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ABSTRACT 

 

Traditional mathematical models for locating/allocating vehicles and facilities are reviewed and 

extended to illustrate how to formulate and solve a problem of minimized response time, given 

resource constraints.  Results indicate that the average response time can be significantly 

improved through strategically allocating vehicles throughout the service area.  Furthermore, the 

modified model was shown to outperform the traditional model as the number of vehicles 

allocated to a fixed number of facilities increase.  Implications are identified for applications such 

public transit systems, wholesale and distribution operations. 

 

 

LITERATURE REVIEW 

 

arly literature on location problems was based upon the traditional set covering problem.  Set covering 

describes the minimum number of facilities needed to cover all system demand.  A population is 

considered served, or covered, when a facility is sited within the maximal service distance.  Church and 

Revelle [5] presented the Maximal Covering Location Problem (MCLP) to maximize the total amount of population 

served within a maximal service distance, given a fixed number of facilities.   Under this objective, some population is 

left uncovered by the model.  To address this problem Church and Revelle created the MCLP with mandatory 

closeness constraints and a bicriterion model that maximizes the amount of demand covered within the maximal 

distance and minimizes the distance traveled from the uncovered demand to its nearest facility, simultaneously [4]. 

 

Hakimi [12] developed a model similar to the MCLP termed the P-median problem.  The P-median problem 

weights the distance between demand nodes and facilities by the associated demand quantity and calculates the total 

weighted travel distance between demand nodes and facilities.  The model then seeks to find the location of P 

facilities so as to minimize the total demand weighted travel distance between demands and facilities.  Additional 

research has been conducted to expanded upon the p-median approach to the emergency vehicle location problem and 

analyze sources of modeling errors [8,9].   These models offer techniques to improve the efficiency of the traditional 

p- median problem. 

 

A review of the EMS system in Austin, Texas that relied upon MCLP based models exposed the necessity to 

construct alternative models that addressed the issue of vehicle availability.  Daskin’s [7] Maximal Expected 

Coverage Location Problem (MEXCLP) examines equipment availability within the context of location models.  The 

objective of the MEXCLP is to locate emergency vehicles so as to maximize the expected coverage area, even in the 

event that multiple vehicles are in use.  The model is based on the assumption that the probability that a randomly 

chosen vehicle is busy is independent of any other vehicle being in use.  Bernardo and Repede [2] later modified this 

model to incorporate time varying demand and multiple states of vehicle availability.   

 

Schilling et al. [17], developed the Tandem Equipment Allocation Model (TEAM) and Facility-Location, 

Equipment-Emplacement Technique (FLEET) model to allocate equipment with varying capabilities and demands, 

E 
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and possibly allocate the equipment and facilities simultaneously.  The FLEET model has proven to be effective in the 

location-allocation of fire stations and equipment.    

 

Bianchi and Church’s [1] Multiple coverage, One-unit FLEET problem (MOFLEET) consolidates the 

MEXCLP and FLEET models by examining factors that must be addressed in ambulance location problems.  This 

model minimizes the chances that an ambulance will not be available when demanded, by simultaneously allowing for 

coverage by alternative units.  In multiple coverage models, a demand is defined as being completely covered when 

the demand area can be reached by at least M vehicles within the specified time period.  Gendreau [10,11] also 

addressed the multiple vehicle coverage issue by using a tabu search heuristic to determine optimal allocations. 

 

Brotcorne, et. al. [3] recently compiled a comprehensive review of the 30 year history of ambulance location 

and relocation models.  They categorized past models as follows: 1) Deterministic models which ignore stochastic 

considerations regarding the availability of ambulances;  2) Probabilistic models which reflect the fact that 

ambulances operate as servers in a queuing system and can sometimes be unavailable for calls; and 3)  Dynamic 

models for relocating and deploying ambulances based upon real time data [11].   

 

The models created by Daskin [7], Schilling, et. al [17], and Bianchi and Church [1] all address the 

possibility of an ambulance being busy when called, using a system wide busy probability.  Revelle and Hogan [15] 

devised a method of estimating local busy probabilities using iterative and nonlinear methods.  Their linear 

programming approach requires that a minimum number of vehicles be available in order for the problem formulation 

to be feasible. 

 

Emergency service facility and location research has been expanded to incorporate various other systems 

with comparable characteristics.  Other application areas have included: public transit systems, wholesale location and 

distributing operations and even reserve selection [14,16].   

