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ABSTRACT 

 

This research investigates the relationship between firm-specific style attributes and the cross-

section of equity returns on the JSE Securities Exchange (JSE) over the period from 1 January 

1997 to 31 December 2007. Both linear and nonlinear stock selection models are constructed 

based on the cross-section of equity returns with firm-specific attributes as model inputs. Both 

linear and nonlinear models identify book-value-to-price and cash flow-to-price as significant 

styles attributes that distinguish near-term future share returns on the JSE. The risk-adjusted 

performance of the nonlinear models is found to be comparable with that of linear models. In 

terms of artificial neural network modeling, the extended Kalman filter learning rule is found to 

outperform the traditional backpropagation approach. This finding is consistent with our prior 

findings on global stock selection. 
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INTRODUCTION 

 

odern portfolio theory of Markowitz (1952) and the separation theorem of Tobin (1958) describe 

the asset allocation decision of rational investors in an efficient capital market. The asset pricing 

relationship depicted by the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner 

(1965), along with the efficient market hypothesis (EMH) of Fama (1970, 1991), form the joint hypothesis for tests 

of market efficiency. The hypothesis states that firm-specific information is reflected in the share price in an 

efficient capital market, and firm-specific risk is diversifiable in a large portfolio. As a result, the only relevant risk 

is market risk, measured by an asset’s beta coefficient against the movements of the market portfolio. 

 

Tests of the joint hypothesis reveal several anomalies relating to the use of firm-specific information to 

earn abnormal returns above the risk-adjusted returns suggested by the CAPM. The CAPM-related anomalies 

include the value effect of Basu (1977), the small firm effect of Banz (1981), the long-term price reversals of De 

Bondt and Thaler (1985, 1987) and the momentum effect of Jegadeesh and Titman (1993). Possible explanations for 

these anomalies include methodological bias in empirical research, misspecification of the CAPM pricing 

relationship and the argument of investor irrationality from the behavioural perspective. Further to this, the existence 

of nonlinearity in the pricing relationship based on firm-specific attributes is observed in studies conducted by Banz 

(1981), Fama and French (1992, 1993), Van Rensburg and Robertson (2004), Eakins, Stansell and Buck (2003), 

Cao, Leggio and Schniederjans (2005) and Cao, Parry and Leggio (2009). 

 

This research explores the existence of nonlinearity on the JSE Securities Exchange (JSE) over the period 

01 January 1997 to 31 December 2007 by investigating candidate factors that contribute to the variations in the 

cross-section of equity returns on the JSE. We extend our prior study on multifactor models to incorporate 

nonlinearity in the cross-section of JSE equity returns. By comparing the results of the linear and nonlinear 

modeling techniques, the relative abilities of various combinations of firm-specific style attributes in forecasting 

equity returns are evaluated. 

 

 

M 
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LITERATURE REVIEW  
 

Since the introduction of the Sharpe-Lintner (1964, 1965) capital asset pricing model, numerous studies 

testing the predictability of stock returns in both a linear single factor and multifactor framework have emerged. 

However over the last few decades, evidence of anomalies have cast doubt on the validity of the joint (EMH-

CAPM) hypothesis. Tests conducted by Banz (1981) find evidence of a size effect where a negative relationship 

between firm size (as measured by market capitalization) and average stock returns exists for stocks listed on the 

New York Stock Exchange (NYSE), over the period from 1927 to 1975. Fama and French (1992) find evidence of a 

size effect and a value effect for stocks listed on the NYSE, American Stock Exchange (AMEX) and the over-the-

counter NASDAQ stocks over the period from 1963 to 1990. The authors report that both size and book-to-market 

ratio capture the cross-sectional return variation better than other combinations of variables, while beta possesses 

almost no explanatory power over the examination period. De Bondt and Thaler (1985, 1987) find evidence of long-

term price reversals, while Jegadeesh and Titman (1993, 2001) find evidence of a short-term momentum effect. In 

addition to U.S. studies, these anomalies are evident on international economies. The two main branches of studies 

that attempt to explain the CAPM-related anomalies using factor models include the use of factor mimicking 

portfolios to represent priced risks proposed by Fama and French (1993) and the characteristic approach of Daniel 

and Titman (1997). While Fama and French (1993) use the size and value factor mimicking portfolios to explain the 

residual returns of the CAPM, Daniel and Titman (1997) argue that it is the style attributes themselves that explain 

the cross-section of equity returns. In terms of South African stocks listed on the JSE Securities Exchange (JSE), 

Van Rensburg and Robertson (2003a) and Van Rensburg and Robertson (2004) find evidence that support the 

argument of Daniel and Titman (1997). 
 

In a univariate study, Hodnett, Hsieh and van Rensburg (2012a) estimate and examine the consistency of 

the payoffs to firm-specific attributes for stock listed on the JSE over the period 1997 to 2007. 32 firm-specific 

attributes under examination are grouped into five categories, namely (1) fundamental values relative to share price, 

(2) solvency and liquidity, (3) fundamental growth, (4) size and return momentum and (5) consensus analyst 

forecast. The authors report that those firms possessing higher fundamental values relative to their share prices, 

higher dividend and earnings growth, lower market capitalization, higher short-term returns and those with higher 

earnings forecasts earn relatively higher returns in the subsequent period in a consistent manner. The only category 

that did not yield significant attributes is the solvency and liquidity category. Hodnett, Hsieh and van Rensburg 

(2012b) extend the study to a multivariate framework over the same examination period. A sixth category, namely, 

operating performance, is included in the research yielding 38 style attributes under examination. Employing the 

methodology of Haugen and Baker (1996), in conjunction with the stepwise variable selection technique suggested 

by Van Rensburg and Robertson (2004), the authors construct 2 expected return multifactor models to predict 

forward monthly returns, with the style inputs as the model inputs. The models are designed to select inputs that 

maximize the in-sample Grinold (1989) information ratio and the Qian and Hua (2003) information ratio, 

respectively. The models are then tested in the out-of-sample period from 2002 to 2007. The models are updated 

every 12 months, along with the identity of the variables in a rolling procedure. Results confirm that the value 

attributes are the most important contributors to equity return forecasting on the JSE over the examination period. 

The model that maximizes the in-sample Qian and Hua (2003) information ratio outperforms the model which 

maximizes the in-sample Grinold (1989) information ratio. 
 

