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Abstract

A nonhomogeneous production is used to study the features of the

production technology across U.S. cities.

We compute marginal produc-

tivities and scale elasticities for different levels of inputs and outputs.
The form of the production function allows variable returns to scale.
We can also test the Cobb-Douglas and constant elasticity of substitu-

tion forms within the nonhomogeneous specification.

Conclusions are

drawn concerning returns to scale across cities of different sizes.

1. INTRODUCTION

In his article on the productivity of
cities Sveikauskas (1975) suggests that
productivity may be systematically
higher as city size increases. He ar-
gues that a larger city allows more
specialization and a greater division of
labor which results in an increase in
productivity.[1] In a related study Segal
(1976) studied the production differ-
ences among cities, in an attempt to
ascertain whether the larger wurban
areas have a significant production
advantage over the relatively smaller
ones. His main concern was to explain
variations in labor productivity across
urban areas.

The approach taken in these two
studies to estimate features of the
production technology across metropoli-
tan areas is the Cobb-Douglas (CD) and
Constant  Elasticity of  Substitution
(CES) production function forms.[2]
The traditional C-D and CES functional
forms severely constrain the partial
elasticity of substitution to be constant
and in the case of the Cobb-Douglas
type to be equal to unity. Moreover,
the C-D specification assumes constant
returns to scale.
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In his article on interregional pro-
duction structures Vinod (1972) suggests
a nonhomogeneous production function
as a new tool for studying regional
economics from empirical studies of
production functions. We adopt Vinod’s
new formulation to study intermetro-
politan production structures. The
major purpose of this new formulation
is to provide empirical computations of
marginal productivities, and scale elas-
ticities for different levels of inputs
and outputs for the purpose of com-
parison over the sample observations.[3]

In this study, we use a multiplicative
nonhomogeneous  production function
(hereafter referred to as M-NH) which
is presented by Vinod (1972). The non-
homogeneous production function is a
generalization of the Cobb-Douglas
formulation. The function is linear in
its parameters and is amenable to es-
timation by ordinary least squares tech-
niques (OLS). In addition, the M-NH
function removes some of the difficul-
ties in economic interpretation associ-
ated with the CES, and it possesses
less specification bias than either the
C-D and CES forms.[4]



In section 2 we review some of the
salient properties of the M-NH produc-
tion function. In section 3 we discuss
the data and present the empirical
results of fitting the M-NH formation
to aggregate data for 58 metropolitan
areas for 1967. The results are com-
pared with the earlier empirical find-
ings from the same body of data.
Major differences in implied economic
patterns are observed and discussed. In
the last section we summarize our
findings and draw some implications.

2. THE NONHOMOGENEOUS PRO-
DUCTION FUNCTION

Consider a nonhomogeneous produc-
tion formulation:

3.1 + a31nx2 a2
Q=2pX; X2

where Q is output, X,
capital and labor inputs respectively,
and the «o’s denote parameters.[5]
Equation (1) can be rewritten in log
form and when o, = 0; the log form of
the nonhomogen€ous production func-
tion collapses to the Cobb-Douglas
formulation.[6] From the log form it
follows that the marginal elasticities of
capital and labor, exl and e+2 ,re-
spectively are obtained by partially
differentiating the log of output with
respect to the log of the inputs. The
scale elasticities € (defined as the sum
of the marginal elasticities of the pro-
ducts) can also be derived. The scale
elasticity is defined as the percentage
change in output associated with a
simultaneous small percentage change
equal to all inputs. According to the
formula for Scale elasticity € can as-
sume any value, which imply that re-
turns to scale are variable over the
scale of production. The rnarginal

and X2 are

products of capital and labor,
and  MPy2, respectively can also )lge
derived.[7]

3. ESTIMATION,DATA AND EMPIR-
ICAL RESULTS
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The M-NH function is linear in its
parameters, and can readily be esti-
mated by ordinary least squares meth-
ods. A unique feature of the specifica
tion is that we can obtain the numer-
ical estimates of marginal products,
marginal elasticities and scale elasti-
cities for each observed level of Q, X4
and X,.[8] For the purpose of estima-
tion, an additive error term U, is in-
troduced. We assume that its pican and
variance are E(U) =0, Var(U) =

where I is the identity matrix.

