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Abstract

Auditors often use statistical sampling techniques to test controls. Dhavale (1991) pre-
sents a new Sstatistical technique based on the negative binomial distribution for this
purpose. This article examines in detail the properties of the new method. The article
also provides the computational details necessary to apply the new method. The article
concludes that the new method may be useful to auditors in some circumstances.

Introduction

uditors commonly use statistical sam-
A pling methods to test controls while

performing a financial statement audit.
The most commonly used method for this pur-
pose is to evaluate a simple random sample using
the binomial distribution. Dhavale (1991) pres-
ents a new method for this purpose based upon
evaluating a cluster sample using the negative bi-
nomial distribution. This article examines the
computational details and properties of this
negative binomial method (NBM) from the per-
spective of established statistical sampling princi-
ples.

Statistical Sampling

Statistical sampling methods involve two
steps: (1) the selection of the sample and (2) the
evaluation of the sample. Dhavale (1991) consid-
ers the use of three different sample selection
methods for tests of controls. In simple random
sampling every item in the population has an
equal chance of being included in the sample.
The sample items are selected independently

from each other. In stratified random sampling
the population is divided into groups called strata
and each item within a strata has an equal chance
of being included in the sample. Items in differ-
ent strata will have a different probability of be-
ing included in the sample. A stratified sampling
plan ensures that a predetermined number of
items are included in the sample from each
strata. In cluster sampling items in a population
are divided into groups called clusters. A simple
random sample of clusters is then taken and
every item in the cluster is included in the sam-
ple.! Cochran (1977) provides a very compre-
hensive discussion of these sample selection
methods and Arkin (1984) discusses the methods
from an auditing perspective.

Sample evaluation procedures are de-
signed to be used with particular sample selection
procedures. A sample evaluation procedure
should not be used with a selection procedure for
which it was not designed. This is because clas-
sical statistical inference is based on sampling
distributions. A sampling distribution is a prob-
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ability distribution for observing different sample
outcomes in repeated samples taken from a par-
ticular population. The probability of a particu-
lar sample outcome will depend upon the sam-
pling procedure used. Different sample selection
methods usually will not have the same sampling
distribution. It cannot, therefore, be expected
that a sample evaluation method that is used with
a particular sample selection method will work
with another sample selection method. For ex-
ample, a sample evaluation method based on
simple random sampling should not be used with
a stratified random sample or a cluster sample.>

Sampling With a Variable Error Rate

Dhavale (1991) takes the position that
cluster sampling allows for the calculation of
more accurate bounds on the error rate in a
population than simple or stratified random sam-
pling when the error rate varies between clusters.
It is true that cluster samples will provide a better
estimate of variability of the population error rate
between clusters than either simple or stratified
random samples (Dhavale 1991, footnote 4).
However, it is incorrect to assert that an accurate
estimate of the variability between clusters is
necessary to accurately put an upper bound on
the error rate in the population.

The variability between clusters is a
characteristic of the population and not necessar-
ily of the sampling distribution. For simple and
stratified random sampling the variability be-
tween the clusters has no effect whatsoever on
the sampling distribution of the number of errors
included in a sample. In simple random sam-
pling the sampling distribution is completely de-
termined by the number of errors in the popula-
tion. The order in which the errors occur in the
population makes no difference because the sam-
ple is selected at random. If sampling is with re-
placement the binomial distribution provides an
exact model of this sampling distribution and can
be used to accurately calculate an upper confi-
dence bound on the error rate in a population.’?
If sampling is without replacement the hyper-
geometric distribution provides an exact model
for the sampling distribution and the binomial

will provide a close approximation.*

Under stratified random sampling the
sampling distribution is determined completely
by the number of errors in each strata in the
population. Variability between clusters within
each strata is irrelevant to the sampling distribu-
tion. Wendell and Schmee (1996) provide an
exact method for evaluating stratified samples.

For the above reasons, it is not neces-
sary to use cluster sampling when there is a vari-
able error rate in order to achieve accurate
bounds. However, there are many good reasons
why an auditor would want to use cluster sam-
pling for tests of controls in some cases. Here
are just a few, see Cochran (1977) and Arkin
(1984) for others: (1) The sampling frame may
not allow easy selection of a simple or stratified
random sample. (2) Cluster sampling may cost
much less per unit to sample. This can make
cluster sampling more efficient even though it
often requires larger sample sizes. (3) The vari-
ability of the error rate may be of interest to the
auditor. Widely fluctuating error rates between
clusters of transactions could indicate fraud or
other serious problems with the accounting sys-
tem. This fluctuation in error rate could be
missed with a simple or stratified random sam-
ple.

The standard methods for evaluating
cluster samples for tests of controls rely on a
normal approximation (Cochran 1977) that may
not be reliable with the small error rates and
moderate sample sizes encountered in auditing.
The NBM is an alternative to the standard meth-
ods.

How to Calculate the NBM Bounds

Dhavale (1991) does not provide the de-
tails necessary to calculate the NBM bounds.
The method that is presented here is based on the
method used by the software provided to us by
Dhavale (Dhavale 1991, footnote 6). This
method calculates bounds that agree with the
bounds presented in the tables of Dhavale
(1991).
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The NBM calculated an upper bound (when a
bound could be calculated) that was greater than
or equal to the population error rate 81.8%,
93.3%, 96.7%, and 100% of the time at a nomi-
nal confidence level of 80%, 90%, 95% and
99% respectively. This indicates that the NBM is
slightly conservative at these confidence levels.
Many more simulations at different values of m
and a and different sample and cluster sizes must
be done before the properties of the NBM bound
can be considered to be well known when the
population has a compound Poisson distribution.
Simulations also need to be done with other plau-
sible distributions to determine to what extent the
NBM is robust to deviations of the population
from the compound Poisson distribution.

