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Abstract

Pricing path-dependent American options is difficuli since the number of puaths
through a binomial iree grow exponentially with the number of binomial periods. In
practice even moderately sized trees of 20 to 25 periods can quickly exhaust available
memory on most computer systems. This paper describes a method that can be used
to price path dependent American style derivatives where the amount of memory
grows linearly, not exponentially, in the number of binomial periods. The method is
applied to pricing Asian options, fixed income derivatives based on the Heath-Jarrow-

Morton model, and corporate bonds.

1. Introduction

ricing American options on path-
p dependent derivatives is a difficult com-

putational problem. The model for the
underlying variable on which the option Is writ-
ten is typically based on a binomial tree, which
means that the number of possible paths through
the tree grows exponentially with the number of
time steps. Due to this exponential growth in the
number of paths through the tree, computer re-
sources can quickly be exhaustsd when pricing
American path-dependent derivatives. However,
the ability to price these securities is critical for
investment professionals. For example, as of the
fourth guarter of 1999 commercial banks had a
notional $35 trillion dollars of derivatives in
their portfolios, and 80%, or $28 irillion, were
interest rate derivatives'. Most of these interest
raie derivatives have American features, such as
callability or prepayment options, and one of the
most widely used models to price and hedge in-

Readers with comments or questions are encour-
aged to contact the author via email.

terest rate derivatives is the Heath, Jarrow and
Morton (1992) model, which exhibits path de-
pendence.

This paper describes an algorithm, based on
the depth-first search technique from graph the-
ory®, which can be used to value any path-
dependent American derivative security using
only one memory location for each time step in
the binomial tree*. While the computational time
still grows exponentially, the algorithm pre-
sented hete makes it possible to value American
path dependent derivatives using binomial trees
of arbitrary size with minimal amounts of com-
puter memory. This method provides a feasible
method to price these securities for both academ-
ics and practitioners. The algorithm is illustrated
using two common examples of path-dependent
American style derivatives, namely American
Asian options written on the arithmetic average
of the stock price, and American style fixed in-
come derivatives where the Heath-Jarrow-
Morton model is used to model the evolution of
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Morton model is used to model! the eyolution of
the forward rate curve. Applications of the algo-
rithm to pricing corporate bonds are also dis-
cussed,

If a derivative is path dependent, but Euro-
pean in nature, there often exist techniques that
can be used to obtain the exact or approximate
price of the derivative.. Take, for example, av-
erage price Asian options, where the option is
written on either the arithmetic or geometric av-
erage assel value. While a closed form solution
is available for European Asian options using a
geometric average (Turnbull & Wakeman
(1991)), this is not the case for the arithmetic av-
erage value. One can approximate the vale for
an arithmetic average European Asian option us-
ing an Edgeworth expansion {o approximate the
probability density function for the arithmetic
average (Turnbull & Wakeman (1991)). When
the price of a path-dependent European option
cannoi be obtained in closed-form or be ap-
proximated analytically, Monte-Carlo simulation
can be used to estimate the price of the option
(Boyle (1977), Kemna & Vorst (1990)).

While techniques such as Monte Carlo simu-
lation are often used by investment professionals
to price path-dependent European options, pric-
ing path-dependent American options is an even
more complex problem due to the early exercise
decision. Although there has been some recent
progress in using Monte-Carle simulation to
value American options (Brodie, Glassserman &
Jain (1997)), and using certain approximation
techniques for valuing American Asian options
(Hull & White (1993), Cho & Lee (1997)}, pric-
ing American path-dependent derivatives is still a
difficult problem facing academics and practitio-
ners alike.

The most common approach to pricing
American path-dependent options is fo use a dis-
crete-time approximation to the continuous-time
process followed by the underlying asset, and
employ standard dynamic programming tech-
niques to value the American option. To price
path dependent equity derivatives the binomial

approximation developed by Cox, Ross, &
Rubinstein (1979) and Rendleman and Barfter
{1979} is typically used. Using these approxima-
tions usually results in the mumber of paths
through the tree growing exponentially in the
number of binomial periods used*. To price in-
terest-rate derivatives based on a no-arbitrage
term structure model, some form of the Heath-
Jarrow-Morton (HIM} (1990, 1992) model is
usually employed. Since the forward rate vola-
tility in the HIM model can take very general
forms, the model usually results in path-
dependent discrete-time approximations’.

