Journal of Applied Business Research

Volume 9, Number 2

Software Economics:
An Application of Price Theory
to the Development of
Expert Systems

Dr. J. R. Clark, Hendrix Professor of Economics, The University of Tennessee at Martin
Dr. Leon S. Levy, Distinguished Member of the Technical Staff, AT&T Bell Laboratories

Abstract

"Expert Systems" in computer software appear to offer a potential for increases in project

productivity in the range of Orders of Magnitude.

This paper offers a software development

model illustrating not only the optimal allocation of project resources between tool making and
tool application but also appropriate investment in the project and several means of dealing with
project risk. The model illustrates that much more benefit is to be derived from extending the
domain of applicability of expert systems than from increasing the productivity gains of those

techniques.
alternative scheduling.

Introduction

Within the last ten years, the production of knowledge
intensive software as exemplified by "Expert Systems"
has effected very large increases in productivity. The
development of these systems appears to offer a poten-
tial for increases in application productivity in the range
of orders of magnitude. Since these systems depend on
the knowledge of experts who are typically not program-
mers, there is a need for computer programs that can
help the expert to write computer programs. The expert
describes the domain knowledge in a notation suitable
to the domain. Concurrently, a translator program is
developed to transform the expert’s notation into a
working program. Software development using this
paradigm can be quite efficient as demonstrated by Levy
and Stump (1985) and Levy (1987). Traditionally,
software engineers have used software costing models
which extrapolate future costs from historical data but
have not yet begun to seriously apply the discipline of
managerial economics to software project management.
Their models produce inconsistent results and fail to
deal with optimal allocation of project resources as
illustrated by Mohanty (1981, pp. 103-121).

It is the intent of this paper to offer a software
development model which illustrates not only the
optimal allocation of project resources between tool
making and tool application but also considers appropri-
ate investment in the project and several means of
dealing with project risk. The model illustrates this
approach by analyzing software as a production process

14

We also find that it is possible to compensate for a more risky approach by

not unlike the production of automobiles, for example.
Initially, a prototype model is built, and "road tested".
Then, the production line is tooled up, and the products
are turned out with lower production costs according to
Gwartney, Stroup, and Clark (1985). While this meta-
phor has the usual shortcoming of metaphors, it does
suggest a means of analysis amenable to the tools of
managerial economics. The model and its analysis
provides insight into the problems of software productiv-
ity and the need for a comprehensive approach rather
than piecemeal attacks on parts of the problem.

The Problem

"Expert systems" are now very large systems dealing
with complex problems. In order to build and maintain
such large systems, we need both a new technology and
an understanding of that technology according to Levy
(1987), Brooks (1975), and Balzer, Cheatham, and
Green (1983, pp. 39-45). The problem can be seen in its
starkest form when software productivity is contrasted
with the increases in performance for a given cost (the
so-called cost-performance figure of merit) that have
been achieved in hardware. Conservative estimates of
computer (hardware) performance show an increase in
cost-performance of a factor of 2 every two years, a rate
that has been unabated for almost two decades and
appears to be accelerating. To maintain a constant ratio
of hardware-to- software costs, software productivity
should increase at a comparable rate. The required

Journal of Applied Business Research

Volume 9, Number 2

increase in software productivity over the next decade
would be a factor of at least 30.

Typical industry figures for the production of software
range from 2,000 to 5,000 lines of code per staff-year.
Scaling this up by the factor of 30 would require pro-
grammer productivities in the range of the equivalent of

100,000 lines of code. (Note that, in fact, the problem

is considerably more severe since the complexity of
programs increases superlinearly.) Thus, the increasing
of software productivity to achieve a rate comparable to
hardware productivity requires what we call ultra-high-
programmer productivity (UHPP) techniques.

The root cause of the lagging software productivity is
that software development is a labor intensive activity.
Indeed, the software industry has often been described
as a cottage industry. (The relative increases in software
costs can thus be seen as analogous to rising costs in
university tuitions and medical care, both of which are
also labor intensive.) The most promising approach to
achieving UHPP is through the mechanization of the
software development process. The feasibility of such
an approach has been documented in many places, e.g.,
Levy and Stump (1985) and Levy (1987). It has also
given rise to a segment of the software industry that
develops CASE tools for Computer Assisted Software
Engineering.

