1081 1076 1071 1066 1062 1059 1055 1053 1050 
1050  0.45 1090 1083 1077 1071 1067 1062 1059 1056 1053 1050 
1050  0.50 1090 1083 1077 1071 1067 1062 1059 1056 1053 1050 
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As expected, as p gets larger, the optimal pool size decreases. In fact, for any infection rate above 0.3 pooling will not 
reduce the total number of tests needed because the expected number of tests with pooling is in fact greater than testing 
singly; the probability of even a pool of size two being positive is 50% or more when p > 0.3.  If the value of N is 
omitted (taken as 1), then the values produced would represent the expected number of tests as a proportion of the 
population size. Figure 1. shows the relationship from Table 1 graphically. 
 
 

Figure 1. Relationship between pool size s and the expected number of tests for various values of p for a population of 1000 
 

 
 
 

ANALYTICAL APPROACH 
 
The total number of tests needed could be represented and solved analytically by the following approach.   
 
Again, the expected number of tests for any pool (etpool) is the probability of the pool testing negative plus (s+1) 
times the probability of it testing positive.  That is, 
 
𝑒𝑡𝑝𝑜𝑜𝑙 = (1 − 𝑝)9 + (𝑠 + 1)(1 − (1 − 𝑝)9) 

=	(1 − 𝑝)9 + 𝑠(1 − (1 − 𝑝)9) + (1 − (1 − 𝑝)9) 
= 	1 + 𝑠(1 − (1 − 𝑝)9)  (Eq 2) 

 
This result can be thought of as follows:  Every pool needs to be tested once whether positive or negative. This is 
represented by the first term of 1.  For those groups that are positive, an additional s tests need to be done. This is 
given by the second term, which includes the probability that the pool tests positive.  
 
The expected total number of tests for a population of size N (etpop) is: 
 

𝑒𝑡𝑝𝑜𝑝 = 	 :
𝑁
𝑠 ; 𝑒𝑡𝑝𝑜𝑜𝑙 

=	<=
9
> ?1 + 𝑠(1 − (1 − 𝑝)9)@  (Eq 3) 
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Again, replacing the N with 1 gives the expected number of tests as a proportion of the population size. 
In order to optimize the pool size s for a given p, we take the derivative and set to zero. 
 
𝑦 = 	<B

9
> ?1 + 𝑠(1 − (1 − 𝑝)9)@  (Eq 4) 

 
CD
C9
= −𝑙𝑜𝑔(1 − 𝑝)(1 − 𝑝)9 − B

9F
  (Eq 5) 

 
The root of this expression is: 

𝑠 = 	
GH<IFJKLM(BNO)>

KLM(BNO)
, where W is the Lambert Function.  (Eq 6) 

 
Table 2 shows the computed values of this function for some values of p, and Figure 2 shows the corresponding plot. 
If we round the optimum value of s, we can see that the results are consistent with the findings in Table 1. Beyond p 
= 0.31, the optimum value for s is 1 because any pooling beyond that increases the expected number of tests beyond 
N (as can be confirmed from Table 1). 
 
 

Table 2. Optimum value of s for various values of p 
p optimum s 

0.01 10.5162 
0.02 7.59664 
0.03 6.30753 
0.04 5.54218 
0.05 5.02239 
0.06 4.64083 
0.07 4.34619 
0.08 4.11045 
0.09 3.91682 
0.1 3.75458 
0.15 3.22329 
0.2 2.93817 
0.25 2.78175 
0.3 2.71953 
0.31 2.71838 
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Figure 2. Plot of the optimum value of s for various values of p 
 

 
 
 
As mentioned before, the lower the proportion of positives in the population, greater are the benefits of pooling in the 
sense that we can test the entire population by using fewer tests than would be needed without pooling. If we define  
𝑛O = 	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡𝑠	𝑓𝑜𝑟	𝑎𝑛	𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒	𝑟𝑎𝑡𝑒	𝑜𝑓	𝑝	𝑢𝑠𝑖𝑛𝑔	𝑡ℎ𝑒	𝑜𝑝𝑡𝑖𝑚𝑢𝑚	𝑝𝑜𝑜𝑙	𝑠𝑖𝑧𝑒 
Then, we can define the gain for a given incidence rate p as: 
 
𝑔𝑎𝑖𝑛O = 	

=
]^

  (Eq 7) 

 
Figure 3 plots gain against p. As expected, the gain goes below 1 at some point p greater than 0.3. 
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Figure 3. Gain as a function of p 
 

 
 
 
In certain situations, it could be possible that there are external restrictions on the size of the pool. In this case, an 
important question might be “Given a value for s, what is the maximum value of p for which pooled testing provides 
at least some benefit in terms of reducing the number of tests?” 
We can derive this as follows: 
 
1 + 𝑠(1 − (1 − 𝑝)9) < 𝑠 

⇒ 𝑝 < 1 −	<B
9
>
<ab>  (Eq 8) 

 
The above is consistent with the numbers in Table 1. Table 3 shows the computed values of the maximum values for 
p for various values of s and highlights the fact that the largest number below 1000 in each column indeed corresponds 
to a probability that is less than the computed threshold. 
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Table 3. Maximum p (shown in the last row) for given values of s, such that pooling yields some benefit 
Expected number of tests for each pool size/infection rate combination 