It is a common assumpticn that it is not fea-
sible to value American style path dependent de-
rivatives using binomial trees with many periods
due to the fact that there is not enough memory
to keep track of all possible paths through the
tree. For example, a T period American Asian
option would have 27 possible paths through the
tree. This means that a 30 period tree results in
2% = 1,073,741,824 paths.

Using the method presented in this paper, it
is possible {o value T period path dependent
American option using only &7 memory loca-
tions, where k is some small integer®. This re-
sults in a substantial savings in computer re-
sources, and allows many more time-steps to be
used when computing the price of path-
dependent derivatives. As a result of more time
steps in the binomial tree, derivative prices that
are closer to the continuous-time limit can be ob-
tained, enabling practitioners to get more accu-
rate prices and hedge parameters. The paper is
organized as follows. Section 2 describes the al-
gorithm in general terms. Section 3 applies the
results to the pricing of American Asian oplions,
interest rate derivatives based on the HIM
model, and corporate bonds. Section 4 con-
cludes the paper, and Section 5 provides sugges-
tions for future research.

2. Algorithm

2.1 Intuition

The key to the algorithm is that at each time
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only one floaling point memory location is
needed to store all information relevant to com-
puting the price of the derivative. Because of
this, one only needs a T x 1 array to compute the
price of a T period path-dependent derivative.
To understand why only one memory location is
needed at each time, consider figure 1. Let p(t,
5) denote the value of the underlying state vari-
able on which the option is written and 4(,
denote the value of the derivative security at time
t and state s. We want.to use information at time
t+1 and beyond to compute the value of the de-
rivative security at time #, state s, d(¢, ). To do
this we must first determine the value of the de-
rivative security at time ¢+ 1, state s (the "down"
state), and time £+ 1, state s+1 (the "up" state).
Given the derivative security values at time 7+1,
the value of the derivative security at time ¢ is
stmply the expected value under the risk-neutral
measure, discounted at the risk free rate.

After the value of the derivative 15 computed
at time 7+ 1, state s, it is stored in the memory
location allocated to time #+1, denoted by
m(t+1). Next, the vaiue of the derivative secu-
rity at time #+1, state s+1, d(t+1, s+1), is
computed. Once d(i+1, s+1) is computed, the
value of the derivative at time ¢ can be found by
discounting the expected value of the derivative
at time #+1 at the risk free rate of interest:

d(f,s)z(m:l(rﬂ,s +l)+(1—7r)d(7:+1,s)}

AT
e:

where r is the annual risk free rate, At is the
length of one binomial period, and v is the tisk-
adjusted probability of an np movement in the
underlying state variable.

The key to the algorithm is that after d(z, s5)
is computed, it is stored in memory location
m(t), freeing up m(z+1) to be used when com-
puting the next #+1 derivative security value, In
this fashion, only one memory location is needed
at each time step to compute the value of the de-
rivative security. As soen as enough information
is available at time #--1 to compute d(¢, 5), d(f,

5y is computed and stored in mf), which frees
m(t+ 1) for the next iteration. Because of this, at
most one memory location is occupied at each
time, and a 7 period path-dependent derivative
can be calculated using only T floating point
memory locations.

2.2 Details

To understand the details of the method,
consider the three-period path-dependent bino-
mial tree shown in figure 2. We want to value a
three-period American put option with strike
price X on the underlying path-dependent state
variable p(t, 5). Two of the more common state
variables, which lead to path-dependent pricing
problems, are the average stock price in the case
of Asian options and the price of a bond in the
case of the Heath-Jarrow-Morton stochastic
term-structure framework. Both of these cases
will be discussed later.

Beginning at time 3, the boundary condition
is imposed to value the put option in the upper-
most states: d(3, 7) = max(0, K - p(3, 7)), d(3,
6) = max(0, K - p(3, 6)). Using these values,
the price of the put option at time 2, state 3 ig
determined by discounting the risk-adjusted ex-
pected payoff at time 3 at the risk free rate, and
then imposing the early-exercise condition:

d(23)= ma{K - p(23), m(B,T)zSL;ﬂd(Sﬁ)J (1)

The value of the put option at time 2, (2, 3), is
then stored in memory location m(2) for future
use. Next, the value of the put option at time 2,
state 2, d(2, 2}, is computed from the discounted
expecied value at time 3 in a manner identical to
equation (1). Having just computed d(2, 2), the
value of the put option at time 1, state 1, d(1, 1),
is the larger of the exercise value X - p(1, 1), or
the expected payofl at time 2 using the risk-
adjusted probabilities discounted at the risk free
rate.

