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ESTIMATING THE NUMBER AND LOCATION OF KNOTS
IN SPLINE REGRESSIONS

by

Lawrence C. Marsh

The purpose of this article is to demonstrate a simple
method of estimating the number and 1location of knots (join
points) in spline regressions.

Spline regression models offer a convenient alternative to
dummy (binary) variable models. Using a dummy variable to alter
the intercept or slope of a model generally results in a break
in the regression line. For example, a substantial drop in a
firms's production may occur if it suddenly closes a major
plant.

However, more subtle changes may occur at a given point in
time that fundamentally alter the underlying structure without
causing a break in the regression 1line. For example, the
passage (or removal) by Congress of an energy tax credit could
mark a structural turning point in the demand for home heating
0il but cannot be expected to result in an instantaneous drop
(or increase) in demand.

Splines piece together the line segments generated by dummy
variables to eliminate artificial and inappropriate jumps in the

regression line. In higher order polynomials, splines allow for
even smoother transitions and more subtle structural shifts by
piecing together different polynomial line segments. Sometimes

the number and location of these structural shifts is not known
and must be estimated.

1. INTRODUCTION

Suits et al. (1978) and Smith (1979) have presented clear
and quite useful approaches to estimating spline regression
functions with known knot locations. Their work was at least in
part based upon the development of this method by such authors
as Fuller (1969), Poirier (1973, 1975, 1976) and Buse and Lim
(1977).

This paper presents a spline polynomial regression procedure

for estimating the number and location of spline knots. This
procedure is designed specifically for Hudson's (1966) Type Two
splines. Gallant and Fuller (1973) have developed a more

general, but more complicated, nonlinear procedure which is more
appropriate for Hudson's Type Three splines. .
In his dissertation and subsequent journal article Robison

An earlier version of this work was presented under a different
title at the SUGI 8 conference in New Orleans. The helpful
comments of conference attendees are gratefully acknowledged.
SAS is a registered trademark and is used herein to identify
products or services of SAS Institute Inc., Cary, NC.
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(1964) discussed estimating the point of intersection of two
polynomial regressions. He outlined maximum likelihood methods
for estimating the regression coefficients and the location of
points of intersection of the two regression equations.

Hudson (1966) provided further insights into this problem.
He examined four types of join points for joining two polynomial
regressions depending primarily upon whether each join point was
at an abscissa data point or between such points, and whether the
regressions had equal or unequal slopes at the join points.
Hudson suggests that in some cases a constrained least squares
regression search routine could be used to estimate the location
of the join points.

Gallant and Fuller (1973) made an important contribution in
dealing with some of the issues raised by Hudson. Using con-
tinuity and differentiability conditions, they reparameterized a
spline regression model to form a nonlinear regression model.
This nonlinear model could then be estimated using Hartley's
modified Gauss-Newton method of minimization to obtain least
squares estimates of the regression parameters. They also
pointed out some asymptotic properties and hypothesis testing
implications of this approach.

The estimation technique to be presented herein will not be
as sophisticated as the Gallant and Fuller approach but, for
Hudson's Type Two models, will provide estimates of the number
and location of spline knots using a simple extension of the
Suits and Smith methods.

2. ESTIMATING SPLINE REGRESSIONS

The purpose of this paper is to demonstrate a simple method
of estimating the number and location of knots in spline regres-
sions. Unlike most previous work, discontinuities are not
restricted to the highest order nonzero derivatives, but may
occur for one or more derivatives at any knot location. Linear
adjustments are shown to generate discontinuities only for the
first derivatives. A quadratic adjustment generates discon-
tinuities only for the second derivatives, while cubic adjust-
ments only alter the third derivatives. Any combination of
adjustments is permitted at any of the potential knot locations.
However, this freedom can be restricted if one so desires.

There are many alternative ways of formulating spline
regression models. Smith (1979) offers an approach to specifying
spline models that is convenient as a basis for estimating knot
locations. In particular, her "+" functions readily lend
themselves to this stepwise method for estimating the number and
location of spline knots.