Other Considerations for Using the NBM
Counterintuitive Behavior

The upper bound on the error rate cal-
culated using the NBM can decrease as addi-
tional errors are found in the sample and increase
when fewer errors are found. This counterintui-
tive property of the NBM is possible because the
calculation of the bound depends upon both
and d. In some cases a change in d will result in
a larger bound even when m decreases. For ex-
ample, consider the following scenario: (1) The
tolerable rate of non-compliance is 10%; (2)
The planned risk for overreliance on controls is
5%; (3) A sample of 25 clusters of ten vouchers
each is tested for compliance with the following
result: (3a) 23 clusters contain vouchers in com-
pliance with controls; (3b) One cluster contains
six vouchers in non-compliance; and (3c) One
cluster has nine vouchers in compliance and one
voucher that was not tested for compliance be-
cause the client was unable to locate it. In accor-
dance with AU § 350.40 (AICPA, 1996) the
missing voucher is considered in non-
compliance.

The upper bound for this sample using
the NBM is an error rate of 8.8%. On the basis
of this bound the auditor decides to rely on inter-
nal controls and reduces substantive testing. Sev-
eral weeks later the client finds the voucher be-

hind a file cabinet drawer and gives it to the
auditor. The voucher is found to be in compli-
ance. The upper bound using the NBM is now
10.4% and the auditor can no longer rely on the
controls. The auditor is now faced with having to
tell the client that substantive testing will have to
be increased because the voucher was found to
be in compliance with controls.

Sample Size

The NBM requires a larger sample size
than simple random sampling. The NBM may
still be more efficient if the cost per unit for the
cluster sample is low enough; but, in situations
where the per unit sampling cost is similar for all
sampling plans other methods are probably more
efficient.

Dhavale (1991, footnote 5) advocates
determining the sample size given the cluster size
by first estimating 7 and a and then calculating
the sample size using a formula based on a nor-
mal approximation to the negative binomial. The
normal approximation is not necessary. Instead,
equation 4 can be used directly to determine N.
Consider the following example: (1) The
planned risk of overreliance is 10%; (2) The
tolerable rate of non-compliance is 10%; (3)
The cluster size is 10 and the auditor expects that
the actual error rate is 5%. This results in a
value for 7, of .5 (10 X .05); and (4) Based on
past experience or a pilot sample 4 is set to 0.3.

Under these circumstances X/NK in
equation (4) will be lower than 10% only when N
217. This makes the required sample size 170
(17 X 10). In contrast, the binomial sample size
(for a simple random sample) under the same
conditions is 80 (Guy and Carmichael 1986, Ta-
ble 1, page 52). The NBM would be cost effec-
tive in these circumstances if the cost of auditing
one item in a cluster was less than 47% (80 +
170) of the cost of auditing one item in the sim-
ple random sample.

Equal Cluster Size

The NBM method as formulated can
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that have a solve function. It can also be solved
with many scientific calculators that have a solve
function. It can also be solved reasonably quickly
by hand using trial and error methods. A good
first guess for 4 is

G=-"" ()

In the example, equation (8) gives an
initial estimate of @ of approximately 0.25. Sub-
stituting 0.25 for x in equation (7) yields a value
of -1.327. A negative value indicates that the es-
timate was too high so a lower estimate would be
tried next, perhaps 0.125. This gives a value of
6.774, indicating that 0.125 is too small. It is
now known that 4 is between 0.125 and 0.25.
By repeating this process @ will eventually be
found to be 0.2305.°

Step 3 - Calculate the bound from 7, @, N, and
K using the following substeps:

Sub-step a - Find the minimum positive integer
value of X for which equation (4a) holds. This
can be easily done by starting with X = 0 and
increasing X one integer at a time until the first
value of X for which the inequality holds is
found. In the example with X = 18 the calcu-
lated risk is 0.052 and with X = 19 it is 0.038,
so 19 is the minimum value for X for which the
inequality holds.

Sub-step b - Finally, substitute X, N, and K into
equation (4). For the example, this yields 19/(40
X 10) = 0.0475. This agrees with the bound
given in Dhavale (1991, Table 3).

End Notes

1 In multi-stage sampling a simple random
sample of items in a cluster is included in
the sample instead of all of the items in a
cluster.

2 To illustrate, consider this example: in a
population of invoices there are 100
batches (clusters) of 20 invoices each, a
total of 2,000 invoices. Four clusters have
incorrect extensions, i.e. each invoice in

four clusters is in error, all other clusters
are correctly extended. The population er-
ror rate is 4%, which is also the cluster er-
ror rate. The auditor selects at random
without replacement four clusters (80 in-
voices). There is an 85% chance that the
sample will not contain an error. The bi-
nomial upper bound for a simple random
sample of 80 and a confidence level of
95% is 3.7%. Thus, the 95% upper bound
will provide coverage 15% of the time, i.e.
it is actually a 15% confidence bound and
not a 95% bound.

3 Sampling with replacement means that an
item in the population can be included in a
sample more than once. Sampling without
replacement means that an item in the
population can only be included in a sam-
ple once.

4 See Arkin (1984) for a detailed discussion
of the appropriateness of the binomial as an

- approximation to the hypergeometric when
sampling without replacement with various
population and sample sizes.

5 There are more efficient search strategies
than merely guessing. For a detailed dis-
cussion of various iterative methods that
could be applied to this problem see Traub
(1982).
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