The value of the put d(1, 1) is stored in
memory location m(1) for later use. It is impor-
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tant to note that at this point memory location
m(1) is in use, but memory location #(2), which
used to contain the value d(2,3), is not needed
anymore and is free to be used for future compu-
tations.

To obtain the final price of the put, d(0, 0),
we have to find 4(1, 0). To accomplish this, we
begin, again, at the maturity of the option. The
value of the put at time 2, state 1, d(2, 1), is
computed from the boundary values in a manner
identical to equation (1), and is temporarily
stored in memory location m(2). The value of
the put at time 2, state 0, d(2, ) is similarly de-
termined from the boundary walues, and the
value of the put at time 1, state 0, d(1,0), is the
larger of the exercise value, K-p(1,0), or the ex-
pected value at time 2 discounted at the risk free
rate,

Finally, the present price of the put option is

fhe expected value at time 1 discounted at the
risk free raie, d(0, Q) =

[ﬂ:d a,1)+ (1r T )d(l,O)J |

A
P T

where the value d(1, 1) was previously stored in
m(1).

The key to this algorithm is the fact that the
computations are carried out in such a way that
only one memory location is needed for each
time step. This means that only a 100 x 1 float-
ing point array is needed to value a 100 period
American Asian option or other path dependent
derivative, even though 2 + 22+ ., + 2%+ 2'®
= 2% 2 nodes occur in the binomiai tree.

3. Applicability of Resulfs

While this algorithm can be used to price
any path-dependent derivative, the three broadest
classes of path-dependent derivatives that it may
be applied to are Asian options, interest rate op-
tions, and corporate debt aptions. Section 3.1
applies the method to arithmetic Asian options,

one of the simplest classes of derivatives that re-
sult in path-dependent laftices. Section 3.2 ap-
plies the method to interest rate options that are
priced using sophisticated Heath-Jarrow-Morton
type term-structure models. Last, Section 3.3
discusses how the method can be used to price
corporaie bond options.

3.1 Application to American Asian Options

In this section we apply the method to price
American Asian options based on an arithmetic
average stock price. Let w index each complete
path through the tree from time O to time 7. For
a T period tree, we(0, 1, 2,..., 27 -1). To use
notation consistent with figure 2 and the previous
section, let the state at time ¢ along path @,

s(t, ), be given by s(f,) = int ( ) and let

AT-%
v({¥, s(f,@)) denote the value of the stock at time ¢
along path @, Then the average stock price at
time ¢ in state s, p{, s(t,w)), is the undertying
state variable on which the option is written and
is defined as:

pso))= !t__z’:lv(f,s(r,w ). @

With the value of the underlying defined in (2),
we can value the American Asian oplion as de-
scribed in section 2.

As an example, assume that the underlying
stock currently has a value of $100, an annual
volatitity of ¢ = 20%, and that the annual con-
tinuously compounded riskless rate is » = 10%.
Say that we want to value a three-year American
Asian put option with a strike price of $100 us-
ing a three-period binomial model. In this case,
the up and down factors for the stock price

movement are =e‘/&§ = 1.2214 and d =
_g~lon
e o = (.8187, and the risk-adjusted prob-
—rAl
s e " —d
abilities arte 1 = ———— = 0.7114% and 1-%n
u—d

= (.28806.
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Figure 3 shows the evolution of the arithme-
tic average stock price (top number) and Asian
option price (bottom number) for the three-
period model.  There are a total of 8 paths
through the tree, we 0, 1,..., 7, and the num-
bers in parentheses represent the state indices,
s(f,a), along each path @. Beginning with the
boundary condition at time 3 in the lowest two
states (state O and 1}, it is optimal to exercise the
option when the average stock price is 67.93
{exercise value = 100 - 67.93 = 32.07), and
when the average stock price is 76.93 (exercise
value = 100 - 76.93 = 23.07). Using these
values, the option value at time 2, state 0, is ¢!
((r) (23.07) + (1-m)(32.07)) = 23.23. The
value of the option if exercised, however, is 100
- 74,45 = 25.55. This value (25.55), which
represents the value of the option at time 2 state
0, is saved in memory location m(2) for later
use. Using a similar calculation, it can be shown
that it is also optimal to exercise the option at
time 2, state 1, so the option is worth 9.06 in
this state. The value for the option at time 1,
state 0 can now be determined from the value of
the option at time 2, state 0 (25.55), which was
previously stored in memory location m{2), and
the value of the option at time 2, state 1 (9.006).
Specifically, the value for the option at time 1,
state 0 is $e®! ((m) (9.06) + (1-m)(25.55)) =
12.51. The value of the option if exercised,
however, is 100 - 81.87 == 18.13. The value for
the option at time 1, state 0, 18.13, is saved in
memory location m(1) for later use. Note that
memory location m(2) is now available for future
computations. Again, the way that memory lo-
cations are recycled means that the memory re-
quirements grow linearly, not exponentially, in
the tree size.