 

MODEL SELECTION 

 

Several criteria were used in selecting an optimization model for the Cumberland County EMS system.  The 

efficacy of the model was contingent upon several factors; namely:   

 

 The model optimally and simultaneously locates facilities and allocates vehicles;  

 The model considers the possibility that a vehicle may be unavailable when called; 

 The model allows for multiple coverage; 

 The model is efficient in terms of computing time; and 

 The model generates results useful to laypersons. 

 

The MOFLEET model discussed in the previous section satisfies these objectives and was adopted, with 

modifications, for this project. 

 

The MOFLEET model has an objective function which seeks to minimize the expected amount of population 

not covered within a specified time period t.    This function is based upon the system-wide parameter u, the 

probability that a randomly selected vehicle will be unavailable when called.  Original set covering models present a 

parallel between attaining this objective and our original goal of minimizing the response to answering demand [5, 6].  

The constraints designate F facility sites from a set of J potential locations and allocate E vehicles to the selected 

facilities.  Additional constraints ensure that no more than C vehicles are located at a site and assist in penalizing the 

objective function value when nodes are not covered by at least M vehicles (the minimum number of vehicles required 

to provide full coverage to a node).   The mathematical formulation of the MOFLEET model is provided in Appendix 

A. 
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MOLEET MODIFICATIONS 

 

Since the parameter u appears in the objective function, it is understandable that altering the value or method 

of computing u, could alter the model’s results.  Daskin [6] gives a formula (see first author’s website for detailed 

formulation) for computing the parameter u based upon the average number of calls per day, the average service time 

per call, and the number of vehicles employed by the system. 

 

The current model assumes an equal probability of a vehicle being busy across the system.  This system-wide 

probability simplifies the model greatly; however, it is highly unlikely that a system will actually have a uniform 

system busy probability.  Instead, we believe that there should be varying values for different demand centers in the 

system.  Since it is unrealistic to expect vehicles in the inner city to have the same level of activity as vehicles located 

in remote, rural areas, we propose using local busy estimates to improve the model’s performance.  As such, we will 

use ui to denote the probability of a vehicle being busy at demand center i.    

 

Our local busy probabilities, ui , are based upon the amount of system demand in its local area.  This local 

area is designated as all nodes located within t minutes (as specified by the MOFLEET model).  The ui values are 

computed as the product of the global u parameter and the ratio of the total local area demand of node i, to the average 

system local area demand.  

 

In the MOFLEET model, the parameter M is used to specify the minimum number of vehicles required to 

provide full coverage to an area (see first author’s website for detailed formulation).  This value is computed utilizing 

our local busy probability values.  Thus Mi values are unique to each node.   

 

The performance of the MOFLEET model is determined by computing the percentage of demand covered by 

the model’s allocation of vehicles.  Jayaraman and Srivastava [13] gives a formula for computing this measure (see 

first author’s website for detailed formulation).  We refer to their measure as MOFLEET CVG.  We substitute our 

local u and M values into their formulas in order to evaluate our modified model, and we refer to this measure as 

Local CVG. 

 

Our Modified MOFLEET model can be easily restated by substituting our Mi and ui values in the original 

model in place of the global parameters.  Although these changes may appear subtle, the integration of these local 

parameters with the original MOFLEET model alters the model’s optimal sites to accommodate the dynamic demand 

patterns across the system. 

 

DATA COLLECTION AND ANALYSIS 

 

Cape Fear Valley Medical Center funded a project to determine optimal locations for ambulances and 

facilities in Cumberland County to minimize their response time.  Their goal met the objective of the MOFLEET 

model.  The data required for this model are compiled from the county emergency dispatch database (managed by 

Cumberland County Information Services) and EMS officials.   Based on calls received, the county was divided into 

grids or “analysis zones”.  The structure of these analysis zones (nodes) is based on travel-time, population density, 

traffic flow, and other pertinent considerations.  Following analysis of these factors, a network consisting of 119 zones 

covering the entire county was established.   In effort to meet the national goal, our model was designed to minimize 

the amount of uncovered demand within eight minutes.  Selecting eight as our target travel time sets the standard for 

determining the expected coverage that an optimal allocation will yield.  Increasing or decreasing this value will 

respectively alter the expected coverage rendered by our model for a single vehicle distribution.  

