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Abstract

Several regression and Box-Jenkins models were used to forecast weekly sales at a
small campus restaurant for Years 1 and 2. Forecasted sales were compared with
actual sales to select the three most promising forecasting models. These three models
were then used to forecast sales for the first 44 weeks of Year 3, and compared against
actual sales. The results indicate that a multiple regression model with two predictors,
a dummy variable and sales lagged one week, was the best forecasting model consid-

ered.

Introduction

The author and the restaurant manager were interested
in forecasting weekly sales of a small restaurant near
Marquette University in Milwaukee, Wisconsin. The
author decided to employ regression and Box-Jenkins
analysis. The restaurant compiled the previous week’s
sales every Monday morning. We began our analysis by
obtaining weekly sales data from the week ending January
4, Year 1 through the week ending December 26, Year 2,
a total of 104 observations. (At the restaurant manager’s
request, the author has disguised the years for which the
weekly sales data were obtained). The mean weekly sales
for these 104 weeks turned out to be $4862.

Figure 1 is a graph of the weekly sales over time. The
graph indicates that weekly sales are quite volatile, rang-
ing from $1870 to $7548, with very little trend.
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At the time this study was begun, the manager was
forecasting the current week’s sales as equal to the previ-
ous week’s sales. The manager was dissatisfied with the
accuracy of this “naive” forecasting method. Thus he was
quite willing to consider more sophisticated forecasting
methods.

Regression Analysis

We tested three predictors. The first predictor was
time. The second predictor was a dummy variable indicat-
ing whether or not Marquette University was in full ses-
sion that week ( 0 means not in full session, 1 means in
full session). Examination of the sales data revealed that
weekly sales always dropped when Marquette was not in
full session; namely, during the Christmas break, the
Spring break, and the summer. This is not surprising,
since the restaurant is located on Marquette’s campus and
most of its customers are members of the Marquette com-
munity. The third predictor we tried was sales lagged one
week, since examination of the data indicated sales for
two adjacent weeks were often similar.

Using Minitab, we then computed the simple correla-
tions between the three potential predictors and the depen-

dent variable weekly sales. The results are shown below,

in Table 1. As expected, there is almost no trend in the
weekly sales. However, the dummy variable is strongly
correlated with current sales; that is, whether or not
Marquette University is in full session is a good predictor
of the current week’s sales. The previous week’s sales are
moderately correlated with the current week’s sales.
There is also a moderate linear relationship between the
dummy variable and the previous week’s sales. The other
simple correlations are low.
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TABLE 1
Correlation Matrix

Current Dummy Sales Lagged
Sales Time Variable One Week
Current Sales 1.000 .049 772 .580
Time 1.000 -.048 120
Dummy Variable 1.000 490
Lagged Sales 1.000

With the aid of Minitab, we experimented with several
regression weekly sales. The results of our regression
analysis are given in Table 2. Since the sales data mani-
fest almost no trend, the predictor “time” adds very little
predictive power to a regression model. Note that model
(4) has just a slightly higher coefficient of determination
than model (2), and both models possess a significant
amount of autocorrelation. Also, models (3) and (5) have
the same coefficient of determination, while model (7) has
only a slightly higher coefficient of determination than
model (6). On the other hand, the predictor “lagged sales”
adds a fair amount of predictive power to a regression
model. Model (6) has a significantly higher coefficient of
determination than model (2), without a significant
amount of autocorrelation.

TABLE 2
Autocorrelation

Durbin-Watson ~ Significant  *Amount of

Model Predictor(s) R?® _ Statistic at 05Llevel? Collinearity

(1) Time 0024 0.81 Yes None
(2) Dummy 596 130 Yes None
(3) Lagged Sales .336  1.89 No None
(4) Time and

Dummy .603  1.32 Yes Very Little
(5) Time & Lagged

Sales 336 1.89 No Little
(6) Dummy &

Lagged Sales 649 174 No Some
(7) Time, Dummy,

& Lagged Sales .651 1.73 No Moderate

*Determined by examination of Table 1, the Correlation Matrix.