Using a similar algorithm, the option price
at time 1, state 1, is determined to be 0. This
value, along with the value of the option at time
1, state 0, which was previously saved in mem-
ory location m(1), can be used to determine the
option value at time 0: ™' ((m) (@) + (I-
m)(18.13)) = 4.73.

Table 1 shows the option values, mimber of
paths, and computational times for option pricing
problems from 3 to 30 periods. There are sev-
eral interesting points to note. First, as can be
seen from the table, while the mumber of paths
increases exponentially with the number of peri-
ods, the memory required only increases linearly
with the number of periods. Second, in this
case, it appears that models with 25 to 30 peri-
ods are needed to get an option price with an er-
ror of less than one cent. Implementing Ameri-
can-Asian pricing models of this scale using
regular techniques would not be possible on any
computer with less than 100 Million bytes of
memory, Last, and unfortunately, the computa-
tional time still increases exponentially with the
mumber of paths. Hence, while the algorithm
overcomes the memory constraint, processing
speed is still a limiting factor in implementing
very large models.

3.2 Application to Heath-Jarrow-Morton Term
Structure Models

Path-dependent option pricing problems not
only result from valuing Asian options, but also
from valuing interest rate derivatives using cer-
tain forms of the Heath-Jarrow-Morton (1990,
1992) model. In particular, HIM models where
the volatility of the forward rate is not constant
can lead to path-dependent options. While
European interest rate derivative securities can
be valued using Monte Carlo simulation, Ameri-
can style derivatives must be valved using dy-
namic programming and a discreie time ap-
proximation to the continuous time process.

Let the present time be ¢ = 0. Say we want
to value a call option, expiring at time Te, on a
coupon bond maturing at time 7%, where 0 < T:
< Tv. Let f be some time between the present
time, £ = (), and when the call opfion matures,
Te, ot 0 £t < T, and let B(t, T, 5) be the price
at time ¢, state 5 of a $1.00 par zero coupon bond
maturing at time 7. The Heath-Tarrow-Morton
model gives us the arbitrage free evelution of the
term structure between 0 and “T». At any time ¢
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Table 1
American Asian Option Valuation

This table shows the American Asian option values, based on an arithmetic average stock price, for binomial
tree sizes from 3 to 30 periods. The memory required is in terms of the number of double-precision floating-

point locations.

Number of Periods Number of Paths Memory Required Option Value
3 8 3 4.730
5 32 5 4.802
10 1,024 10 4,385
15 32,768 15 4.077
20 1,048,576 20 3.858
25 33,554,432 25 3.742
30 1,073,741,824 30 3.753

and state s(¢,m) there are two possible outcomes
for the state of the world at time 7 +1 - bond
prices can increase, the "up" state, or bond
prices can decrease, the "down" state. Given the
structure of the forward rate volatilities, o(t, T,
5}, one can use the HIM model to find the shape
of the term-structure in these "up" and "down
states". These resulis are given in appendix 1.
Since the forward rate volatilities can be state
and t{ime dependent, the sum of the forward
volatilities along a path consisting of an up move
followed by a down move will, in general, be
" different than & down move followed by an up
move, and the iree will not recombine.