 

We analyzed the system to determine the eight-minute coverage for each zone.   The accuracy of the travel 

distances was verified through several processes.  First, an eight-minute coverage region was established for each 

node using a map of the county depicting major traffic arteries.  Second, “test runs” were performed on established 

nodes using personal vehicles and travel with on-call ambulances.  Third, estimated travel distances for each node 

were refined and verified by EMS paramedics.   
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A sample of 14,130 EMS calls was used to determine the volume of demand in each node.  The sample was 

divided into three groups; total call volume, day shift call volume and night shift call volume.  The database included 

grid coordinates that were subsequently transformed to represent analysis zones.  The distribution of average daily 

calls reveals some variation in demand.  Despite these differences, the degree of variation did not warrant further 

partitioning of the data.  

 

We analyzed the variation in demand and ran the model using the demand during various time periods.  We 

compared the optimal allocations during different time periods and the optimal allocation using the average daily 

demand and noticed very little changes (in terms of coverage and optimal sites).  Ultimately city officials decided 

against the option of redistributing vehicles to alternative stations throughout the day in order to experience slight 

coverage improvement.   Thus the average daily volume of calls was used to represent node demand. 

 

The city managers set C (the maximum number of vehicles to allocate to a single node) equal to 2 and U (the 

maximum number of vehicles that should be available to a coverage region) equal to 4.   The local u i and Mi values 

were also computed using the appropriate formulas. 

 

In summary, the following procedure was followed to collect the appropriate data for our model:  

 

 Divide the service region into analysis zones; 

 Specify t, the target time to respond to a call; 

 Establish the coverage region for each zone, i.e., determine all zones that can be reached within S minutes 

from the respective zone, Ni; 

 Specify the number of facilities, F, and vehicles, E, to allocate; 

 Specify the set of potential facility locations, J; 

 Determine the daily demand for each zone (daily demand is sufficient if significant changes do not exist 

throughout the day), ai ; 

 Specify the maximum number of vehicles to allocate to a single node, C; 

 Specify maximum number of vehicles that should be available to a coverage region, U; 

 Compute ui for all zones; and 

 Compute Mi, using formulas. 

 

EXPERIMENTAL RESULTS 

 

Two LINGO programs were written to implement the MOFLEET and Modified MOFLEET model 

formulations, presented in the previous section.  We applied the Original and Modified MOFLEET Models to the 119 

node network discussed in the last section to explore the changes that our Modified Model and Local CVG formula 

introduce.  In order to have some measure of how well the underlying assumptions that govern these models perform, 

we first determined the MOFLEET and Local CVG values that the current vehicle sites provide.  The city currently 

has six vehicles sited at nodes 32, 34, 41(2 vehicles), 58, and 114.  Records indicate that 70% of the system’s demand 

is covered within 10 minutes, using these vehicle sites (This suggests that considerably less than 70% of the calls are 

covered within 8 minutes).  For these sites, MOFLEET CVG and Local CVG state that 74.5% and 46.3%, 

respectively, of the demand should be covered within 8 minute time period.  Thus our modified measure appears to 

give a more accurate portrayal of the actual coverage experienced by their system.    

 

Next, we ran the models for varying values of E and F, so that the corresponding levels of coverage could be 

assessed.  In varying these values, one can determine whether the cost of operating additional facilities and vehicles is 

worth the increase in coverage.  We expect these problems to reveal that our Modified MOFLEET model increases a 

system’s percent of demand covered, when local busy estimates are considered in calculating the system’s coverage 

percentage. Table 1 (Appendix B) displays the results of the Original MOFLEET model for varying numbers of 

facilities and vehicles.  We evaluated the allocations given by the MOFLEET model using the MOFLEET CVG and 

Local CVG measures, and displayed the results in the last two columns of the table.  Similarly, Table 2 (Appendix B) 

presents the results of the Modified MOFLEET model for varying numbers of facilities and vehicles.  Notice from 

these tables that when the MOFLEET CVG formula is used to evaluate the coverage that the two models give for 
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corresponding F and E values, the MOFLEET allocation gives higher coverage values.  Similarly, when the Local 

CVG formula (coverage formula using ui values) is used to evaluate both models, the Modified MOFLEET model 

gives the highest coverage values.  This result shows that the corresponding coverage formulas consistently evaluate 

the performance of the models.   

 

 Additionally, we observe that there is a large difference between the MOFLEET CVG and the Local CVG 

values for many of the instances presented on these tables.  Moreover, we realize that the difference between these 

values decrease as E increases.  This phenomenon suggests that MOFLEET’s concept of global u and M parameters, 

overestimates the % of covered demand for smaller values of E.  Our limited experience with the data of the City of 

Fayetteville supports the notion that the Local CVG values are closer to the observed values.  Hence, we believe that 

Local CVG is a more realistic measure to evaluate system coverage.  Therefore, based on the information presented in 

the tables, the Modified MOFLEET model is believed to be the better model because its Local CVG values are 

consistently higher than the optimal allocations given by the MOFLEET model.   