Over the years evidence has emerged suggesting that stock return predictability could possibly be explained 

by a model incorporating nonlinearity. For example, Banz (1981: 16) concludes, “The size effect is not linear in the 

market proportion (or the log of the market proportion) but is most pronounced for the smallest firms in the 

sample”. Further motivation for an asset pricing model that accounts for nonlinear behavior also dates back to Fama 

and French (1992). Stehle, Bunke and Sommerfeld (1997) argues that Fama and French (1992) assume a nonlinear 

relationship between expected returns and the untransformed values of the independent variables by using the 

logarithm of size and the logarithm of book-to-market ratio as independent variables in their cross-sectional 

regression models. Further to this, Stehle et al. (1997) argues that Fama and French (1992) use this form of 

nonlinear relationship without providing any reason.  
 

Tests conducted by Hung, Liang and Liu (1996) and Kanas and Yannopoulos (2001) support the use of 

artificial neural networks (ANN) in financial research. Hung, Liang and Liu (1996) conduct research on the Taiwan 
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Stock Exchange in order to determine the feasibility of integrating the portfolio management process and artificial 

neural networks. This approach includes blending the arbitrage pricing theory (APT), an artificial neural network 

(ANN) and a portfolio constructor. A fixed-architecture network is trained using the backpropagation algorithm. The 

results provide evidence that the integrated approach provides a more optimal solution than when the APT or ANN 

is used alone, by eliminating the shortcomings of each technique. Kanas and Yannopoulos (2001) construct both a 

linear and an ANN model in order to examine and compare (out-of-sample) monthly returns for the Dow Jones (DJ) 

and Financial Times (FT) indexes, using the lagged return series of dividends and trading volume as the explanatory 

variables. With regard to both indexes, the results reveal the superiority of the out-of-sample ANN forecasts. In 

addition to this, the ANN forecasts explain the forecasting errors of the linear models for both indexes. This is not 

the case with the linear model. The authors’ findings provide support for the underlying nonlinear relation between 

stock returns and fundamental attributes.  
 

In terms of the examination of firm-specific attributes (style attributes), Eakins, Stansell and Buck (1998) 

examine nonlinearities in financial data by examining a set of firm-specific attributes for firms invested in by 

institutional investors. The sample includes companies listed on the NYSE, AMEX or those trades through the 

national association of security dealers. The data used in the study details the institutional ownership of about 3000 

firms for the period from 1988 to 1991. An ANN model is constructed which includes the lagged values of ten firm-

specific variables as inputs, namely, net profit margin, operating profit margin, current ratio, total asset turnover, 

debt-to-asset ratio, return-on-assets, price-earnings ratio, market value, trading volume and percentage ownership as 

the model output. The model is trained via the gradient descent backpropagation learning algorithm. Motivation for 

an ANN model is due to results of the first phase of their study in which tests for linearity revealed that beta, firm 

size and trading liquidity are nonlinear in their relationship with institutional ownership. In terms of predictive 

power, the ANN model outperforms the tobit regression model over the examination period. In a follow-up study, 

Eakins and Stansell (2003), in an attempt to determine whether value stocks provide superior investment returns, 

construct an ANN model using the descriptors of value, that is, price-to-cash flow, price-to-book, dividend yield, 

earnings yield, sales and market capitalization as inputs in the neural network, while percentage total return is 

specified as the output. All stocks listed on COMPUSTAT over the period from 1975 to 1996, with a market 

capitalization value greater than a current value of US$150 million are included in the study. The model is trained 

using the backpropagation training algorithm. The results provided evidence that the risk-adjusted returns of 

portfolios selected by the ANN model are greater than the results achieved by other forecasting models. Consistent 

with Fama and French (1992, 1993) value stocks provide higher returns with lower risk than can be obtained from 

the random walk process.  
 

Cao, Leggio, Schniederjans (2005) examine firm-specific attributes in emerging economies over the period 

from 1999 to 2002. Daily closing prices, quarterly book value and common shares outstanding for 367 public 

corporations traded on the Shanghai Stock Exchange are downloaded. ANN models are constructed to predict stock 

price movement on the Shanghai Stock Exchange and compared to linear regression models. Four models are 

constructed, two linear and two ANN models. The first linear model constructed is a univariate CAPM where stock 

returns are regressed on beta. A multivariate model is a replication of the Fama and French (1993) three-factor 

model. The ANN models are the nonlinear counterparts of the univariate and multivariate models. The 

backpropagation algorithm is used to train the ANN models. The results indicate that, in terms of the linear models, 

the CAPM outperforms the three-factor model in stock return prediction. It is also found that the ANN models 

outperform their linear counterparts in terms of their predictive power. Cao, Parry and Leggio (2009) extend the 

methodology of Cao, Leggio, Schniederjans (2005) by comparing three linear models with three ANN models on 

the Shanghai Stock Exchange over two sub periods, namely, 1999 to 2002 and 2003 to 2008. The models include a 

linear and an ANN univariate time series model, a multivariate linear and nonlinear version of the CAPM (where 

stock returns are regressed on market returns), and the linear and nonlinear version of Fama and French (1993) 

three-factor model. The results once again confirm the forecasting superiority of the ANN models relative to the 

linear models. There is also no significant difference between the CAPM and the three-factor model, both in the 

linear and the nonlinear case.  
 

Hodnett and Hsieh (2012) investigate the potential of ANNs in the stock selection process of global 

actively managed funds over the examination period from 2004 to 2009, using the Dow Jones Sector Titans as the 

research database. Two ANN models are constructed within the cascade-correlation architecture, with 17 style 
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attributes as candidate model inputs in the cross-section of global stock returns. The results support the use of 

artificial neural networks for financial forecasting in the stock selection process of actively managed funds. 

Particularly, the model trained via the embedded extended Kalman filter had greater strength in identifying future 

top performing stocks than the model trained via the back propagation learning rule. 

 

Empirical studies in South Africa also provide ground for research into the nonlinearity of equity returns 

for stocks listed on the JSE Securities Exchange. For example, Fraser and Page (2000) study the momentum effect 

on the JSE over the period of 1977 to 1997. They find that although momentum shares with relatively higher prior 

returns earn higher future returns in general, the negative momentum shares earn higher returns than the shares 

placed in the fourth momentum quintile. Van Rensburg and Robertson (2004) find that the firms in the fifth 

(smallest) size and value quintiles earn higher returns than the firms in other quintiles over the period from July 

1990 to June 2000. However, the average monthly returns earned by the respective quintiles do not appear to be 

linear. More specifically, the shares in the third size quintile actually earn lower returns than shares in the second 

size quintile. On the other hand, the average monthly returns are progressively distributed to the shares in the higher 

value quintile (that is, higher indications of value). If these nonlinearities are found to be apparent, of more 

relevance then is to determine whether these nonlinearities are robust over time, and how to capture and utilize them 

in forecasting equity returns and subsequent stock selection.   
 