We decided to select regression model (6) to forecast
weekly sales for the following reasons:

1. Model (6) has the second highest coefficient of
determination, only .002 below that of model (7).
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2. The three parameters of model (6) are each significant-
ly different from zero at the .001 level. It should be
noted that the parameter for the variable “time” was
not significant at even the .15 level in any of the
regression models which included time as a predictor.

3. Model (6) does not possess a significant amount of

autocorrelation.

4. Model (6) is simpler than model (7), and does not have
as much collinearity. The regression equation for
model (6) is as follows:

A
Yi=2614.3 + 1610.7X; + .2605Y, ¢,

where
A
Y, = the forecasted sales for week t (in dollars)

X; = the dummy variable for week t (0 or 1)
Y:.1 = the actual sales for week t-1 (in dollars).

(1)

R-Square = .649 means 64.9% of the variation in weekly
sales can be explained by whether or not Marquette is in
full session, the previous week’s sales, and the regression
plane. R = .806, indicating the regression plane is a very
good fit to the weekly sales data. The regression equation
implies that weekly sales average about $1611 higher
when Marquette is in full session, holding the previous
week’s sales constant. The MSE for regression model (6)
is 517,881.

Box-Jenkins Analysis

Since we had 104 weekly sales observations, we
believed a Box-Jenkins analysis would be appropriate to
forecast current weekly sales (one-period-ahead forecasts).
We were also influenced in our choice of Box-Jenkins
analysis by Gardner’s results (1979). Gardner was interest-
ed in forecasting monthly demand for blood tests at a hos-
pital. He found that the best multiple regression model he
tested yielded a smaller mean absolute percentage forecast
error than the MAPE for the best Box-Jenkins model test-
ed (5.0% versus 7.7%) in one-period-ahead forecasting.
We wanted to compare multiple regression analysis with
Box-Jenkins analysis on our weekly sales data.

Using Minitab, we computed the autocorrelations and
partial autocorrelations, lagged up to 36 periods. They are
shown in Table 3. The 95% confidence limits are +/-
.192. The first two autocorrelations are significantly posi-
tive, but then the autocorrelations trail off towards zero
and negativity until lag 20. The first partial autocorrela-
tion is significantly positive, but then the partial drop off
to zero. This pattern suggests the time series is stationary
(recall that the regression analysis also indicated an
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insignificant trend) and an autoregressive model of order
one (AR(1) model) might be an appropriate Box-Jenkins
model. Also, the sales data do not appear to be seasonal.
We also tested an autoregressive model of order two
(AR(2) model), two moving average models of orders one
and two (MA(1) and MA(2)), and four autoregressive-
moving average models (ARMA(1,1), ARMA(2,1),
ARMAC(1,2), and ARMA(2,2) models). A constant term
was included in each model, since we did not first differ-
ence the data.

For each Box-Jenkins model considered, we computed
the MSE, tested the significance of the model parameters
(not significant means p>.05), and ran a diagnostic check
on the residuals. We counted how many autocorrelations
of the residuals, lagged up to 36 periods, were significant
at the .05 level (the 95% confidence limits are +/- .192).
The results are summarized in Table 4.

We decided to select the AR(1) Box-Jenkins model to
forecast weekly sales one-week-ahead for the following
reasons:

1. Both of the parameters are highly significantly differ-
ent from zero in the AR(1) model.

None of the autocorrelations for the residuals, lagged
up to Thus the errors are uncorrelated over time.

. The MSE of the AR(1) model is only 7.2% higher than
the lowest MSE, for the ARMA(2,1) model.

4. The AR(1) model is the simplest Box-Jenkins model.
The AR(1) Box-Jenkins model is:

A
Y, = 1871.46 + .609Y, , . 2)

TABLE 3
Partial
utocol corre
1 .554 .554 19 -131 .027
2 .220 -.126 20 .025 .007
3 .138 .103 21 181 177
4 .071 -.047 22 271 .040
5 .065 .064 23 .243 -.007
6 -.006 -.103 24 194 -010
7 -.120 -.1086 25 .189 -.011
8 -.058 .101 26 .205 .028
9 -.070 -.113 27 197 .004
10 -.195 -.156 28 .250 .140
11 -.270 -.124 29 278 .085
12 -.278 -.067 30 .282 .121
13 -.307 -.174 31 .208 -.035
14 -.238 -.004 32 .023 -072
15 -.257 -.164 33 -.094 -.058
16 -.276 -.101 34 -160 -.105
17 -.225 -.120 35 -200 -.023
18 -.230 -.173 36 -.186 -.032

Note that regression model (6) fit the weekly sales for
Year 1 and Year 2 better than the AR(1) model, as indicat-
ed by the MSEs (517,881 versus 1,011,474). However,
this does not imply that the Box-Jenkins model will fore-
cast worse.