Adding to this production function,
we would want to find out whether the
larger cities have any advantage such
as agglomeration economies and/or
increasing return to scale. We would
also like to know whether the location
of the SMSAs according to region will
have any effect on the production

process. For that we add on a dummy
variable for the size and another
dummy variable for the region. For

those SMSAs with more than two mill-
ions in population we assign a value of
1 and zero otherwise as the dummy
variable for size, and those located in
the South we assign a value of 1 and
zero otherwise as the dummy variable
for region.[9] Our final equation on
which we fit the data is:

InQ = oy + 04InX; + o HInX5H +
a3InXy Pan + oc4g1 + oc5R 2)

A priori, we would expect o through
oy to be positive. If large cities pos-
sess what we call agglomeration econo-
mies, size then would make a signifi-
cant difference in the production pro-
cess and thus o, should be positive.
As for g, if the contention is correct
that the éouth has been lagging behind
the rest of the country in development
because of lack of skilled labor, ent-
repreneurial talent etc.... then we would
expect 05 to be negative.

4. THE DATA AND EMPIRICAL
RESULTS



The sample size for this study con-
sists of 58 observations for SMSA’s
used in Segal’s study.[10] The data for
capital (X;) are taken directly from
that study The data for value of
output (Q) and total non-agricultural
employment (X,) were taken from the
same sources provided by Segal. The
value of output (Q) is adjusted for
transfer payments and contribution to
social insurance. [The sources and
details of all the data are given in
Segal (1976)].

The ordinary least squares estimates
for equation (6) are presented in Table
1. Four regressions are presented.
The first is without the measure of
SMSA size and regional effects. The
second includes a measure of size; the
third includes a measure of regional
effects and the fourth includes mea-
sures of both size and regional effects.
The four regressions are almost iden-
tical: individual coefficients change
little, and the coefficients of deter-
mination are quite high and show hard-
ly any variation.

At the S-percent level of signifi-
cance all regression coefficients are
significant except the product term of
capital and labor. That the coefficient
of the product term is not significantly
different from zero, seems to confirm
Segal’s findings that SMSAs production
function have constant returns to scale.
Thus, it seems as though the production
function takes the regular Cobb-Douglas
form with constant marginal elasticities
of inputs and constant returns to scale.

The coefficient of the size variable
shows that size of cities do play an
important role in the production pro-
cess. In particular, we find that the
production function for large SMSAs is
shifted upward by about 11 to 14 per-
cent. This is slightly higher than
Segal’s findings of an upward shift by
about 8 percent due to agglomeration
economies. The regional dummy mea-
sure indicate that regions in the south
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lag behind the rest of the country in
increases in output.

Now we concentrate on the empirical
estimates of marginal productivities of
the inputs and scale elasticities gener-
ated by equation Model IV (Table 1) for

each SMSA in the sample. These re-
sults are shown in Table 2 for the
entire sample of SMSA’s. The values

of the marginal product of capital are
ranked in decreasing order from the
highest value of MPK (.7858) to the
lowest value of MPK (.4119). We also
show the associated marginal product of
labor (MPL) and scale elasticities series
(e). A closer look at the scale elasti-
cities series indicates that the wvalues
range from .99 to 1.07 which is not
significantly different from unity. This
means that a one percent change in
both inputs would lead to an increase
in output of about 1 percent. Also
recall that we found that the produc-
tion function for large SMSAs is shift-
ed upward by about 11 percent to 14
percent. Thus we can say that the
production function for each SMSA
exhibits constant returns to scale with
the largest tones having an advantage
in the form of agglomeration economies
accounting for between 11 percent to
14 percent of the output.[11]

According to the neoclassical model,
if the production function exhibits con-
stant returns to scale, then the mar-
ginal product of capital and the mar-
ginal product of labor should depend on
the capital-labor ratio. We would ex-
pect the marginal product of capital to
vary inversely with the capital-labor
ratio and the marginal product of labor
to vary directly with the capital-labor
ratio. Thus we would expect an in-
verse relationship between the marginal
product of capital and the marginal
product of labor. Looking at the mar-
ginal product of capital and the mar-
ginal product of labor (Table 2), series,
we may want to analyze the results in
terms of what we would expect to
follow from the neoclassical theory.
Our results do not allow us to arrive at



such a clear pattern. Several factors
may explain this. The variations of the
marginal productivities may be due to
the highly aggregate data; to differen-
ces in production functions for diff-
erent industries which make up the
aggregate set; and to the effect of
random variations. For these reasons a
comparison of the marginal produc-
tivities along neoclassical lines is not
straightforward.

