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ABSTRACT

This paper presents an algorithm for the computation of yields (or internal rates of
return) which offers several important advantages over traditional computational

algorithms.

The method described here is extremely efficient in zeroing in on the
correct discount rate or yield in a remarkably small number of iterations.

It is

particularly useful in the calculation of internal rates of return for projects with

erratic cash flows.

Most financial researchers and professionals
occasionally find it necessary to calculate accur-
ate yields for a large sample of fixed-income
securities. Others find it necessary to calculate
internal rates of return for projects with many
cash flows of unequal amounts and/or unequal
timing,

Commercial spreadsheet software such as
Lotus 1-2-3(1) lends some assistance in this area
by providing pre-programmed functions which
calculate the present value of a string of equal-
ly-spaced periodic cash flows of equal or une-
qual amounts given a discount rate supplied by
the user.(2)

Even so, the calculation of yields or IRR’s
using these functions can involve a substantial
amount of time and effort on the part of the user
since they generally require the repeated trial-
and-error substitution of discount rates followed
by the recalculation of the formula until the
correct rate is determined Thus, continuous inter-
vention by the user is necessary. The process
can be very slow and tedious when the task
involves the calculation of yields for a large
number of securities, especially when a high
degree of accuracy is required in the calculated
rates. Furthermore, typical spreadsheet functions
of this type make no provision for situations
involving uneven timing of project cash flows
or, in the case of fixed income securities, frac-

tional discounting periods and accrued interest.

Given these common shortcomings in spread-
sheet software, most practitioners find it more
convenient and expeditious to use a high-level
computer language such as BASIC or Fortran to
create a program to compute accurate yields or
IRR’s without continuous user intervention. The
typical algorithm for such a program can best be
described as a fixed-increment iterative search.

A general outline of this type of procedure is
presented in Figure I in conjunction with a sim-
ple example. The example involves a $1000
par-value bond with an $80 annual coupon pay-
ment and 10-year maturity. The bond is current-
ly trading at $920 (assuming that the next cou-
pon payment is due in exactly one year and
therefore that accrued interest is zero).(3) The
user must set the fixed discount rate adjustment
and the acceptable level of accuracy depending
on the requirements of the current task.

Let’s assume that we have set the acceptable
level of accuracy at +/- $1 with respect to the
current price. That is, if the trial discount rate
gives a present value of future cash flows that is
between $919 and $921, then it will be accepted
as the yield of this bond. This level of accuracy
will require a small fixed incremental adjust-
ment, so let’s assume that we have set the incre-
ment at 1 basis point. The user must also select
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an arbitrary starting point for the trial discount
rate. In the example, this arbitrary starting point
was set at 10%.

The steps involved in the fixed-increment
iterative search procedure are shown in Figure I.
In the first pass through the loop the trial dis-
count rate (arbitrarily set by the user at 10%) is
used to compute the present value (PV) of the
10 remaining coupon payments and the terminal
payment. Given the example values, PV = §
877.11 given a 10% discount rate. This com-
puted present value is compared to the market
value (P). If the difference between PV and P
is greater than one dollar, then the trial discount
rate will be changed by one basis point (the
amount of the pre-set fixed increment). The
present value calculation (Step 2) is then repeat-
ed using the new discount rate (9.99%) and the
resulting PV is again compared to P (Step 3).
This process continues until the calculated PV is
within one dollar of the current market price.
This would require 72 iterations in the example.
The resulting yield is 9.27%, which gives a
calculated PV that is fifty-four cents less than
the bond’s current market value. The computed
yield is accurate to within one basis point.(4)

Although the fixed-increment iterative search
procedure allows the user to calculate the yields
for any number of bonds without intervention,
the procedure is still slow and inefficient. If the
sample size is of any appreciable magnitude, the
time required for the yield calculations on a
microcomputer can easily run to several hours.
Furthermore, the amount of time required for
calculation increases with the desired level of
accuracy since greater accuracy requires a smal-
ler incremental adjustment to the trial discount
rate per iteration.(5)

This paper presents an algorithm for the com-
putation of yields (or internal rates of return)
which offers several important advantages over
the fixed-increment iterative search procedure.
First, it is much faster and more efficient. Se-
cond, the speed of the calculation is not reduced
appreciably as the required level of accuracy in-
creases. Third, the procedure can handle cash
flows of uneven timing and/or unequal amounts
without any reduction in speed or efficiency.
Thus it is particularly useful in the calculation of
the internal rate of return for projects with er-
ratic cash flows.