ARTIFICIAL NEURAL NETWORKS BACKGROUND 
 

Artificial neural networks represent abstractions of biological neural networks and are designed to imitate 

the functioning of the human brain. ANNs are composed of processing elements operating in parallel, which have 

the ability to map any arbitrary nonlinear function. ANNs are composed of neurons, commonly referred to as 

‘nodes’, ‘processing elements’ or ‘perceptrons’. A biological neuron, in its most basic form, is a data-storing cell, 

responsible for the cognitive processes of the brain, such as memory, problem-solving or the ability to learn. An 

interconnected set or group of these neurons is referred to as a neural network.  
 

An artificial neuron, represented in Figure 1, is the most basic component of an artificial neural network. 

Inputs          are fed into the neuron, weighted and summed and then passed through a nonlinear activation 

function to the output (  . The connection (synaptic) weights        ) represent the interconnection between the 

units. The weights are modified to represent the respective connection strengths.    represents the bias inputs, while, 

   represents the bias weight. Nonlinearity is introduced into the network by way of an activation function. The 

sigmoid activation function (   is the most commonly used transfer function in neural networks. In linear regression 

the activation function is the identity function. 
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Figure 1: Structure of a Neuron 
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Thus, a group of artificial neurons, with weighted interconnection and structured in layers (consisting of an 

input layer, one or more hidden layers and an output layer) with parallel processing is referred to as an artificial 

neural network. Neural networks may differ depending on the network architecture and training mechanism. For 

example fixed-architecture feed-forward networks are traditional representations where information passes from the 

input layer neurons to the hidden layer neuron(s) and finally propagated to the output layer neuron(s), via 

interconnection weights. Neurons occupying a particular layer are in no way interconnected- information is fed 

forward in such a way that each input layer neuron is fully connected each hidden layer neuron, which in turn is 

connected to each neuron in the output layer. In some instances, in addition to the interconnections described, a 

direct connection may also exist between the neurons in the input layer and the neurons in the output layer.
1
 This 

direct connection from input to output neurons captures any linear relationships in the data, while the incorporation 

of the hidden neurons captures nonlinearity. For example, Equation 1 (modified from Kanas and Yannopoulos 

(2001) and adapted from Hodnett and Hsieh (2012)) represents the expected returns determination process where a 

fixed-architecture ANN model with direct connections from input to output layer is used to estimate the expected 

return of share i in month t. 
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Where: 

 

         = the expected return of share i for period t; 

ti,0,a   = the bias term to the output layer for period t; 

tj,i,g   = the direct payoff to input neuron 1, tjF  from the output neuron (the equity returns) 

for period t; 

1tj,F   = the input neuron representing the transformed lagged value of attribute j in the input 

layer; 

ti,k,b   = the factor payoff to the hidden neuron k from the output neuron for period t (it measures  

   the sensitivity of the equity returns to movements in hidden neuron k);  

ti,0,d   = the bias term to the hidden layer for period t; 

tj,k,i,c   
= the factor payoff to input neuron 1, tjF  from the hidden neuron k for period t (it  

measures the sensitivity of hidden neuron k to movements in input 1, tjF );  






J

1j
1tj,tj,i, Fg  = the linear function; 
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1tj,tj,k,i,ti,0, Fcd   = the input signal within the nonlinear activation function. 

 

The backpropagation learning algorithm is a gradient descent mechanism used to update the weights of the 

network, until the network error is minimized. The extended Kalman filter, based on state-space theory, is an 

alternative learning algorithm designed to update/adjust the network weights. Both mechanisms are illustrated in 

detail in Hodnett and Hsieh (2012) and discussed within the context of the cascade-correlation architecture presented 

in Figure 2. 
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Figure 2 Cascade-Correlation Architecture: This topology-modifying architecture is an example of a feed-forward network. 

Activation is passed forward from the input layer to the first hidden neuron (first hidden layer). Activation then passes to the 

second hidden neuron (second hidden layer) and finally to the output neuron (output layer).  

 

The structural design of the ANN architecture as well as the training rule/ mechanism influences the manner in 

which the network is able to learn. In addition to fixed-architecture networks, there exists the cascade-correlation 

architecture of Fahlman and Lebiere (1990/1991), presented in Figure 2. Cascade-correlation serves a two-fold 

purpose. Firstly, it establishes the cascade-architecture where hidden neurons are added one by one to the network. 

Once they have been added to the network, they do not change. Secondly, it is a feed-forward, supervised learning 

algorithm for training artificial neural networks. It is the job of the learning algorithm to install the hidden neurons. 

Many different networks are trained until the best one is selected. No a priori network architecture needs to be 

specified in advance (as is the case with fixed-architecture networks). The objective of constructing ANN models is 

to determine the existence of essential relationships in data. More complex patterns would thus require more hidden 

layers. With cascade-correlation networks, “there can be any number of hidden nodes, depending on (and 

increasing with) the complexity of the pattern in the input data” (Coats and Fant, 1993: 144). Initially there are no 

hidden nodes in the hidden layer. Hidden nodes are then added to the network one at a time. “For each new hidden 

unit, we attempt to maximize the magnitude of the correlation between the new unit’s output and the residual signal 

we are trying to eliminate” (Fahlman and Lebiere, 1990/1991: 3). Note in Figure 2 that each hidden neuron is fully 
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connected from both input neurons and pre-existing hidden neurons to all existing output neurons. The objective of 

this cascade architecture is thus “to “incrementally” capture the knowledge in the unique structure of hidden nodes 

and connection weights” (Coats and Fant, 1993: 145-147). This cascaded architecture also ensures that the neural 

network determines the actual number of hidden nodes and connection weights.  

 

All ANN models in this research are trained within the cascade-correlation learning algorithm. This 

algorithm trains the weights using an embedded backpropagation or extended Kalman filter learning rule described 

in Hodnett and Hsieh (2012). 