However, using automated tools to increase productiv-
ity is not, in itself, sufficient. What is required is a
major paradigm shift so that the whole of software
development be viewed as a production process and
subjected to the discipline of managerial economics to
optimize the allocation and use of the factors of produc-
tion. Software economics should not be merely the
extrapolation of previous cost - a very inconsistent
predictor as illustrated in Mohanty (1981, pp. 103-121) -
but a means of assessing the most efficient way of
producing software.

The Model

We assume that some ultra-highly productive software
methodology, m, is used which is applicable to some
fraction, k, of the overall software to be developed.
Where this methodology is applicable, it reduces the
overall software costs by a factor, g. The remaining
software, 1-k, is developed as usual. P, the overall
productivity gain from the use of m, is defined as:

EQL.1 =El / E2
where El is the effort required to produce software
without m, and E2 is the effort required to produce

software using m. Since we are interested in only the
ratio of E1/E2, we can normalize and set E1 = 1, then:

15

EQL.2 E2 = (k/g) + 1-k

Since P is a function of k and g then:

EQL.3 P(k,g) = 1/((k/g)+1-k) = g/ (kH(1-k)g)

we are immediately interested in two cases:

Lim P ==>g

k=1 /

so that as m becomes applicable to all the software, the
value of P is asymtotic to g

EQl.4a

EQl.4b and Lim P ==> 1/1-k

g ===

so that as g becomes unbounded, P approaches a
constant. Very high productivities, g, applied even to
large portions of the software can be seen from equation
(1.4b) to have apparently moderate effects on overall
productivity (P). For example, if k = 2/3 and g =
infinity, which is the case of using unlimited productivity
gains on 2/3 of the software, the overall productivity
increases by a factor of only 3.

Model Dynamics

Consider changes in overall productivity arising from
changes in g and k.

EQL.5 dP = ((dP/dk)dk) + ((dP/dg)dg)

Using EQ1.3 and simplifying we get:

EQlL.5a dp/dg = (k/g2)p?

(Note to the reader: The small letter d denotes the
partial derivative symbol, thus dP/dk denotes the change
in overall productivity with respect to the change in the
domain of applicability k.)

EQL.5b dP/dk = (1-(1/g))P2

the ratio of EQ1.5a and EQ1.5b is

EQl.5¢c (dP/dk)/(dp/dg) = <g2(1-(1/g))>/k
From this, it is easy to see that the effect of changes in
k, the domain of applicability of the ultra-high produc-
tivity technique, is much greater than the effect of
changes in g (i.e., the cost reduction factor). Equation
1.5 illustrates that much more benefit is to be derived
from extending the domain of applicability of expert
systems than from increasing the productivity gains of
those techniques.

The Effects of Doubling the Cost Savings Factor g:
If we let Pn denote the increase in productivity obtained

Journal of Applied Business Research

Volume 9, Number 2

from increasing g by a factor of n while we hold K
constant: then, if n=2:

VEQl.é 'P,2 = (P,(k,Zg)/(P(k,g") = (1-k+(k/g))/<1-k+(k/2g)>
or

EQL.6' 1+ (k/(2(1-k)g) + 0(k/g2)

from this we can see that doubling g has relatively small
effects on productivity. If we increase g by a factor of

2 while we hold k constant, productivity increases by
1.091.

The Effect of Extending the Domain of Applicability:
We can recall that k is the portion of the total software
to be developed to which an ultra- highly productive
software methodology (m) can be applied. Here, we
examine the relative gains to be enjoyed by extending
the domain of applicability for our methodology as
compared to simply increasing the productivity of our
methodology, itself. If we let r = 1-k represent the
portion of the total software to be developed by conven-
tional programmer productivities, then:

EQl.7 plx,g) = 1/<((1-v)/(g))+r>.
If we let Pm denote the change in productivity obtained
from reducing r by a factor of 1/m while holding g
constant, we find for example:

EQL.8 P,.5 = ((1-r)/g);r)/<('1-’("r/2)/g) + (x/2)>

or

EQL.8!' P,.5 = 2%{1 - <1/(2+r*(g-1))>}

In other words, extending the domain of applicability of
m, using the same relative values as we did in our
example illustrating the effects of increasing g above, we
find that productivity increases by a factor of 1.60.
From the two above examples, it is easy to see that
increasing the domain of applicability of our methodolo-
gy, yields much greater increases in productivity than
simply increasing the productivity of our methodology
itself, i.e., gains of 1.091 for the former as compared to
gains of 1.69 for the latter.