 

Although we appreciate the changes that our Modified Model introduces to our system, we wish to recognize 

that this model does not completely disregard the optimal sites given by the MOFLEET Model.  If drastic allocation 

changes existed for all problems, we would have been reluctant to quickly embrace and accept this new model.  

Instead, as presented on Tables 1 and 2, many of the optimal sites remain the same, or within the same vicinity. In 

fact, for F=8, E=8, the two models site 5 of 8 vehicles at the same locations, and for F=8, E=10, this fraction increases 

to 8 of 10 same location sites   In essence, the Modified Model retained many of the vehicle locations (or within close 

proximity) given by MOFLEET, and altered the others to better accommodate the dynamics of the city, introduced by 

the incorporation of local parameters.     

 

INTERPRETING MODEL RESULTS AND DECISION MAKING 

 

The analysis performed in the last section was conducted to exhibit how our Modified MOFLEET Model 

enhances the original model’s sensitivity to varying demand patterns across the city.  This analysis can provide city 

officials with the necessary information to determine how to increase the city’s percent of covered demand (within the 

8 minute time constraint). 

 

 An interesting fact that Table 2 (Appendix B) reveals is that locating vehicles at additional facilities is not 

always optimal.  This table shows for F=7, E=8 and F=8, E=8, the Modified model gives the same allocations.  This 

result indicates, that operating 8 facilities, with 8 vehicles, does not increase coverage.  Hence, if given 8 vehicles to 

allocate to the system, we should choose to operate only 7 facilities, with the 8 vehicles distributed among them, as 

given in Table 2.  Additionally, the table shows how increasing the number of vehicles for a fixed value of F impacts 

coverage.  Although the increase in coverage may appear minimal in some cases, we must remember that even if the 

addition of a vehicle to the system only increases coverage by 1.5%, during the course of a year this additional vehicle 

could affect approximately 230 calls.  Using the tables presented in the Appendix, the officials can select an allocation 

that increases the city’s coverage percentage, while optimizing the cost of achieving the desired level of coverage.  

 

CONCLUSIONS 

 

We have studied an approach for solving the Emergency Vehicle-Facility Location Problem using the 

MOFLEET mixed integer programming model with modifications.  This approach is applicable to all systems that aim 

to reduce their response time for answering demand, when the possibility of vehicle unavailability exists.  We 

provided detailed guidance for the data collection process required to implement such a model and obtain useful 

results.  Model results were interpreted and discussed to show their usefulness in making critical system design 

decisions.  The ultimate location-allocation decisions would depend upon the level of resources that the system 

employs upon considering all relevant costs.   

 

The city re-allocated the six vehicles employed by the system in accordance with the recommendations 

provided in the tables of this research.  Preliminary analysis shows some improvement in their average response time.  

Data is being collected to determine the actual percentage of calls covered within the eight minute target.  We are 
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reluctant to completely embrace the evaluation of coverage technique provided by Jayaraman and Srivastava [13] and 

modified in this research.  We recognize the need for a uniform assessment technique, such as a simulation, for 

evaluating and comparing optimal allocations from proposed techniques.  Future research will include sensitivity 

analysis on the parameter u to determine if small changes in estimating u will drastically alter optimal allocations.  In 

addition, simulation models will be created to evaluate and compare a variety of approaches to solving our problem.   
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APPENDIX A: The MOFLEET Model 

 

The following model is adopted from Bianchi and Church [1]: 

 

  )6(,,1,0

)5(0

)4(

)3(

)2(

)1(
1

:

1

1)1(

kandjiallFor
ik

yandjz

JjallforIntegerjx

JjallForjCzjx

Jj
Fjz

E
Jj

jx

JiallFor

iNj
M

M

k ik
yjx

toSubject

Ii

M

k ik
yiakuuMINIMIZE







 



 




 












 
 

where: 

z j otherwise

if there is a facility located at node j for j J
 0

1 

yik otherwise

if demand node i is not ered by k vehicles for i I k M




0

1 1cov , ...