To illustrate the method, we will use the
HIM muodel to value an American option on a
coupon bond. Given the initial term structure,
B0, T, 0), and the struciure of the forward rate
volatilities, o(t, T, s} for 0 < ¢+ < T < Tb, ome
can work forward through the tree and compute
the arbitrage-free evolution of the term structure.
Knowing the term structure at any time ¢ and
state s(¢, ®), the coupon bond can be valued.
This is necessary since the coupon bond, whose
price is denoted by p(z, s(¢,m)), is the asset on
which the option is written. To value the coupon
bond at time ¢ along path ®, we need to know
the amount and timing of the cash flows that the
bondholder receives. Let CF; denote the cash
flow that the bondholder receives at time j,
which may consist of coupon interest or coupon

interest plus principal. The value of the coupon
bond on which the option is written can then be
expressed as the present value of all future cash
flows,

pl.s(.0)= 3.CF B j,s(t,0)

j=tl

To see how the algorithm works with the
HIM model, consider an American call option
with a strike price of $100.00 expiring in 1.5
years written on a $100 par bond maturing in 2
years. The current term structure is flai, with an
annual spot rate of 2% per year, quoted as an
annual effective rate. To make the bond sell at
par, the semi-ammual coupon is set to $1.02%% .- 1
= 0.99505% of par. The volatility of the one-
period forward rate, o(z, T, §), is proportional to
the level of the forward rate, oft, T, §) = n(L,
B(t,T,s)

B, T+1,5)’

T,5)- Dwheref(r, T, 5) = and

T is set to 0.1.

Table 2 contains the price of the American
call option for tree sizes ranging from 3 to 21
periods. Though the number of paths through
the tree grow exponentizlly, the amount of
memory required to price the option only grows
linearly with the number of periods. As with the
Asian option, the computational time still grows




The Journal of Applied Business Research

Volume 17, Number 3

Table 2
Bond Option Values Using the Heath-Jarrow-Morton Model

This table shows the price, number of paths, and amount of memory for pricing a 1.5 year call option with a
strike of $100 on a 2 year $100 par bond paying a semi-annual coupon of $0.99505. The HIM model is used
to determine the arbitrage {ree term structure evolution. The memory required is in terms of the number of
double-precision floating point locations. For a T period model, one 1 x T array is needed to hold the for-
ward rate curve, one 1 x T array is needed to hold the vne-period riskless rate, and one 1 x T array is needed

to hold the option value.

Number of Periods Number of Paths Memaory Required Option Value
3 8 2x3 =6 0.11254
6 64 2%6 =12 0.54487
9 512 2%x9 =18 0.70554
12 4,096 2x12 =24 0.79121
15 32,768 2x15 =30 0.83866
18 262,144 2x18 =36 0.87325
21 2,097,152 2%x21 =42 0.89560

exponentially with the tree size. Pricing fixed
income derivatives using the HIM model is
slightly more complicated than pricing Asian op-
tions since at time ¢ along path w a 1 x T array is
needed to store the term structure. As the term
structure evolution is computed, this same array
can be used at each point along path . Because
of the need to keep track of the entire term struc-
ture, two 1 x T arrays are needed - one for the
term structure, and one to provide temporary
storage for the price of the derivative at time 7.
This is why the number of floating point loca-
tions required to compute the option value is
twice the number of time steps.

3.3 Application to Corporate Bond Options

Pricing corporate bonds options can be very
difficult, since one has io account for both inter-
est rate risk and risk to the firm's assets not due
to interest rate rigk (Amin and Jariow (1992)).
In the interest of space, an a detailed example
applying this to corporate debt has been omitted,
but the general procedure is straightforward and
is outlined here. In the case of corporate debt
options, such as a convertible bond, there are
two state variables, one accounting for interest
rate risk and one for non-interest rate risk. This
can result in very large lattices, since each state

would have four successors - (assets up, interest
rates up), (assets up, interest rates down), (as-
sets down, interest rates up), (assets down, in-
terest rates down). In this case, one could price
the derivative using three temporary floating
point memory locations for each time step.
Once the fourth value of the derivative is calcu-
lated at time ¢-1-1, the discounted expected value
can be taken, and the result stored in a memory
location at time ¢, freeing up the three temporary
memory locations at time #-+1 for future use.
Generally, if 5 state variables exists, each mod-
eled by a binomial process, then 7(2°1} memory
locations would be needed to price a derivative
based on a I"period tree,

4, Conclusion

Pricing path-dependent American options us-
ing discrete-time trees is difficult due io the
amount of computational resources required.
The algorithm presenied in this paper allows the
prices of these options to be computed using
very small amounts of memory, overcoming one
of the difficulties in obtaining accurate prices for
path-dependent derivatives.  Specifically, the
amount of memory required grows only linearly,
not exponentially, with the number of time-steps
in the binomial free. Given that the notional
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value of path dependent derivatives with Ameri-
can features held by banks is roughly twenty tril-
lion dollars, this is an important problem to prac-
titioners. The method is applied to pricing
American style Asian options, pricing options on
a coupon bond where the Heath-Jarrow-Morton
model is used to model the stochastic evolution
of the forward rate curve, and pricing corporate
bond options.