Smith initially provides a 'general model for k knots in an
n degree polynomial regression:

n . k n )
y = 22 Bp,j X3+ 2= Bi,j(X -t o+ e (2.1)
=0 i=1  j=0

where y is any continuous dependent variable and X represents an
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explanatory variable that has several special values that
identify knot locations. There are k of these special X values,
and they are designated tj where i = 1, ...,k. The B's are the
regression coefficients and ¢ is the usual, well-behaved regres-
sion error term. This model with no continuity restrictions
could be called an unrestricted dummy variable model. Each
segment has its unrestricted constant term and slope values. For
example, a second degree polynomial with two knots provides for
three quadratic sections as follows:

Y = B,0 * Bg,1X + Bp, 2X2 + Bp,qD1 + Bip(X - t1) DI + By,2(X - t1)2 D1
+ B2,0D2 + B2,1(X - t2) D2 + Bp,2(X - t2)2 D2 +¢ (2.2)

The dummy variables D1 and D2 are turned on as X passes knots t;
and ty respectively (i.e. X < t; implies D1 = 0, X > tj implies
D1 =1, X < tg implies D2 =0 , and X > t2 implies D2 =1).

This unrestricted dummy wvariable model could be estimated
as is, or a more refined model could be developed by imposing
some continuity restrictions on the model. For example, the
polynomial line segments can be made to touch by eliminating the
B;,0 and Ba,0 terms. This provides a quadratic spline model
which is joined at the knots but may have sharp corners at the
join points due to the first derivatives being unegual. This
can be smoothed out by setting Bj,; and Bz,1 both equal to zero.
This reduces the sharpness of the turning points at the knots by
forcing the first derivatives to be equal at each knot:

Y = B0,0 * Bo,1X + Bg,2X2 + By,o(X - t1)2 DL + Bo,2(X - té)Z D2 +¢  (2.3)

This formulation makes the values of the functions equal at the
knots as well as the values of the first derivatives. The
second derivatives are left unequal. Of course, if we made the
second derivatives equal at the knots as well, we would end up
with just one big quadratic equation covering the entire range
of data.

By leaving only the highest order, nonzero derivatives
unequal, we have what Smith calls the smoothest possible spline,._
which she expresses in general terms as:

n

. k

n

y = EEE BOstJ *’25% Bisn(X - tj)+ + ¢ (2.4)
J: 1=

This 1is a spline model that is as restrictive as it can be
without loosing its spline character. It offers some flexibility:
but is close to the single polynomial equation model.

If the location of the spline knots were known in advance,
then we could try estimating various continuity restrictions for
the different polynomial segments. For example, if salary is
considered to be related to years of education, then one might



assume a spline knot at twelve years for the high school diploma,
sixteen years for the BA degree, and eighteen years for the MBA.
The degree of the polynomial and continuity restrictions could
then be determined in reference to these three knots.

But what if the number and location of knots are not known
in advance? The traditional approach to such a problem is to
present it as a maximum likelihood estimation problem. This is
often done because of the desirable consistency and asymptotic
normality properties that are often forthcoming for maximum
likelihood estimators.

However, an alternative approach using stepwise regression
methods can be used profitably  in many cases. Suppose that
instead of viewing salary as a function of years of education,
we wish to view it as a function of vyears of experience.
Experience may not offer us well defined knot locations the way
education did. Instead we may want to estimate the number and
location of knots for years of experience.

Say that our data set has five thousand cases but less than
one hundred different values for years of experience. We could
search over all of the integers from one to one hundred for
knot locations or we may wish to search only over the actual

values of experience in the data set. In either case, we create
a "+" function type dummy variable for each possible knot
location. The X variable, experience, might take on values one

through seventy-three with seventy-three corresponding knot
locations t; = 1 through t73 = 73. A corresponding set of dummy
variables (D1 through D73) can then be set up such that Di = 0
if X < tj and Di = 1 if X > tj.

Now assume that a cubic spline model is desired. This
means that three sets of spline variables will be needed. These
are the linear spline variables: (X - tj) Di, the guadratic
spline variables: (X - tj)2 Di, and the cubic spline wvariable:
(X - tj)3Di. Altogether for a cubic spline model with seventy--
three possible knot 1locations, the unrestricted dummy variable
model would be:

7

w

Y = Bp,0 + Bp,1X + Bp,oX2 + By,3x3 +

M

z Bi,j(X - ti)J Di +e (2.5)
J..