5. CONCLUSION

In this paper we took advantage of
the available information on capital
inputs in various SMSAs and estimated
a nonhomogeneous production function
from which we generated values of
marginal productivities and scale elas-
ticities for each of the SMSAs in the

sample. We find that there are con-
stant returns to scale across SMSAs of
different sizes. We also find that large
cities may increase their output by
about eleven to fourteen percent due to
agglomeration economies.

Overall our findings using the non-
homogeneous function of production are
of special interest in that we obtain
measures of marginal productivities and
scale elasticities for each SMSA. We
provide more information than these
obtained from the usual regressions on
cross section data (e.g. Segal (1976)
which are obtained for the average or
typical entity which might not exist.
However, we need more disaggregated
data at the industry level across cities
to carry out more tests of the neo-
classical model.

FOOTNOTES

1. Actually Sveikauskas [2] argues that both static and dynamic forces influence
productivity. He notes that the most important static advantage is specialization
while the dominant dynamic benefit is urban concentration which favors tech-

nological progress.

2. Whereas Segal fitted the (CD) production function to metropolitan data at
high levels of aggregation, Sveikauskas fitted his (CES) production function to
central city data at a more disaggregated level, by using data for two-digit manu-

facturing industries across cities.

3. These empirical constructs are important if we are interested in practical
policy recommendations or implications. Usually when a regression is run to fit
cross sectional data, we obtain the result for an average entity which might not
even exist. The nonhomogeneous specification allows us to go back to each ob-
servation and study the implications of the production function for each observa-

tion, in this case for each SMSA.

4. See Vinod [3] for a more detailed justification and development of the multi-
plicative nonhomogeneous production function.

5. The nonhomogeneous production function can be easily generalized to account

for more than two inputs.

6. Note also that if we include the squared terms of the logarithm of x; and Xy

respectively, we are expressing the log-quadratic production function.

is also expanded on in Vinod [3].

His point

7. Mathematical derivations available from authors.
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Table 1

OLS Estimates of the Nonhomogeneous Production Function®

Product Term
Capital Labor of Capital
Model Constant Input Input and Labor Size Regional

No. Term (X1)  (X3) Input Dummy Dummy RZ
(ag) (aq) (ay) (a3) (ag) (ag)

(1) (2) (3) (4) (5) (6) (7) (8)

I: 2.058 .079 .796%* .011 -——— - .991
(1.17) (5.48) (0.92)

II: 1.757 .158* ,801% .002 .146%* -——— .992
(2.32) (5.93) (0.17) (3.04)

IIT: 1.846 .159% .726% .009 - -.134% ,992

IV: 1.625 .214%* LT737* .002 L117%* -.122*% ,994
(3.61) (6.33) (0.25) (2.80) (-4.54)

dThe numbers in parentheses below the estimated coefficients are student
t-statistics of the null hypothesis of no association.

*Coefficients are significant at .05 level.
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Table 2