Model Performance on More Recent Data

We tested regression model (6) and the AR(1) Box-
Jenkins model on 44 weekly sales observations we
obtained for Year 3, covering the period from the week
ending January 2, through the week ending October 30.
We calculated the forecasted weekly sales (one period
ahead) and compared them with the actual weekly sales
for these 44 weeks. We did not update the forecasts or
model parameters. We should point out that Gardner
(1979) tested his best multiple regression model on only
24 new observations.

For regression model (6) fitted to the Year 3 weekly
sales, the MSE was 1,238,599 and mean absolute percent-
age forecast error was 13.24%. This MSE is almost 2.4
times as high as the MSE we obtained when fitting regres-
sion model (6) to the weekly sales data for the Years 1 and
2. The largest absolute percentage forecast error, 40.73%,
was for the week ending May 15, Year 3 (Final Exam

TABLE 4
Parameter  No. of Significant
Model ~ MSE_ Parameters Significant? of Residua
AR(1) 1,011,474 Constant  Yes' 0
AR 1 Yes!
AR(2) 1,000,236 Constant  Yes' 1
AR 1 Yes'
AR 2 No
MA(1) 1,070,323 Constant  Yes' 3
MA 1 Yes!
MA(2) 1,020,535 Constant Yes' 2
MA 1 Yes'
MA 2 No
ARMA(1,1) 1,000,353 Constant Yes! 1
AR 1 Yes?
MA 1 No
ARMA(2,1) 943,796 Constant Yes' 0
AR 1 Yes'
AR 2 Yes!
MA 1 Yes'
ARMA(1,2) 1,001,167 Constant Yes! 0
AR 1 No
MA 1 No
MA 2 No
ARMA(2,2) 1,000,908 Constant Yes! 1
AR 1 No
AR 2 No
MA 1 No
MA 2 No
1 p<.001
2 p<.01
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week). 'We should mention that sales during Finals week
of Year 3 were the highest they had ever been at $10,388.
The smallest absolute percentage forecast error, 0.57%,
was for the week ending July 24, Year 3.

For the AR(1) Box-Jenkins model fitted to the Year 3
weekly sales data, the MSE was 1,843,442 and the mean
absolute percentage forecast error was 17.76%. This MSE
is over 1.8 times as high as the MSE we obtained when fit-
ting the AR(1) model to the weekly sales data for the Year
1 and 2. The largest absolute percentage forecast error,
65.95%, was for the week ending May 22, Year 3. The
smallest absolute percentage forecast error, 0.51%, was for
the week ending January 30, Year 3.

As was mentioned in the Introduction, the restaurant
manager had been forecasting the current week’s sales as
equal to the previous week’s sales. Applying the manag-
er’s approach to the Year 3 weekly sales data, we obtained
a MSE of 2,186,701 and a mean absolute percentage fore-
cast error of 17.88%.

For comparison purposes, we also fit the ARMA(2,1)
Box-Jenkins model to the Year 3 weekly sales data, since
Table 4 indicates this also is a promising model. Well, the
MSE turned out to be 2,672,147 and the mean absolute
percentage forecast error was 22.06%. We were rather
surprised to discover that the ARMA(2,1) model did not
forecast the Year 3 weekly sales data as accurately as the
AR(1) model, or even the manager’s forecasts.

Thus regression model (6) gave more accurate forecasts
for the Year 3 weekly sales than either the AR(1) or
ARMA(2,1) Box-Jenkins models, or the manager’s fore-
casting method.