The key to the speed and efficiency of this
improved algorithm, (subsequently referred to as
the proportional-increment iterative search pro-
cedure), is the method by which the trial dis-
count rate is adjusted at the end of each itera-
tion. Instead of using an arbitrary fixed incre-
ment, the proportional-increment procedure var-
ies the magnitude of the discount rate adjustment
as the calculated value of the cash flows (PV)
and the market value (P) converge. When the
error between PV and P is large, the incremental
adjustment to the trial discount rate is propor-
tionally large. When PV is very close to P, the
incremental adjustment to the trial discount rate
is proportionally small. The particular adjust-
ment method described here is extremely effi-
cient in zeroing in on the correct discount rate in
a remarkably small number of iterations.(6)

Again, a simple example is helpful for de-
scribing the proportional-increment iterative sea-
rch procedure. A general outline of the pro-
cedure is presented in Figure II along with the
numerical results of each step as applied to the
example data. The previous example inputs are
retained here.

First, the present value of the future cash
flows is computed using the arbitrarily selected
starting discount rate of 10%, resulting in PV =
$877.11. The bond’s duration (D) is also com-
puted using the current trial discount rate (DR)
and the current calculated present value (PV) of
the remaining cash flows, giving D = 6.882462
years.(7) The error between the calculated pre-
sent value (PV) and the actual market value (P)
is ($920-$877.11) = $42.89.

At this point, the fixed-increment procedure
would have adjusted the trial discount rate by
the pre-set fixed increment (1 basis point in the
example) and then begun the second iteration.
In contrast, the proportional adjustment proce-
dure links the magnitude of the trial discount
rate adjustment to the size of the error between
P and PV. Thus, when a large (small) error is
encountered, a large (small) adjustment in the
trial discount rate will be made.

One way to accomplish this would be to sim-
ply view the error (P-PV) as a percentage of the
market price (P) and link the magnitude of the
discount rate adjustment to the relative magni-
tude of the error. While this would offer an
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Inputs:

Step 1:

Step 2:

Step 3:

3a:

3b:

FIGURE I

Fixed-Increment Iterative Search Procedure
for Yield-to-Maturity Calculations

Market Price (P) = $920.00

Annual Coupon Payment (C) = $80

Terminal Payment (T) = $1000

Number of Payments Remaining (N) = 10

Fixed Increment per Iteration (I) = 1.0 Basis Point
(set by the user as desired)

Acceptable Accuracy = +/- $1 on $1000 par value bond
(set by the user as desired)

Set trial Discount Rate (DR) at an arbitrary starting
point, say 10%.

Calculate the Present Value (PV) of the remaining
coupon and terminal payments using the trial Discount
Rate (DR).

Compare the Calculated Present Value (PV) to the Market
Price (P):

If (P-PV) is greater than $1, then DR is decreased by
the pre-set fixed increment (I) and Steps 2 and 3 are
repeated.

If (P-PV) is less than -$1, then DR is increased by (I)
and Steps 2 and 3 are repeated.

If |P-PV| is less than or equal to $1, then the
calculation is complete and the yield of the bond
equals DR. The program will terminate or will begin
processing the next bond in the sample.

For the first pass through the steps, the calculations would be:

With DR=10%, Step 2 calculates PV=$877.11 and Step 3 cal-
culates (P-PV) = $42.89. Since (P-PV) is positive and
greater than the acceptable level of accuracy, DR will be
reduced by 1 Basis Point and Steps 2 and 3 will be repeated
using the adjusted trial discount rate of 9.99%.