1}
—

i

This certainly covers a lot of ground. There are two-hundred
and ninety-six coefficients that potentially might be estimated
here. Fortunately, a stepwise procedure can be devised to
select out the ones that are statistically significant.

The programming requirements for +this type of model are
fairly well defined. The program should be able to handle an
unknown number of cases with an unknown number of unigque knot
locations where some maximum value is specified for the degree
of the polynomial. A stepwise procedure can then be used' to
select the statistically significant knot locations and the
degree of the polynomial appropriate within each spline segment
defined by these knot locations. 1In other words, any combination
of polynomials of various degrees may be found to fit the data.
No a_priori restriction is made on the degree of the polynomial
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within each segment except that it not exceed the overall
maximum set in advance. Since cubic splines seem fashionable
the maximum degree could be set at three. However, there is
nothing to prevent that maximum from being set at four or five
or even nine or ten if it were desired. Of course, one eventual-
ly reaches the limits of reasonable CPU core and time usage.

The next section presents the proposed spline regression
estimation procedure using the SAS computer language. Similar
stepwise estimation procedures may be possible in other computer
languages.

3. SPLINE REGRESSION PROGRAMMING

In this section a SAS spline regression program will be
discussed for estimating the number and location of spline
knots. The spline knots are statistically selected from a set
of potential knot locations that could be specified a_priori or
could be defined as the set of unique values taken on by a
particular observed variable. For example, the latter approach
might be appropriate if one wished to restrict the search for
knots to the actually observed values of years of education or
experience for the individuals in the sample. The former
approach might be better if time itself was being used as the
variable of interest and one wished to check each and every year
from, say, 1930 through 1980 for knots. Of course, if year is
the variable of interest and there is one and only one observation
per vyear, then these two approaches provide the same set of
potential knot locations. In that case, the number of potential
knot 1locations would be equal to the sample size. As noted
above, if the X variable has repeated values, a subset of unique
values can be obtained by sorting the data in SAS by using the
PROC SORT; BY X; statements and the IF LAST.X THEN OUTPUT;
statement.

Once the subset of unique, potential knot location wvalues
has been found, then the SAS procedure PROC TRANSPOSE can be
used to create the corresponding number of dummy variables
needed to identify each potential knot location for the stepwise
regression procedure. Alternatively, the transpose function in
PROC MATRIX could be used for this purpose.

The large number of dummy variables thus created can then
be used to create the corresponding large number of linear,
guadratic, and cubic spline terms (and higher order terms if
desired). To do this efficiently, array statements must be used
since hundreds of variables are to be created. Since the length
of these arrays is not known in advance, a method must be
devised to create arrays of unknown length. This must be done in
such a way that the string of wvariables thus created can be
referred to without knowing the number of variables 1nvolved
This may be demonstrated as follows:

SAS SPLINE REGRESSION PROGRAM

DATA XY; INPUT X Y @@; N+1; CARDS;
falak data cards kel

PROC MEANS NOPRINT; VAR N;

OUTPUT OUT=NUMBER MAX=NCOUNT;



PROC SORT DATA=XY; BY X;
DATA REDUCED; SET; BY X;
IF LAST.X THEN OUTPUT; KEEP X;

PROC TRANSPOSE DATA=REDUCED PREFIX=KNOT;
DATA KNOTS; SET; KNOTEND=1;

PROC TRANSPOSE DATA=REDUCED PREFIX=D;
DATA DS; SET; DEND=1;

PROC TRANSPOSE DATA=REDUCED PREFIX=L;
DATA ARRAYL; SET; LEND=1;

PROC TRANSPOSE DATA=REDUCED PREFIX=Q;
DATA ARRAYQ; SET; QEND=1;

PROC TRANSPOSE DATA=REDUCED PREFIX=C;
DATA ARRAYC; SET; CEND=1;

DATA MATCH; MERGE KNOTS DS ARRAYL ARRAYQ ARRAYC NUMBER;
DO I=1 TO NCOUNT; OUTPUT; END;
DROP _NAME_ I NCOUNT;

DATA; MERGE XY MATCH;
ARRAY KNOT KNOT1--KNOTEND;