In light of these results and the simplicity of the model,
the restaurant manager decided to use regression model (6)
to forecast sales one-week-ahead.

A Box-Jenkins Transfer Function Model

After the restaurant manager had elected to use regres-
sion model (6) for forecasting, the author read an article
by Tiao, Box, and Hamming (1975). In this study, the
three authors used Box-Jenkins transfer function models to
analyze Los Angeles photochemical smog data. These
models allow addition of a dummy variable X. Now
Marquette University’s being in session should produce an
immediate, positive response on sales. In a case such as
this, the transfer function used should be some constant
W, according to Tiao, Box and Hamming (1975, page
266).

We decided to test the following Box-Jenkins transfer
function model on our restaurant sales data:
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A

Y,=C + WX, + BY, .4,
where
C = a constant
W = the transfer function (a constant)
B = the autoregressive parameter.

(3)

A constant term was included in the model, since we did
not first difference the data.

'We employed SAS to estimate the Box-Jenkins transfer
function model parameters, compute the MSE, test the sig-
nificance of each model parameter, and run a diagnostic
check on the residuals. SAS gave us the autocorrelations

A

Yt = 201348 + 1159671 Xt + '575545Yt 1.

of the residuals, lagged up to 24 periods. The Box-Jenkins
transfer function model is:

The MSE turned out to be 974,183. All three model
parameters are significant at the .001 level. Only one of
the 24 autocorrelations of the residuals is significant at the
.05 level (the 95% confidence limits are +/- .192).
Reference to Table 4 indicates that only the ARMA (2,1)
model has a lower MSE (943,796) than the transfer func-
tion model. However, recall that regression model (6) has
a MSE of 517,881.

We then tested the Box-Jenkins transfer function
model on the 44 weekly sales observations we had
obtained for Year 3, as was done in the previous section.
For the transfer function model fitted to the Year 3 weekly
sales, the MSE was 1,251,350 and the mean absolute per-
centage forecast error was 17.77%. This MSE is about
28.5% higher than the MSE obtained when fitting the
Box-Jenkins transfer function model to the weekly sales
data for the Years 1 and 2.

Thus the transfer function model yielded more accurate
forecasts (as measured by the MSE) for the Year 3 weekly
sales than the AR(1) or ARMA(2,1) models, or the man-
ager’s forecasting method. However, it is still the case
that regression model (6) gave the most accurate forecasts
for the Year 3 weekly sales, as measured by both the MSE
and MAPE (1,238,599 and 13.24%). -

Discussion

Of the seven regression models and nine Box-Jenkins
models considered, regression model (6) appears to be the
best choice to forecast the weekly restaurant sales. The
fact that the weekly sales for Year 1 and Year 2 displayed
almost no trend led us to consider other predictors. The
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combination of a dummy variable (denoting whether or
not Marquette University was in full session) and the pre-
vious week’s sales produced a regression model which
accurately forecasted Year 1 and Year 2 sales.
Unfortunately, this regression model did not forecast near-
ly as well weekly sales for the first 44 weeks of Year 3
(MSE equals 1,238,559 and mean absolute percentage
forecast error equals 13.24%).

To gain some insight as to why this happened, we cal-
culated the correlation matrix for the Year 3 weekly sales
data (see Table 5). Again the dummy variable and sales
lagged one week appear to be good predictors of Year 3
weekly sales, as was the case with the Year 1 and Year 2
weekly sales. In Table 5 the correlation is very low
between time and the dummy variable and moderate
between the dummy variable and sales lagged one week,
as was the case in Table 1. However, the Year 3 weekly
sales have a more substantial, positive trend than the Year
1 and Year 2 weekly sales had (.251 versus .049). In fact,
the trend for the Year 3 weekly sales is significantly dif-
ferent from zero at the .10 level (t = 1.6804).

TABLE 5
Correlation Matrix
Current Dummy Sales lagged
Sales Time Variable OneWeek
Current Sales 1.000 .251 .768 .646
Time 1.000 -.064 .288
Dummy Variable 1.000 464
Lagged Sales 1.000

If this upward trend in weekly sales continues to get
stronger in the future, then time should be a good third
predictor to add to regression model (6). n
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