 

RESEARCH METHODOLOGY 

 

In this study we analyze 4 expected return multifactor models constructed to predict forward monthly JSE 

sample stock returns, over the examination period 01 January 1997 to 31 December 2007, using firm-specific 

attributes as model inputs. These multifactor models constructed consist of 2 linear and 2 nonlinear models. Since 

our objective is to explore nonlinearities in the cross-section of JSE returns, we include the linear models developed 

in our prior study in order to draw a meaningful comparison with the forecasting and stock selection abilities of the 

nonlinear models. The linear models constructed in Hodnett, Hsieh and van Rensburg (2012b) is based on the 

methodology of Haugen and Baker (1996) and the stepwise variable selection procedure suggested by Van Rensburg 

and Robertson (2004). The first linear model, Grinold (IR), had the objective of selecting those variables which 

maximizes the in-sample Grinold (1989) information ratio, while the second linear model, QH (IR), had the 

objective of maximizing the in-sample Qian and Hua (2003) information ratio. These models were then evaluated 

over a specified out-of-sample period, namely 2002 to 2007. The models and style attributes were updated every 12 

months based on training over the prior 60 months period using a stepwise variable selection procedure. In this 

paper, we construct 2 nonlinear models, which are the counterparts of the linear models, using artificial neural 

networks. These models are constructed within the cascade-correlation architecture of Fahlman and Lebiere 

(1990/1991), with different embedded learning rules, namely the traditional backpropagation learning rule and the 

extended Kalman filter learning rule.  We utilze the same dataset set outlined in Hodnett, Hsieh and van Rensburg 

(2012b) which consists of closing stock prices, indexes and style attributes for 159 stocks comprising the FTSE/JSE 

All Share Index over the examination period from 01 January 1997 to 31 December 2007, downloaded from 

Datastream International. The 38 style attributes (extracted from Hodnett, Hsieh and van Rensburg (2012b)) are 

presented in the Appendix.
2
 

 

As mentioned, the ANN models are constructed within the cascade-correlation architecture and trained 

using an embedded backpropagation and the extended Kalman filter learning rule, respectively. ANN_Backprop is 

trained via the backpropagation learning rule while ANN_Kalman is trained using the extended Kalman filter 

learning rule. The same evaluation criteria as the linear models, namely, the Grinold (1989) information ratio and 

the Qian and Hua (2003) information ratio are used to evaluate the performances of the ANN models. This allows 

direct comparisons to be made between the performances of the linear expected return factor models and their 

nonlinear counterparts presented in this paper. We also intend to draw a comparison with the results of Hodnett and 

Hsieh (2012) who found that the model trained via the extended Kalman filter rule outperformed the model trained 

via the backpropagation learning rule in the global equity market. 

 

Consistent with the linear models, this study employs the moving-window procedure whereby 60 months 

data are trained to forecast the immediate 12-month returns following the training period (60-for-12). Under this 

design, the dataset spanning the period from 01 January 1997 to 31 December 2001 represents the first training 

dataset to forecast the 12 months returns in 2002. The second training window covers the dataset spanning the 

period from 01 January 1998 to 31 December 2002. This training window discards the first 12 months data (that is,  

the data in 1997) and incorporates new information that becomes available in 2002 to forecast the 12-month returns 

in 2003. This overlapping procedure is then repeated a further 4 times until all returns in the out-of-sample period is 

forecasted.  Additionally, the out-of-sample period is also divided into two sub-periods from 2002 to 2004 and from 

2005 to 2007. 
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ANN Model Design 

 

 Four areas of concern are addressed in the designing of the ANN models: selecting and specifying the data 

sets (train, test and validation sets), input variable selection, ANN construction and training; and ANN model 

evaluation. 

 

(a) Train, Test and Validation Set Selection 

 

When developing a model to project the expected return of each share over the in-sample period, the 

objective is to maximize the accuracy of the estimation over the in-sample period. As is with the factor selection 

procedure of the linear factor models, nonlinear models with differential style factors are constructed. Haugen and 

Baker (1996: 408) emphasize that “in building an expected return factor model, we must estimate the tendency for 

stocks with differing exposures to different factors to produce differing returns”. To satisfy this condition, the factor 

payoffs to style attributes have to be identical across all sample shares in any given month. This will ensure that 

shares with identical values of the style attributes employed in the model will produce identical expected returns 

from the model. The cross-sectional factor weights are estimated by training the MLP (multilayer perceptron) of the 

ANN models. The lagged values of the cross-sectional style attributes are used as the model inputs that correspond 

with the cross-sectional realized returns of the sample shares (that is, the “target” outputs). Three data sets are 

specified, namely, the training set (in-sample set), the test set (in-sample set) and the validation set (out-of-sample 

set). The purpose of the training set is to map the model parameters. The network weights are thus updated using the 

training set. The generalization ability of the learning process is assessed by the training set. The test set is indirectly 

used in building the model. The test set monitors model performance by observing how well the model interpolates. 

A technique is adopted whereby training set records are selected from a secondary working set at regular intervals. 

For all models, this procedure is such that 70% of the in-sample data set is used as the training set while 30% is 

selected as the test set at regular intervals. The validation set is completely independent of the model building 

process. The out-of-sample data, which represents the validation set, is manually set aside for verification of the 

network.  

 

(b) Input Variable Selection 

 

All 38 variables are selected as potential input variables in the neural network. The proper selection of 

inputs cannot only reduce the size and complexity of the network, but also lessen the chance of overfitting. Selecting 

those significant variables that act synergistically when combined with each other, is imperative in ANN modeling. 

In the past, different variable selection procedures have been employed in research entailing stock return prediction. 

For example, studies have employed stepwise and backward stepwise regression (Motiwalla and Wahab (2000)), 

principal component analysis, or selecting variables based on a set of a priori assumptions, to name a few. Some 

authors argue that although several available methods are applicable for linear modeling, these approaches cannot be 

simply extended to nonlinear modeling. For example, Mao and Billings (1999: 352) attribute the inapplicability of 

forward selection and backward elimination algorithms to the weight structure of an MLP neural network and 

explain “these algorithms are in fact term selection and/or deletion methods rather than variable selection and/or 

deletion algorithms in the nonlinear system case”.  