Investing in the Project: We assume that during the
development phase, a total of n units of resources are to
be expended on the project. Of these, nl are to be
initially invested in software tools and techniques for
increasing productivity. The remaining n-n1 units will
be used to directly produce the object code to be
delivered by the project. Let f(nl) be the rate of
production of object code. Then f(nl) can be expected
to be a monotonic increasing function of nl, since
additional investment in productivity tools should never

decrease productivity.

We can therefore determine nl which will maximize
the total object code for a given fixed project budget, n.
The total object code C, is given by

EQL.9 C = (n-nl) f(n15

EQl.%a C

nf(nl) - nlf(nl) ,

To maximize C, we differentiate C with respect to nl
and set the derivative equal to 0.

EQL.10 dC/dnl = (d/dnl) (n£(nl) - nlf(nl))

Then, if df/dnl is defined as f'(nl), we have

 EQL:1l n-nl = £(nl1)/f'(nl)
EQl.lla nl =n - (£(nl1))/(£'(nl)
EQL.12 nl/n =1 - <(£(nl1))/(nf'(al))>

Linear Growth in Productivity: We can trace out the
effects of growth in productivity for linear, quadratic,
and exponential rates. Linear growth in productivity can
be represented by:

EQL.13 £(nl) = £0 + knl

where f0 is the initial lines of code/staff year, n is staff
years, and Kk is lines of code/staff year/year. If the
number of staff years of effort, N needed to produce the
tools and techniques to double productivity is known,
then EQ1.13 can be rewritten as:

EQl.14; 2f0 = £O + kN, and then the constant k is determined

16

by K= £O/N. |
Mlax:imum‘ oufput is obtained by choosing:
EQL.15 ‘nl = max.'(;>:<(n/2) - (£0/2k)>) -‘i
Where n1 > 0, we have:
EQL.16 nl/n = <(1/2) - (£0/2kn)>

Here, we see that somewhat less than 50% of project

_resources should be expended to increase productivity to

maximize total project output. Note also that, in the
limit, when n is large, the ratio to be spent on increasing
productivity should approach 50% independent of k.!

Quadratic Growth in Productivity: We can illustrate
the effects of quadratic growth in productivity by the
equation:

Journal of Applied Business Research

Volume 9, Number 2

EQL.17 £(nl) = £0 + (kn12)

we maximize output where:

EQ1.18 nl = ((2n/3) - (£0/3knl)

so that as n grows larger, nl approaches 2n/3, again
independent of k.

Exponential Growth in Productivity: We can illustrate
the effects of exponential growth in productivity by the
equation:

EQL.19 £(nl) = foernl

If we differentiate EQ1.19 above, we find that

EQl.19a (df(n1)/dnl = £0re™! = rf(nl)
Using the basic equation to maximize output, we see
that

EQ1.20 nl =n - (1/r)

Remember that the parameter r has the dimension of
staff years * - 1, and that 1/r is the number of staff years
to double productivity divided by the natural logarithm
of 2. Also, that almost all of that time is spent on
productivity enhancement, except for the interval 1/r
when the actual software product is generated.