ARRAY D D1--DEND; Figures 1 and 2 were generated by
ARRAY L L1--LEND; replacing PROC STEPWISE with:
ARRAY Q Q1--QEND; _

ARRAY C C1--CEND; PROC REG;

DO OVER KNOT; MODEL Y = X C36 Q50 L63 L89;

IF X LT KNOT THEN D=0; OUTPUT OUT=B P=YFIT;

IF X GE KNOT THEN D=1; GOPTIONS DEVICE=TEK4010;
L=D*(X-KNOT) ; PROC GPLOT DATA=B;
Q=D*€X-KNOT%**2; ' PLOT YX YFIT*X;

C=D*(X-KNOT ) **3; SYMBOL?2 I=SPLINE;

END; X2=X**2; X3=X**3;

PROC STEPWISE; MODEL Y=X X2 X3 L1--LEND Q1--QEND Cl--CEND /
INCLUDE=1 SLE=1 SLS=1;

After wusing PROC TRANSPOSE to transpose the subset of
potential knot location values, the single observation that
results has an unknown number of newly created variables. That
unknown number is the number of potential knot location values
and corresponds to the number of unique values of X in the data
set. If one wished to search over a prespecified set of values
instead of using the observed X values, a variable Z containing
those values could simply be loaded into the data set called
REDUCED just prior to the first PROC TRANSPOSE.

In order to be able to refer to a string of variables in an
ARRAY statement, we need to know the name of the first wvariable
and the last wvariable. The first wvariable name is simple
enough. It is the prefix with the number 1 attached, which' is
KNOT1 in this case. The last variable is the problem. There is
an unknown number of variables here. We don't know what the
name of the last variable will be, so we just throw in a variable
whose name we do know. By creating a single additional variable
at this point (e.g. KNOTEND=1), the string of wvariables KNOT1--
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KNOTEND may be referred to without knowing the number of
variables in the string.

In a similar manner the corresponding dummy wvariables and
linear, quadratic and cubic variables can be referenced by array
statements without knowing their length. The initial values
loaded into these array data sets are needed only to create the
variable names. The proper values are assigned to these vari-
ables in the final DO loop.

Once all of the appropriate spline regression variables
have thus been created, the PROC STEPWISE regression procedure
can be used to pick out the knots that are statistically signifi-

cant. The 1l1line segments that are fitted in this manner may
represent a combination of linear, guadratic and cubic equations
that are Jjoined at the knots. If one wishes to allow the

functions to be unequal at the knots then the D1--DEND variables
should be included in the MODEL statement for PROC STEPWISE.
This will allow the functions to be unequal at the knots if such
a break in the function is statistically significant. Any of
the derivatives may be unequal at the knots as well. Thus, any
combination is possible ranging from the completely unrestricted
dummy variable model with many segments to the single polynomial
function model with no knots.

4. AN INTEREST RATE APPLICATION

Estimating a spline model for interest rates on commercial
bonds provides a convenient example of determining the number
and location of spline knots. The New York City open market
rates for four-to-six month commercial paper with Aa rating or
equivalent will be used for the period 1890 through 1981.

The stepwise regression procedure selected terms for the
spline regression model that attained a level of significance of
at least .01 or better. The Y variable is the interest rate and
the X variable is the year. Variables beginning with the letter
C represent cubic adjustments, those with Q represents guadratic

adjustments, and L stands for linear adjustments. The number
following these letters indicates +the knot location and cor-
responds to the "i" subscript in (2.1) and (2.5). Table 1

displays the spline regression model results.

Estimated

Variable Regression Student t Prob
Name Coefficient Statistics Value
INTERCEPT 144.47767186 9.0990 .0001
X -.,07291068 -8.8004 .0001
C36 -.00068578 -5.,7497 .0001
Q50 .08271411 5,.7691 . 0001
L63 -.64603088 -2.9252 . 0044
L89 2.74175672 6.6394 .0001

N = 92 R2 = ,8574 R2 = ,8491 F = 103.4 F-Prob < .0001
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In general terms these results provide the following
functional form:

Y = Bo,0 + Bp,1X + B3g,3(X - t36)3 D36 + Bgg,2(X - tsg)2 D50

+ Bg3,1(X - tg3) D63 + Bgg,1(X - tgg) D89 + ¢ (4.1)

where Bgp,o is the intercept term, Bgp,1 is the coefficient of X,
B3g,3 is the C36 coefficient, Bsp,2 is the Q50 coefficient,
Bg3,1 is the L63 coefficient, and Bgg,1 is the L89 coefficient.