 

In this paper we employ a genetic algorithm (Holland (1975) and Goldberg (1989)) to select the optimal 

subset of input variables for the neural network.
3
 This evolutionary search procedure has the capability of modeling 

complex systems with multiple solutions. Inspired by Charles Darwin’s principle of evolution and genetics, the laws 

of natural selection apply where only the fittest members of a group will survive. These fit members will genetically 

recombine with other fit members to produce offspring thereby ensuring that good characteristics will pass on to the 

next generation, while those less fit members will be eliminated. The standard GA starts with the simulation of a 

random population consisting of subsets of input variables referred to as “individuals” or “chromosomes” in the 

evolutionary process. Each member of the population is then evaluated and graded according to a fitness function. 

This ensures that only the proportion of the fittest individuals from the current (“parent”) population is extracted. 

Through the process of reproduction (crossover and mutation) individuals are selected for the next generation. This 

continues until a particular stopping criterion is achieved. This process is depicted in Figure 3.  

 



The Journal of Applied Business Research – November/December 2012 Volume 28, Number 6 

© 2012 The Clute Institute http://www.cluteinstitute.com/  1261 

 

Figure 3 The Genetic Algorithm Cycle: The standard genetic algorithm begins with the simulation of a random population 

consisting of subsets of input variables (“individuals”). During successive iterations (“generations”) the initial individuals 

advance towards more fit individuals by reproduction among members of previous generation. Via genetic operators (selection, 

crossover and mutation) the next generation is created. Individuals are selected for the next generation, until a particular stopping 

criterion is attained. 

 

The fitness function is imperative in genetic algorithms. With the exception of all elite individuals new 

individuals are either copied from a single fit parent (current individual) to the next generation or are the product of 

two fit parents that are recombined.
4
 The research computes probabilities of the first parent, Parent 1, according to 

rank, and the second parent, Parent 2, is selected randomly according to a uniform distribution. Computing 

probabilities according to fitness is generally problematic in generating an optimal solution and thus not 

implemented. In determining probabilities according to rank, individuals are first arranged according to relative 

fitness, and selected according to a linear distribution, favoring the higher ranked individuals. A linear rank bias 

(ranging between 1 and 2) of 1.4 is specified for both ANN models. The higher this value is, the more bias there is 
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towards choosing the fitter individuals as parents. With regard to ANN_Kalman, a necessary requirement for the 

extended Kalman filter rule is that the number of input variables presented to network for training is reduced. Thus a 

linear variable selection model is deemed inappropriate. Instead, the genetic algorithm will employ a neural network 

(secondary neural network) as the variable selection model to determine fitness.  

 

Reproduction ensures that only the highest scoring parents will propagate their characteristics to the next 

generation. The most important genetic operators are the crossover and mutation operators. The crossover operator 

takes two parent individuals and combines their characteristics to produce new individuals (children/offspring). A 

cross-over probability of 0.7 is specified, specifying the likelihood that the next generation will be as a result of two 

parents from the previous generation combining and not as a result of replication from a single parent in the previous 

generation. A way of re-introducing lost variables back into the population is by specifying a mutation factor. The 

mutation operator is applied after the crossover operator and excludes any elite individuals. A mutation is a random 

addition or deletion of a characteristic in an individual, and is governed by a preset mutation factor. A mutation 

factor of 1 percent is specified. Another technique used in this research is the application of an “elitist factor”, which 

determines what fraction of the fittest members of the population will survive to be continued into the next 

generation via replication. An elitist factor of 0.05 is specified. 

 

Jarvis and Goodacre (2007) suggest three ways in which the stopping criterion can be achieved. This 

includes setting the maximum number of iterations (known as generations) that the genetic algorithm must run for, 

specifying a maximum target outcome value for fitness, or a specifying a set number of generations for which the 

fitness value for the fittest individual remains constant. In specifying the convergence conditions for the genetic 

algorithm, the maximum iterations allowed for this procedure is 50 generations for ANN_Backprop and 30 

generations for ANN_Kalman. Tolerance per generation is used to determine whether the average fitness has 

improved, while patience places a limit on the number of iterations allowed during variable selection. Under the 

condition where the average fitness of the population has not improved within the specified tolerance factor (0.001) 

for 50 iterations for ANN_Backprop or 30 for ANN_Kalman, the algorithm is halted.  

 

(c) ANN Construction and Training 

 

Cascade-correlation can be divided into two repetitive phases. The first phase involves the cascade-

architecture, while the second phase involves the recruitment of a “candidate” neuron to the growing network 

architecture. In the first phase, the network starts with an input and an output layer and no hidden neurons (layers). 

All the connections (connecting input to output layer) are trained using an embedded backpropagation learning 

algorithm for ANN_Backprop and the extended Kalman filter rule for ANN_Kalman.
5
 This training continues until 

the error of the network no longer declines. If no significant error reduction has occurred within a specified number 

of epochs (training cycles), and there exists some residual error that needs to be further reduced, a hidden neuron 

(layer) may be added to the network. Once a hidden neuron is installed (activated), its input connections are frozen 

and the neuron is in no way altered/modified. The network is trained again and if no further reduction in the error 

occurs, another hidden neuron (in a new hidden layer) is installed, with this new neuron connected to the previous 

hidden neuron, resulting in the cascaded architecture (Refer to Figure 2). This process continues until the global 

minimum is established or a final architecture is obtained. After each hidden neuron is installed, training of the 

output weight resumes.  

 

An important consideration is the determination of the hidden neuron (described in the first phase) to be 

installed in the hidden layer. Before a neuron is “recruited” for installation in the hidden layer, there may exist a 

number of “candidate” neurons, each possessing the  potential to qualify as a hidden neuron. The second phase thus 

involves the analysis of a candidate neuron and can be divided into two parts. The first part is referred to as input-to-

hidden-layer training, while the second part of this phase is referred to as hidden-to-output-layer training. Input-to-

hidden-layer training starts with the generation of the candidate neurons. Each candidate neuron is connected with 

all input neurons and all existing hidden neurons by trainable input connections. At this stage, there exist no 

connection weights between the candidate neurons and the output neurons. The weights (on the input side) of the 

candidate neurons are trained using the backpropagation algorithm, with the objective of maximizing the correlation 

between the residual error of the network and the activation of the candidate neurons. Training halts when no further 

improvements to the correlation score results. The candidate unit with the maximum correlation is installed in the 
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network as a hidden neuron. The goal of the adjustment is to maximise S, the sum over all input units o of the 

magnitude of the correlation V, the candidate unit’s value, and Eo, the residual output error observed at unit o. S is 

defined as follows (Fahlman and Lebiere (1990/1991)) : 

 

         

 

               
                                                                                                                                                   

 

 

 

Where o is the network output at which the error is measured and p is the training pattern. The quantities    and   
     

are the values of V and    averaged over all patterns. 