Risk

Thus far, we have considered a tool-making phase
followed by a tool-application phase in production and
partitioned project resources accordingly. In this two-
phase method, tool application requires that tool-making
be completed in sufficient time to allow for tool applica-
tion and production of final product. It would be less
than satisfactory on project completion date to notify a
major software buyer that although the compiler pro-
gram they ordered is not complete, a compiler - compil-
er now exists. Accordingly, the two-phase-production
method is an all or nothing situation which exhibits
significant risk. This risk can however be managed in
the following way:

Let us define a probability distribution (R(t), which
denotes the probability that the project is completed
satisfactorily by time t. We assume the following:

EQl.2la R(t) = 0 for t < t0

where t0 is the earliest possible completion date for the
project and:

EQl.21b R(t) = 1 as t becomes large,

17

as t becomes large, and R(t) is monotonically increasing.
In comparing two approaches to software development,
we may denote the risk of project i as Ri and the
earliest possible completion date as ti. If the form of
R(t) is known for the two approaches and ti is known
for one of the approaches, then it is possible to deter-
mine what value of ti should be chosen for the other
project to achieve the same level of risk at any specified
point in time.

Using this analysis, the riskier the method chosen to
develop a program, the earlier its scheduled completion
date must be, because its risk distribution converges
more slowly. The important point here is that it is
possible to compensate for a more risky approach by
alternative scheduling.

Results

The effect of changes in the domain of applicability of
the ultra-high productivity techniques is much greater
than the effect of changes in the cost reduction factor.
From the two previous examples, it is easy to see that
increasing the domain of applicability of our methodolo-
gy yields much greater increases in productivity than
simply increasing the productivity of our methodology
itself, i.e., gains of 1.091 for the former as compared to
gains of 1.69 for the latter.

When considering project investment with linear
growth in productivity, somewhat less than 1/2 of project
resources should be expended to increase productivity in
order to maximize total project output. With quadratic
productivity growth, the fraction grows to 2/3, and with
exponential productivity increases, the vast majority of
project resources would be allocated to productivity
enhancements. In addition, the riskier the method
chosen to develop a program, the earlier its scheduled
completion date must be, because its risk distribution
converges more slowly. It is therefore possible to
compensate for a more risky approach by alternative
scheduling.

Suggestions for Future Research

The metaprogramming paradigm is based on the
development of a knowledge base in a domain notation
concurrently with a program development system
customized to that notation. Alternate approaches to
the software productivity problem are predicated on the
evolution of sets of domain specific modules that can be
reused without reprogramming. The primary technology
involved is object-oriented programming. Both ap-
proaches require a redistribution of resources during
program development. However, metaprogramming is
focused on the production machinery while object-
oriented programming concentrates on the subassem-
blies. To use an analogy, the metaprogramming ap-

Journal of Applied Business Research

Volume 9, Number 2

proach is like a fully automated factory, while the
object-oriented approach concentrates on the assembly
from interchangeable standard parts. It would be useful
if one could characterize the relative merits of the two
approaches, even though they are clearly not mutually
exclusive.

The application of price theory to software develop-
ment offers the promise of approximating the optimum
scale of plant with the project’s first iteration. Future
research might well benefit from applying the generic
economic tools illustrated here in other software devel-
opment areas. 1 ¥

stk Footnotestestest

1. From EQ1.16, we see that k = fO/n is a lower
bound on productivity enhancement. Only when k
is greater than fO/n is the investment in productivity
enhancement justified. As might be expected, this
is inversely proportional to n, the project duration.
Longer projects give greater opportunity to amortize
investment.

etk References sty

1. Balzer, R, T. E. Cheatham, Jr. and C. Green,
"Software Technology in the 1990’s: Using a New
Paradigm," IEEE Computer, Vol. 16, No. 11, pp. 39-
45, November, 1983.

2. Brooks, F.P., Jr., The Mythical Man-month, Addison
Wesley, Workingham, UK, 1975.

3. Gwartney, J. D., R. Stroup, and J. R. Clark, Essen-
tials of Economics, Academic Press, New York, NY,
USA, 1985.

4. Levy, L. S., Taming the Tiger: Software Engineering
and Software Economics, Springer-Verlag, Berlin,
FRG, 1987.

5. Levy, L. S. and H. T. Stump, "Inverted Decision
Tables and Their Application: Automating the
Translation of Specifications to Programs,” Bell
Laboratories Technical Journal, February, 1985.

6. Mohanty, Siba N., "Software Cost Estimation:
Present and Future," Sofiware Practice and Experi-
ence, Vol. 11, pp. 103-121, 1981.

18