Substituting in for the estimated coefficient wvalues and
knot locations results in the following fitted values for Y:

y = 144 - 073 X - .0007 (X - 1925)3 D36 + .083 (X - 1939)2 D50 -

-.646 (X - 1952) D63 + 2.74 (X - 1978) D89 (4.2)
Note that observation 36 1is 1925, observation 50 is 1939,
observation 63 1is 1952, and observation 89 1is 1978. Five

separate equations represent the five time period segments found
by collecting terms on X in (4.2).

1890 - 1924: y = 144 - 073 X (4.3)
1925 - 1938: y = 4,892,038 - 7623.8 X + 3.96 X2 - .0007 X3 (4.4)
1939 - 1951: y = 5,203,020 - 7944.6 X + 4.04 X2 - 0007 X3 (4.5)
1952 - 1977: y = 5,204,281 - 7945.2 X + 4.04 X2 - ,0007 X3 (4.6)
1978 - 1981: y = 5,198,858 - 7942.5 X + 4.04 X2 - .0007 X3 (4.7)
The initial linear relationship becomes cubic in 1925. The

intercept term and the coefficient for X adjust dramatically to
compensate for the introduction of the cubic and guadratic
terms. These relationships can be seen in Figures 1 and 2.

The first, second, and third derivatives can be derived
from (4.1) as follows:

dy
_ - Bos1 + 3 B36,3(X - t36)2 D36 + 2 Bgg,(X - tgp) D50
+ Bg3,1 D63 + Bgg,] D8Y (4.8)
d?y 6 B3g. 3( )
s 36.3(X - t D36 + 2 B D50
ax2 ’ % 2 -
d 6 B 3
= 36,3 D36 ¢
o ( 710)
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Figure 1. Interest Rate on Commercial Bonds: Original Data Points
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The functions themselves as well as their first and second
derivatives are equal at the 1925 knot. The third derivatives
are not equal at this first join point.

A guadratic adjustment takes place in 1939. At this second
join point the first and third derivatives are egqual but not the
second derivatives. This allows for an interesting minimizing
loop in the predicted interest rates around 1940. In 1952, a
discontinuity takes place in the first derivative due to a
linear adjustment. However, the functions and their correspond-
ing second and third derivatives are equal at the 1952 knot.

Another final linear adjustment takes place in 1978 which
substantially straightens out the fitted relationships. The
general effect on the derivatives of this linear adjustment is by
necessity the same as the 1952 linear adjustment. In other
words, linear adjustments result in discontinuities only for the
first derivatives. Similarly, quadratic adjustments cause
discontinuities only for the second derivatives while cubic
adjustments only generate discontinuities for the third deriva-
tives.

In summary, this spline regression model shows that although
the interest rate on commercial bonds had been gradually falling
since at least the late 1890's, a dramatic downward slide in
this interest rate occurred with the imposition of large import
tariffs and the onset of the great depression. This lasted
from about 1925 when interest rates took a downward turn with a
cubic adjustment, €36, to around 1939 when interest rates
bottomed out with the help of a guadratic adjustment, Q50.

Interest rates continued rising throughout World War II
until modified by a linear adjustment, L63, at the conclusion of
the Korean Conflict. A final linear adjustment, L89, took place
in the late 1970's as the full impact of the energy crisis set
in and interest rates rose dramatically.

5. CONCLUSIONS

This paper provided a method for estimating the number and
location of spline Lknots (join points) for spline regression
models. A SAS program for carrying out this estimation has been
explained and demonstrated. The interest rate example has shown
the power of this technique for fitting spline regressions. An
analysis of the derivatives shows how tightly or loosely the
polynomial line segments are connected at each join point. The
interest rate for prime commercial paper provided some dramatic
changes that demonstrated the need for the flexibility of the
polynomial spline fitting regression technique.
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