Marginal Products and Elasticity Measures

SMSA/State MPK MPL € SMSA/State MPK MPL €
(1) (2) (3) (1) (2) (3)
Utica-Rome, N.Y. .7858 9,554 .99||Baltimore, MD .5292 9,433 1.04
Reading, PA .7331 8,393 .99]||Minneapolis, MN .5244 9,606 1.04
Lancaster, PA .6705 8,885 .99]||Youngstown, OH .5221 9,269 1.01
Albany, Schene- .6630 9,401 1.01}]|San Francisco, .5207 11,684 1.05
cdaty, N.Y. Oakland, CA
Pittsburgh, PA .6458 9,916 1.03||Kansas City, MO .5161 9,415 1.03
Philadelphia, .6405 9,971 1.05||jLouisville, .5032 9,441 1.02
PA KY-IN
Canton, OH .6341 9,318 1.00]||Akron, OH .4929 9,813 1.02
St. Louis, MO .6228 9,799 1.04||Portland, OR .4878 9,836 1.03
Kansas City, MO .6168 9,479 1.02| |Washington, D.C. .4834 15,333 1.04
Peoria, IL .6160 10,571 1.00||Birmingham, AL .4734 8,842 1.02
Boston, MA .6125 10,946 1.04| |Denver, CO .4714 9,664 1.03
Allentown, PA .6078 8,794 1.01]||Columbus, OH .4693 8,869 1.03
Tulsa, OK .6039 9,796 1.01]||Phoenix, AR .4680 10,243 1.02
New York, NY .6033 11,139 1.07||Flint, MI .4568 10,788 1.01
Syracuse, NY .5898 9,422 1.01||Los Angeles, .4565 11,047 1.07
Wilkes-Barre- .5775 7,498 1.00 Long Beach, CA
Hazelton, PA Fort Worth, TX .4530 8,959 1.02
Davenport-Rock .5760 10,117 1.01||Seattle, WA .4530 8,959 1.02
Island, Moline- Richmond, VA .4497 8,957 1.02
IA, IL New Orleans, LA .4467 9,405 1.03
Springfield, MA .5722 9,100 1.01(|Chattanooga, TN .4466 8,281 1.01
Indianapolis, IN .5704 9,944 1.03]|Atlanta, GA .4447 8,979 1.04
Grand Rapids, MI .5695 9,859 1.01]|Nashville, .4421 8,462 1.02
Dayton, OH .5693 10,097 1.02 Davidson, TN '
Toledo, OH .5689 10,147 1.02}||Dallas, TX .4420 9,413 1.04
Chicago, IL .5654 10,260 1.06] |Memphis, TN .4387 8,862 1.02
Detroit, MI .5650 11,366 1.05(||San Jose, CA .4360 10,560 1.03
Rochester, NY .5622 10,082 1.02]||Tampa, St. L4128 9,479 1.02
Erie, PA .5601 9,189 .99 Petersberg, F1
Wichita, KN .5546 9,541 1.01}}San Bernardino, .4149 11,003 1.03
Milwaukee, WI .5544 10,061 1.03 CA
Cleveland, OH .5482 10,037 1.04| |Houston, TX .4043 9,351 1.04
Cincinnati, OH .5424 10,122 1.03

117



8. Note that since E, 1, E, E are all elasticities, they are independent of units
of measurement.

9. For the size dummy variable, we follow Segal and separate the SMSAs into
two categories: those with a population below 2 million and those above that cut
off. The criteria for the cut-off at 2 million are discussed in Segal [1].

10. We find this study to be of independent interest since it is almost impossible
to obtain information on capital inputs for cities. THis available data affords us
the opportunity to analyze features of the production structure for cities. To the
best of our knowledge we know of no study that has attempted an analysis of
cities that allows comparisons of key economic constructs across them.

11. By using data that are highly aggregated we have lost some information,
since each SMSA has a wide variety of industries. Some of these industries might
enjoy increasing returns to scale while others might be operating under conditions
of decreasing returns to scale. Thus on the operating under conditions of de-
creasing returns to scale. Thus on the aggregate, it is difficult to ascertain
whether larger cities do enjoy increasing returns to scale. This problem is com-
pounded by the fact that the larger the SMSA is, the more variety it has in the
industry mix. The smaller SMSA might have a few dominant industries, but the
larger ones probable have a much wider range of industries and thus the aggre-
gate data available does not tell us the whole story. Thus the industry mix is of
crucial importance. WHat is needed is data for each industry which would enable
us to ascertain whether the industry itself is having increasing or constant or
decreasing return to scale. However, with our data the results seem plausible
since we find the coefficient a, to be insignificant. Furthermore, our results
seem to confirm Segal’s [1] findings of a constant returns to scale production
function for the same sample.
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