 

Training is stopped if the correlation ceases to improve, or if the predefined number of cycles is exceeded. 

The final step of the second phase is the installment of the candidate neuron as a hidden neuron in the network. The 

newly trained weights are frozen and no further adjustments or modifications made to these weights. Freezing the 

input weights ensures that it will always be able to track the aspects of the network error that it was trained to track. 

The new hidden neuron now has trainable weights connecting it with the output neurons. These weights now 

undergo training (hidden-to-output-layer training). The addition of the hidden neurons continues until the learning 

process is complete. 

 

(d) Evaluation of ANN Models 

 

The overall accuracy of the ANN model predictions is determined by computing the Grinold (1989) 

Information ratio and the Qian and Hua (2003) information ratio. Both performance measures are derived from the 

information coefficient (IC) which is a measure of forecasting accuracy. The IC measures the monthly correlation 

between the realised returns and the forecasted returns. The Grinold (1989) information ratio provides an indication 

of a model’s forecasting accuracy with adjustments to the model’s breadth (the number of independent forecasts 

over the evaluation period).  
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Where: 

 

Ri,t and E(Ri,t) is the realized return for stock i and the model forecasted return for stock i in month t; 

))(;( ,, titit RER  is the cross-sectional correlation (the IC) between Ri,t and E(Ri,t) in month t; 

T  is the number of months in the evaluation period; 

Nt  is the number of sample stock returns being projected in month t; and 

tN  is the adjustment for the breadth of the forecast in month t. 

 

On the other hand, the Qian and Hua (2003) information ratio evaluates the model’s forecasting ability with 

adjustments to the model’s forecasting volatility.  
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Where: 

 

IC   = the average IC score of the model; and 

 

IC   = the volatility of the time-series ICs 



The Journal of Applied Business Research – November/December 2012 Volume 28, Number 6 

1264 http://www.cluteinstitute.com/  © 2012 The Clute Institute 

EMPIRICAL FINDINGS 

 

Variable Selection 

 

Table 1 presents the results of the permutations of the style attributes selected under the stepwise variable 

selection technique  for the linear models and the genetic algorithm for the nonlinear models, for each of the six 

overlapping training (in-sample) periods spanning the period from 01 January 1997 to 31 December 2006. 

Examining the identities of the style attributes included in the models periodically, it is evident that BVTP and 

CFTP are selected across both linear and nonlinear models in almost all periods. This observation is confirmed in 

Table 2 which documents the number of training periods in which each of the candidate style attributes is included 

by the respective linear and nonlinear models. Attributes from the value (fundamental values relative to share price) 

and size and return momentum categories dominate the variables selected by all models. The number of variables 

selected by ANN_Kalman model is substantially less than the number of variables selected by ANN_Backprop 

model. 

 
Table 1:  Performance Variable Selection 

 

Table 1 documents the variables selected by the stepwise variable selection procedure (in the case of the linear models) and the 

genetic algorithm (in the case of the ANN models) for each of the six overlapping training periods spanning from the 01 January 

1997 to 31 December 2006. Panel (A) and Panel (B) present the results of the variable selection results for the linear models, 

while Panel (C) and Panel (D) present the variable selection results of the ANN models. 
 

PANEL (A)     Linear_Grinold 

 

No. 1997 to 2001 1998 to 2002 1999 to 2003 2000 to 2004            2001 to 2005 2002 to 2006 

 
1 BVTP  BVTP  BVTP  BVTP  BVTP  LSIZE  

2 FOREY2  MOM12  DEBTTBVE ROE   ROE  MOM12-1 

3 CFTP  DEBTTBVE  CFTP  CFTP  CFTP  EY  
4 CURRENTRATIO    ROA  DEBTTMVE  LPRICE  MOM12  

5 DEBTTMVE      LPRICE  MOM12  BVTP  

6 EY      *MOM12  ROA  ROE  
7 LSIZE        MOM3  CFTP  

8           MOM3  

9           LPRICE  
10           LAGLPRICE  

11             

             

 

PANEL (B)     Linear_QH  

 

No. 1997 to 2001 1998 to 2002 1999 to 2003 2000 to 2004 2001 to 2005 2002 to 2006 

 
1 FOREY2 BVTP BVTP BVTP BVTP LPRICE  

2 CFTP MOM12-1 MOM12 MOM12-1 MOM12-1 G12MNPMARGIN  

3 CURRENTRATIO DEBTTMVE DEBTTBVE DEBTTBVE GROWTH CFTP  
4 BVTP EY CFTP **DEBTTMVE CFTP BVTP  

5 EY CFTP EY  MOM1 DEBTTBVE  
6 TATURNOVR FOREY2 CFTDEBT  ICBT MOM1  

7 SALESTP    G12MCPS MOM24  

8 LAGLPRICE    MOM3 MOM12  

9 MOM1     MOM3  

10        
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Table 1:  Performance Variable Selection - Continued 

 
PANEL (C)     ANN_Backprop 

 

No. 1997 to 2001 1998 to 2002 1999 to 2003 2000 to 2004            2001 to 2005 2002 to 2006 

 
1 BVTP  BVTP  BVTP  BVTP  BVTP  BVTP  

2 CFTCURRLIABS  CFTDEBT  CFTCURRLIABS CFTP   CFTP   CFTCURRLIABS 

3 CFTP  CFTP  CFTDEBT  DEBTTMVE  CURRENTRATIO  CFTP  
4 CURRENTRATIO  DY  CFTP  DY  D DEBTTBVE  EY  

5 DEBTTBVE  EY  CURRENTRATIO  EG1  DY  G12MCPS  

6 DEBTTMVE  G12MDPS  EG1  G24MEPS  FOREY1  G12MEPS  
7 DY  G12MEPS  EY  LAGLPRICE  G12MDPS  G12MNPMARGIN  

8 EY  G12MNPMARGIN  FOREY2  MOM12-1  G12MEPS  GPMARGIN  
9 G12MDPS  GPMARGIN  G12MEPS  MOM24  LAGLPRICE  LSIZE  

10 G12MEPS  LAGLPRICE  G24MEPS  MOM3  LPRICE  MOM1  

11 G12MGPMARGIN  LPRICE  GROWTH  NPMARGIN  LSIZE  MOM12  

12 LAGLPRICE  MOM1  LSIZE    MOM12  MOM6  

13 LSIZE  MOM12-1  MOM12-1    MOM24    

14 MOM1  NPMARGIN  MOM24    MOM6    
15 MOM12-1  PAYOUT  MOM6    SALESTP    

16 MOM24  ROA  PAYOUT    TATURNOVER    

17 MOM6  SALESTP  ROA        
18 ROE  TATURNOVER  TATURNOVER        

19 TATURNOVER            

20             
             

 