 Pool size 
Min no 
of tests 

Opt pool 
size p 2 3 4 5 6 7 8 9 10 

196 11 0.01 520 363 289 249 225 211 202 198 196 
274 8 0.02 540 392 328 296 281 275 274 277 283 
334 6 0.03 559 421 365 341 334 335 341 351 363 
384 6 0.04 578 449 401 385 384 391 404 419 435 
426 5 0.05 598 476 435 426 432 445 462 481 501 
466 5 0.06 616 503 469 466 477 494 515 538 561 
502 4 0.07 635 529 502 504 520 541 565 591 616 
534 4 0.08 654 555 534 541 560 585 612 639 666 
564 4 0.09 672 580 564 576 599 626 655 683 711 
594 4 0.10 690 604 594 610 635 665 695 724 751 
719 3 0.15 778 719 728 756 790 822 853 879 903 
821 3 0.20 860 821 840 872 905 933 957 977 993 
911 3 0.25 938 911 934 963 989 1009 1025 1036 1044 
990 3 0.30 1010 990 1010 1032 1049 1061 1067 1071 1072 
1005  0.31 1024 1005 1023 1044 1059 1068 1074 1076 1076 
1019  0.32 1038 1019 1036 1055 1068 1076 1079 1080 1079 
1033  0.33 1051 1033 1048 1065 1076 1082 1084 1084 1082 
1046  0.34 1064 1046 1060 1075 1084 1088 1089 1087 1084 
1050  0.35 1078 1059 1071 1084 1091 1094 1093 1090 1087 
1050  0.40 1140 1117 1120 1122 1120 1115 1108 1101 1094 
1050  0.45 1198 1167 1158 1150 1139 1128 1117 1107 1097 
1050  0.50 1250 1208 1188 1169 1151 1135 1121 1109 1099 
    Max p 0.293 0.307 0.293 0.275 0.258 0.243 0.229 

 
Expected number of tests for each pool size/infection rate combination 

 Pool size 
Min no 
Of tests 

Opt pool 
size p 11 12 13 14 15 16 17 18 19 20 

196 11 0.01 196 197 199 203 207 211 216 221 226 232 
274 8 0.02 290 299 308 318 328 339 350 360 371 382 
334 6 0.03 376 389 404 419 433 448 463 478 492 506 
384 6 0.04 453 471 489 507 525 542 559 576 592 608 
426 5 0.05 522 543 564 584 603 622 641 658 675 692 
466 5 0.06 585 607 630 651 671 691 710 727 744 760 
502 4 0.07 641 665 688 709 730 749 768 785 801 816 
534 4 0.08 691 716 739 760 780 799 817 833 848 861 
564 4 0.09 737 761 783 804 824 841 858 872 886 898 
594 4 0.10 777 801 823 843 861 877 892 905 918 928 
719 3 0.15 924 941 956 969 979 988 996 1002 1007 1011 
821 3 0.20 1005 1015 1022 1027 1031 1034 1036 1038 1038 1038 
911 3 0.25 1049 1052 1053 1054 1353 1052 1051 1050 1048 1047 
990 3 0.30 1071 1069 1067 1065 1062 1059 1056 1054 1051 1049 
1005  0.31 1074 1072 1069 1066 1063 1060 1057 1054 1052 1049 
1019  0.32 1077 1074 1070 1067 1064 1060 1057 1055 1052 1050 
1033  0.33 1079 1075 1071 1068 1064 1061 1058 1055 1052 1050 
1046  0.34 1081 1077 1072 1068 1065 1061 1058 1055 1052 1050 
1050  0.35 1082 1078 1073 1069 1065 1061 1058 1055 1052 1050 
1050  0.40 1087 1081 1076 1071 1066 1062 1059 1055 1053 1050 
1050  0.45 1090 1083 1077 1071 1067 1062 1059 1056 1053 1050 
1050  0.50 1091 1083 1077 1071 1067 1062 1059 1056 1053 1050 
   0.217 0.206 0.196 0.187 0.179 0.172 0.165 0.159 0.154 0.148 
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CONCLUSIONS AND POLICY IMPLICATIONS 
 
We have shown how to optimize pool size in two-stage pooled testing, the method that has been suggested by the 
FDA. Extensive testing and contact tracing are crucial in the effort to return to normalcy. As more and more segments 
of the economy start opening up, it becomes important to rapidly and cost-effectively test millions of samples. Our 
results have a very direct applicability in this context. As a suggestion for further study, we propose extending this 
approach to n-stage pooled testing in which when a pool tests positive on the first try, we do not automatically resort 
to testing each member of the pool separately; instead, we could do sub-pooling as well. Of course, this means that 
the quantity of material in each sample would need to be sufficiently large so as to be divided into many parts and still 
contain enough of the biological material to show up in the test if present. Another extension might consider additional 
costs of doing a pooled sample or time factors involved in waiting for multiple tests.  Whatever efficiencies that can 
be introduced will hopefully help to end the scourge of the pandemic sooner. 
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