This process repeats until |P-PV| is within the acceptable range.
In this example, the yield calculation would require a total of
72 iterations. The trial Discount Rate in the 72nd iteration
would be 9.27% which would give PV = $919.46. Since |P-PV| is
less than $1, the program would either terminate or return to
Step 1 and begin processing the next bond in the sample.
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FIGURE II

Proportional-Increment Iterative Search Procedure

Inputs:

Step 1:

Step 2:

Step 3:

3a:

3b:

for Yield-to-Maturity Calculations

Market Price (P) = $920.00

Annual Coupon Payment (C) = $80

Terminal Payment (T) = $1000

Number of Payments Remaining (N) = 10

Acceptable Accuracy = +/- $1 on $1000 par value bond
(set by the user as desired)

Set trial Discount Rate (DR) at an arbitrary starting
point, say 10%.

Calculate the Present Value (PV) of the remaining
coupon and terminal payments using the trial Discount
Rate (DR). Also calculate the duration (D) of the bond
using the current value of DR as the discount rate and
the current value of PV as the price.

Compare the Calculated Present Value (PV) to the Market
Price (P):

If |P-PV| is greater than $1, then perform the
following calculation to determine the new trial
discount rate:

(P-PV)
(Adjusted R) = (Unadjusted R) * 1 -
D * PV

where: P Current Market Price

PV Present Value of remaining cash flows
given the trial discount rate.

D = Duration

R = (1+DR) where DR is the trial discount

rate expressed as a decimal.

Repeat Steps 2 and 3 using this adjusted rate.

If |P-PV| is less than or equal to $1, then the
calculation is complete and the yield of the bond
equals DR. The program will terminate or will begin
processing the next bond in the sample.
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improvement over the typical fixed-increment procedure, it is possible to do even better by including
a consideration of the magnitude of the error relative to the bond’s duration.

Several theoretical and empirical papers have discussed the relationship between duration and price
volatility with respect to a change in the yield of a fixed-income investment. For example, Hopewell
and Kaufman(8) showed that the price volatility of a coupon bond is a linear function of duration
and small changes in the yield structure:

[11 dP/P =-D * dr
where P = Market Price
D = Duration
r = Market Yield

That is, the sensitivity of a bond’s price to small changes in the trial discount rate is inversely
related to its duration. Consequently, a given change in the trial discount rate will produce a larger
(smaller) change in the calculated present value of the remaining cash flows for a bond with a longer
(shorter) duration. Thus, including a consideration of the bond’s duration in the discount rate
adjustment procedure serves to "fine-tune" the adjustment over the simple relative-error method
suggested above.

A proportional adjustment which includes a consideration of both the relative magnitude of the
error and the duration of the security is as follows:

(P-PV)
[2] (Adjusted R) = (Unadjusted R) * 1 -
. D * PV
where: = Current Market Price
PV = Present Value of remaining cash flows given the trial discount rate.
D = Duration

R = (1+DR) where DR is the trial discount rate expressed as a decimal.

In the example, the adjusted discount rate (R) which would be used in the first iteration (the
second loop through the steps) would be:

1.10 * [ 1 - ((920-877.1087)/(6.99647 x 877.1087)) ] = 1.092312

This adjusted discount rate results in PV = $921.7836 and (P-PV) = -$1.7836. Thus, after only
one iteration the error is less than two dollars on a market price of $920.

The second iteration, using 9.2612 as the adjusted discount rate, produces an error of less than two
cents. Compare this with the 72 iterations necessary to produce a calculated yield with an error of
55 cents using the fixed-increment (1 basis point) procedure described previously!

For the example, the results of two iterations produce are summarized in Table I.