PANEL (D)     ANN_Kalman 

 

No. 1997 to 2001 1998 to 2002 1999 to 2003 2000 to 2004 2001 to 2005 2002 to 2006 

 

1 CFTP   BVTP BVTP  BVTP BVTP CFTP  

2 G12MDPS   CFTP CFTP CFTP CFTP DEBTTBVE  
3 PAYOUT   DEBTTBVE DY DEBTTBVE EG1 LPRICE  

4 BVTP   LAGLPRICE MOM12-1 G12MCPS G12MEPS MOM6  

5    MOM12 NPMARGIN G12MEPS G12MNPMARGIN BVTP  
6   TATURNOVER G12MNPMARGIN LAGLPRICE   

7    G24MEPS ROA   
8    MOM24 TATURNOVER   

9        
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Table 2:  Frequency of Inclusion of Candidate Style Attributes over Examination Period 

Table 2 documents the number of training periods in which each of the candidate style attributes is included each of the linear 

and nonlinear models. 

 

 

 

 

 

 

    

Linear_Grinold 

 

Linear_QH 

 

ANN_Backprop  

 

 

ANN_Kalman 

 
     

FUNDAMENTAL VALUES RELATIVE TO STOCK 

PRICE   

  

BVTP   6 6 6 6 

CFTP   5 5 6 6 

DY   0 0 4 1 
EY   2 3 4 0 

SALESTP   0 1 2 0 

       

SOLVENCY AND LIQUIDITY     

CFTCURRLIABS   0 0 3 0 

CFTDEBT   0 1 2 0 
CURRENTRATIO   1 1 3 0 

DEBTTMVE   2 2 2 0 

DEBTTBVE   2 3 2 3 
ICBT   0 1 0 0 

       

FUNDAMENTAL GROWTH      
G12MCPS   0 1 1 1 

G12MDPS   0 0 3 1 

G12MEPS   0 0 5 2 
G12MGPMARGIN    0 0 1 0 

G12MNPMARGIN   0 1 2 2 

G12MSALES   0 0 0 0 
G24MEPS   0 0 2 1 

GROWTH   0 1 1 0 

       

OPERATING PERFORMANCE      

GPMARGIN    0 0 2 0 

NPMARGIN   0 0 2 1 
PAYOUT   0 0 2 1 

ROA   2 0 2 1 
ROE   3 0 1 0 

TATURNOVER   0 1 4 2 

       

SIZE AND RETURN MOMENTUM      

LAGLPRICE   1 1 4 2 

LPRICE   3 1 2 1 
LSIZE    2 0 4 0 

MOM1   0 3 3 0 

MOM12   4 2 2 1 
MOM12-1   1 3 4 1 

MOM24   0 1 4 1 

MOM3    2 2 1 0 
MOM6    0 0 4 1 

       

CONSENSUS ANALYST FORECAST      
EARNREV   0 0 0 0 

EG1   0 0 2 1 

FOREY1   0 0 1 0 
FOREY2   1 2 1 0 
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Periodic and Consolidated Model Performance 

 

The periodic performance scores of the four respective models over the 6 overlapping in-sample and 

corresponding out-of-sample periods are displayed in Panel (A) to Panel (F) of Table 3. All four models are 

evaluated by their respective in-sample Grinold (1989) information ratio and Qian and Hua (2003) information ratio. 

The best out-of-sample scores in each sub-period are highlighted in bold. The consolidated performance scores are 

presented in Table 4. 

 
Table 3:  Periodic Model Performance Results 

  Performance Score Linear_Grinold Linear_QH ANN_Backprop 

     

ANN_Kalman 

 

 

PANEL (A)     

  

       
1997 to 2001 In-Sample Grinold IR Score 1.7039 1.5352 1.4955 1.2330 

2002  Out-of-Sample Grinold IR Score 0.9170 0.8885 0.7297 1.4300 

       
1997 to 2001 In-Sample Qian and Hua IR Score 1.2632 1.5325 0.9056 0.6215 

2002  Out-of-Sample Qian and Hua IR Score 0.5584 0.6333 0.5230 0.9245 

       
 

PANEL (B)     

  

       
1998 to 2002 In-Sample Grinold IR Score 1.4761 1.4966 1.6121 1.4534 

2003  Out-of-Sample Grinold IR Score 1.8629 2.2707 1.8741 2.2972 

       
1998 to 2002 In-Sample Qian and Hua IR Score 0.8282 0.9295 0.9679 0.8737 

2003  Out-of-Sample Qian and Hua IR Score 1.5470 1.7464 1.5812 1.8488 

       
 

PANEL (C)     

  

       
1999 to 2003 In-Sample Grinold IR Score 1.8655 1.4158 2.1023 1.9595 

2004  Out-of-Sample Grinold IR Score 2.0340 2.4938 2.0893 2.4542 

       
1999 to 2003 In-Sample Qian and Hua IR Score 1.0961 1.2480 1.3640 1.1998 

2004  Out-of-Sample Qian and Hua IR Score 1.1714 1.1303 1.0449 1.1365 

       
 

PANEL (D)     

  

       
2000 to 2004 In-Sample Grinold IR Score 2.1144 1.8762  2.5100 2.2217 

2005  Out-of-Sample Grinold IR Score 1.1832 1.3822  1.3932 1.0784 

       
2000 to 2004 In-Sample Qian and Hua IR Score 1.1583 1.2857  1.5705 1.3255 

2005  Out-of-Sample Qian and Hua IR Score 0.5638 1.0005 0.9121 0.5264 

       
 

PANEL (E)     

  

       
2001 to 2005 In-Sample Grinold IR Score 2.1993 1.9054 2.3317 2.3289 

2006  Out-of-Sample Grinold IR Score 1.4999 1.6053 0.8231 0.9937 
       

2001 to 2005 In-Sample Qian and Hua IR Score 1.3455 1.4826 1.2166 1.3116 

2006  Out-of-Sample Qian and Hua IR Score 1.1368 1.6951 0.3816 0.9851 
       

 

PANEL (F)     

  

       

2002 to 2006 In-Sample Grinold IR Score 2.0353  1.7564 2.1686 1.6867 

2007  Out-of-Sample Grinold IR Score 2.2615  1.9158 0.9500 1.4660 
       

2002 to 2006 In-Sample Qian and Hua IR Score 1.3376  1.2665 1.1679 1.0035 

2007  Out-of-Sample Qian and Hua IR Score 1.9808  1.6964 0.5218 1.3200 
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Table 4:  Consolidated In-Sample and Out-of-Sample Performance Scores 

This table contains the average periodic in-sample and the corresponding out-of-sample performance scores of the linear and nonlinear models 

developed in this paper. The best out-of-sample scores are highlighted in bold. 