5. Suggestions for Future Research

While the algorithm presented in this paper
overcomes the memory constraint imposed by
pricing path-dependent derivatives with many bi-
nomial periods, the computational time required
still grows exponentially as the number of peri-
ods in the tree increases. PFuture pricing algo-
rithms may be able to significantly reduce the
computational time required by trying to identify
the early exercise boundary, within the context
of the discrete time approximation of the con-
tinuous time process. Once the early exercise
boundary is identified, pricing the option would
be a simple matter of using the risk-adjusted
probability measure to find expected payoff
along the early exercise boundary, and then dis-
count the expected payoff at the riskless rate.
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Larry Kochard. The author thanks the Mclntire
School of Commerce for financial support.  Ad-
dress all correspondence to Monroe Hall, Uni-
versity of Virginia, Charlottesville, VA 22901,
Phone: 804-924-4050, FAX: 804-924-7074, E-
Mail.: pjd9v@virginia.edu.

0. Endnotes

1. See the Office of the Comptroller, Currency
Bank Derivatives Report, Fourth Quarter
1999,

2. See Tarjan (1972) for an analysis of the
depth-first search technique, Baase (1988,
p. 172) provides a somewhat less technical
description.

3. Por a derivative written on a single state

variable, this algorithm requires locations
for a T period tree. The method can be eas-
ily extended to price derivatives written on s
state variables using only (I)2° - 1) mem-
ory location.

4. Hull and White (1993) show that to value
path-dependent options, one only has to
value the option for all possible values of the
path function at a given node in the tree.
For some path-dependent options, such as
lookback options, the mumber of possible
values for the path function dees not grow
too fast (exponentially) with the size of the
tree. This results in significant gains in
computational efficiency.

5. In the special case of the HIM model where
the forward rate volatilities are constant, the
HIM medel reduces to the HO-Lee model
(1986). In this case, the discrete-time ap-
proximation is not path-dependent.

6. For the applications illustrated in this paper,
k<2, i

7. Jarrow (1996) provides a very accessible
derivation of the HIM model.
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Let At be the length of one binomial period, and o(z, T, §) be the volatility, at time t, of the forward
rate realized at time 741 that is in effect between T and 74-1. The HIM model shows that the shape of
the term structure at time #+1 if bond prices increase is given by:

B(t +1, T, s¢+1,0)) =

B({t,t+1,5(t,w))

B, T, s(t,0)) [cosh( Tz_l‘o'(t, j, st o)A )

J=t+l

| o] ot stonir|

j=t

and the shape of the term strocture at time $t+ 13 if bond prices decrease is given by:

B(+1, T, s¢t+1,0)) =

B(,T,s(t,0)) |:cosh( gg(t, j,s(t,GJ))m

Blt,t+1,5(t,0))

j=t+l

]_l

o] St

J=rH

Since o(f, T, 5} can be time and state dependent, the sum of the forward volatilities along a path
consisting of an up move followed by a down move will, in general, be different than a down move fol-
lowed by an up move, and the tree will not recombine’.
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Figure 1
Notation Used for One-Period Binomial Model

plt+1,5+1)
plts)

p(r +1,.S‘)
Time: f

One period binomial model. p{f, §) denotes the price of the state variable
on which the option is written at time ¢ and state s.

Figure 2
Three-Period Non-Recombining Binomial Tree

@, 7}
p3,6)

it /
p(1, 1)
\ PG, 5)
p2,2)
PG, 4
p©0,0)
3. 3)
P2, 1) <
/ PG, 2)
p(1, 0)
\ PG, 1)
P, 0)<:
p@3,0)
Time: 0 1 2 3

A three period non-recombining binomial tree. There are 2' states at each time . At each time ¢ and state s, the
value of the underlying state variable on which the option is written is denoted by p(r, §). Time is labeled at the
botiom of the figure.

10



The Journal of Applied Business Research Volume 17, Number 3

Figure 3
Evolution of Arithmetic-Average Stock Price
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This figure shows the evolution of the arithmetic average stock price for a three-period model. At each node, the
number in parentheses is the node number, the number in the first row is the arithmetic average stock price as of
that node, and the number in the bottom row is the value of the American Asian option at that node. A *** indi-
cates that early exercise of the option is optimal.
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