In addition to the obvious improvement in speed and efficiency, the proportional adjustment
method also provides a significant improvement in the level of accuracy attainable in the yield
calculation. When using the fixed-increment adjustment procedure, the accuracy of the calculated
yield is limited to the size of the fixed increment, usually one basis point. However, the level of
accuracy in the yield calculation using the proportional adjustment procedure is limited only by the
computer hardware. Yields can be calculated accurately to within a hundredth of a basis point or
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TABLE I
Results of First Two Iterations
of the Proportional Adjustment Method
using the Example Inputs

Unadjusted Adjusted
Iteration R PV (P-PV) D R
0o 1.100000 877.1087 42.8913 6.99647 1.092312
1 1.092312 921.7836 -1.7836 7.04047 1.092612
2 1.092612 919.9828 0.0172 7.03879

less and the calculation will still only involve a few iterations. One additional iteration in the
example would produce a calculated yield that is accurate to the nearest hundredth of a basis
point.(9)

While the preceding discussion has focused on coupon bonds, the proportional-adjustment iterative
search procedure can easily be adapted to any situation requiring the computation of yields or rates
of return. Unequal cash flows and uneven time intervals do not present a problem (assuming a
reasonable level of programming skill). Consequently, this procedure is extremely useful in capital
budgeting situations which require the computation of internal rates of return for complex cash flow
scenarios.

In summary, the proportional-increment adjustment method presented in this paper offers several
important advantages over the traditional fixed-increment adjustment procedure. It is many times
faster and much more efficient. It offers a much greater level of accuracy in the resulting yields
without a significant increase in the time required for computation. Finally, it is easily adaptable to a
diverse set of decision environments which may involve uneven cash flows and unequal discounting
periods.

For the convenience of the reader who wishes to take advantage of this procedure, an appendix to
this paper is available from the authors which contains a general outline of the procedure including
key program statements (in IBM BASIC). It can easily be adapted to other programming languages.

Footnotes

1. Lotus 1-2-3 is a trademark of Lotus Development, Inc.
Similar functions are included in most other spreadsheet
software packages.

2. Lotus 1-2-3 Release 2.0 goes beyond this with the @IRR
function. The user supplies an initial guess for the IRR
and the program executes an iterative search procedure
similar to the one described in Figure I. While this is
certainly an improvement over the capabilities of earlier
versions, the calculation of yields or IRR's is still a slow
and cumbersome process for large samples of bonds or for
projects with cash flows of unequal amounts and uneven
timing.
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Of course, a reasonably adept programmer could extend the
program to include a consideration if accrued interest and
fractional discounting periods.

The actual yield on the bond in the example is 9.260914%
(calculated with a financial calculator).

The time required for the calculation of yields for coupon
bonds could be shortened by treating interim cash flows as
an annuity. However, this shortcut is not applicable in
situations involving cash flows which are of unequal amounts
or which occur at uneven time intervals. In such cases, it
is necessary to calculate the present value of each indi-
vidual cash flow and then sum across all cash flows.

Lawrence Fisher. "An Algorithm for Finding Exact Rates of
Return". Journal of Business 39 (Jan 1966), 111-118.
Presented an algorithm that was conceptually similar to the
one described here, although the adjustment procedure was
less efficient.

As defined originally by F. Macauley, the duration of .a
security is:

[ CFe *t ]/ [ (1+ )%

P

where: D
t
T

cash flow at time t
yield to maturity
current price

duration CF¢
time in years r
maturity in years P

Macauley, Frederick R., Some Theoretical Problems Suggested
by Movements of Interest Rates, Bond Yields, and Stock
Prices in the United States Since 1985, New York: National
Bureau of Economic Research, 1938.

Hopewell, Michael H. and George G. Kaufman, "Bond Price
Volatility and Term to Maturity: A Generalized Respecifica-
tion"; American Economic Review 62 (Sep 1973)749-753.

The adjusted discount rate (R) computed at the end of the
second iteration would be 1.092609 which would give PV =
$920.0008 in the third iteration, or an error of only
$.0008. As noted in footnote 4, the actual yield on the
example bond is 9.260914%.
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