 
   Ni   ={jεItij   S}  

    xj = the number of vehicles located at facility j  for  (jεJ) 

   ai   = the average daily demand for node i (i.e. the average daily number of calls received for  node i)   

   E  = the number of vehicles that need to be sited 

   S  = the maximum time period to answer a call 

   F   = the number of facilities to be sited 

   u  = the probability that a randomly selected vehicle will be unavailable 

  M   = the minimum number of vehicles needed to provide (100-β)% coverage  

  tij    = the time it takes to travel from node j to i 

   I    = the set of all demand nodes 

   J    = the set of potential facility sites   (JεI) 

   C = maximum number of vehicles permitted at any node 
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APPENDIX B: Model Results 

 

Table 1:  MOFLEET Model Results 

F E Optimal Vehicle Locations % of demand 

covered (MOFLEET 

CVG) 

% of demand 

covered (Local CVG) 

6 6 19, 26, 32, 34, 55, 57 81.54 53.595 

6 8 5, 26, 41, 41, 44, 44, 47, 94 87.879 73.869 

6 10 19, 19, 26, 34, 34, 54, 54, 57, 57, 94 90.804 82.277 

7 8 5, 26, 41, 41, 44, 44, 47, 94 87.879 73.869 

7 10 19, 19, 26, 34, 34, 54, 57, 57, 94, 101 92.137 83.463 

7 12 19, 19, 26, 26, 34, 34, 54, 54, 57, 57, 94, 101 93.81 88.07 

8 8 19, 26, 32, 34, 55, 57, 94, 101 89.049 73.89 

8 9 19, 19, 26, 34, 45, 55, 57, 94, 101 91.307 80.374 

8 10 5, 26, 31, 31, 47, 47, 55, 57, 94, 101 92.796 85.344 

8 11 19, 19, 26, 34, 34, 54, 57, 57, 63, 94, 101 93.812 86.83 

8 12 19, 19, 26, 34, 34, 54, 54, 57, 57 , 63, 94, 101 94.702 89.208 

8 13 19, 19, 26, 26, 34, 34, 54, 54, 57, 57, 63, 94, 101 95.31 90.566 

8 14 19, 19, 26, 26, 34, 34, 54, 54, 57, 57, 63, 94, 94, 101 95.704 91.528 

9 10 5, 26, 31, 31, 47,47, 55, 57, 94, 101 92.796 85.344 

9 12 19, 19, 26, 34, 34, 41, 57, 57, 63, 64, 94, 101 95.034 89.974 

9 14 13, 19, 19, 19, 26, 26, 45, 45, 55, 55, 63, 64, 94, 94, 101 96.143 92.174 

 

 

Table 2:  Modified MOFLEET Model Results 

F E Optimal vehicle locations % of demand 

covered (MOFLEET 

CVG) 

% of demand 

covered (Local CVG) 

6 6 31, 31, 34, 44, 55, 57 79.013 57.097 

6 8 26, 31, 31, 34, 44, 55, 57, 57 85.151 78.24 

6 10 5, 26, 31, 31, 45, 45, 55, 55, 70,70 89.332 85.602 

7 8 26, 31, 31, 34, 44, 55, 57, 94 87.49 78.575 

7 10 5, 26, 31, 31, 44, 44, 47, 55, 55, 94 91.114 88.034 

7 12 5, 5, 26, 31, 31, 47, 47, 55, 55, 57, 57, 94 92.918 90.771 

8 8 26, 31, 31, 34, 44, 55, 57, 94 87.49 78.575 

8 9 5, 26, 31, 31, 44, 47, 55, 57, 94 90.683 84.73 

8 10 5, 26, 31, 31, 44, 47, 55, 55, 57, 94 91.844 88.632 

8 11 5, 26, 31, 31, 44, 44, 47, 55, 55, 94, 101 93.427 91.342 

8 12 5, 26, 31, 31, 44, 44, 47, 55, 55, 94, 94, 101 94.255 92.747 

8 13 5, 5, 26, 31, 31, 47, 47, 55, 55, 57, 57, 94, 101 95.129 93.603 

8 14 5, 5, 26, 26, 31, 31, 47, 47, 55, 55, 57, 57, 94, 101 95.625 94.287 

9 10 5, 26, 31, 31, 44, 47, 55, 57, 94, 101 93.106 88.95 

9 12 5, 26, 31, 31, 44, 44, 47, 54, 54, 57, 94, 101 94.548 93.38 

9 14 5, 26, 26, 31, 31, 34, 34, 55, 55, 57, 57, 63, 94, 101 96.098 94.209 

 

 

 

 

 

 

 

 

 

 

 