 Linear_Grinold Linear_QH ANN_Backprop 

     

ANN_Kalman 

 

 

  

  

 
Grinold (1989) Information Ratio (In-Sample) 1.8991 1.6643 

 
2.0367 

 
1.8139 

 

Grinold (1989) Information Ratio (Out-Sample) 1.5570 1.7367 

 

1.3426 

 

1.6340 
 

  

  

 
Qian and Hua (2003) Information Ratio (In-Sample) 1.1715 1.2908 

 
1.1987 

 
1.0560 

 

Qian and Hua (2003) Information Ratio (Out-Sample) 0.9473 1.1144 

 

0.7839 

 

0.9762 
 

  

  

 

Examining Table 3, it is observed that the nonlinear model, ANN_Kalman outperforms the linear models in 

the first sub-period (2002 to 2004), while the linear models outperforms the nonlinear models in the second sub-

period (2005 to 2007), on a risk-adjusted basis. Also notable is the observation that the backpropagation model, 

ANN_Backprop has inconsistent in-sample and out-of-sample scores, indicating potential problems of model 

overfitting. This is also perhaps one of the major limitations of  artificial neural network models in that they may 

typically produce superior in-sample with poor out-of-sample performance (largely due to the possibility of model 

overfitting). The problem of overfitting however is not evident with ANN_Kalman. According to Table 4, the linear 

model, Linear_QH achieves the best consolidated in-sample and out-of-sample Qian and Hua (2003) information 

ratio. Although the in-sample Grinold (1989) information ratio is lower for the Linear_QH, the out-of-sample 

Grinold (1989) information ratio is higher for this model. This is followed by the nonlinear model, ANN_Kalman, 

whose consolidated performance results are comparable with that of the linear model (with no large 

outperformance). Consistent with our prior research on global stock selection, the nonlinear model trained via the 

extended Kalman filter rule outperforms the nonlinear model trained via the backpropagation learning rule on the 

JSE over the examination period. 

 

CONCLUSION 

 

In this paper we evaluate 2 linear stock selection models and their nonlinear counterparts on the JSE 

Securities Exchange over the examination period 1997 to 2007.  The linear models (which were extracted from our 

previous study) had the objective of maximizing the in-sample Grinold (1989) information ratio and the Qian and 

Hua (2003) information ratio respectively. A stepwise variable selection technique is employed to determine the 

optimal linear model inputs. On the other hand, the nonlinear models employ a genetic algorithm to select the best 

combination of input variables in the artificial neural network. The ANN models are constructed within the cascade-

correlation algorithm with differing learning rules, namely the backpropagation learning rule (ANN_Backprop) and 

the extended Kalman filter learning rule (ANN_Kalman). A 60-for-12 dynamic moving window design is employed 

to update the model inputs every 12 months, based on training conducted in the prior 60 months. According to the 

results the in-sample and out-of-sample performance scores of the backpropagation model (ANN_Backprop) are 

contradictory, indicating potential overfitting problems. Consistent with our prior study on global equities, the 

nonlinear model trained via the extended Kalman filter rule outperforms the model trained via the traditional 

backpropagation learning rule. The linear model, Linear_QH is found to be the most robust model overall in the 

research, although the nonlinear model trained via the extended Kalman filter rule, ANN_Kalman, outperforms the 

linear model in the the first sub-period of the study, while the linear models outperform the nonlinear models in the 

second sub-period, on a risk-adjusted basis. This observation suggests further research into the complementary 

powers of linear and nonlinear asset pricing models. 
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APPENDIX:  Computation of Firm-Specific Style Attributes 

 
 
No. Descriptor  Style Attribute   Computation 

 

(I) FUNDAMENTAL VALUES RELATIVE TO STOCK PRICE 

1.  BVTP   Book value-to-price   Book Value of Equity / Share Price 

2.  CFTP  Cash flow-to-price   Cash Earnings per Share / Share Price 

3.  DY  Trailing dividend yield  Ordinary Shareholders’ Dividends per Share / Share Price 

4.  EY  Trailing earnings yield  EPS / Share Price 

5.  SALESTP   Sales-to-price   Sales per Share / Share Price 

 

(II) SOLVENCY AND LIQUIDITY  

6. CFTCURRLIABS  Cash flow-to-current liabilities  Net Cash Flow / Current Liabilities 

7. CFTDEBT  Cash flow-to-debt   Net Cash Flow / Total Liabilities 

8. CURRENTRATIO  Current ratio   Current Assets / Current Liabilities 

9. DEBTTMVE Debt-to-market value of equity  Total Liabilities / Market Value of Equity 

10. DEBTTBVE  Debt-to-book value of equity  Total Liabilities / Book Value of Equity 

11. ICBT  Interest coverage before tax  Profit Before Interest and Tax / Accrued Interest 

 

(III) FUNDAMENTAL GROWTH 

12. G12MCPS  12-month cash holdings growth  (Current Cash Holdings per Share / Prior 12-Month Cash  
       Holdings per Share) -1     

13. G12MDPS  12-month dividend growth  (Current DPS / Prior 12-Month DPS) – 1 

14. G12MEPS  12-month earnings growth  (Current EPS / Prior 12-Month EPS) – 1 

15. G12MGPMARGIN 12-month gross profit margin growth (Current Gross Profit Margin / Prior 12-Month Gross   

       Profit Margin) – 1 

16. G12MNPMARGIN 12-month net profit margin growth (Current Net Profit Margin / Prior 12-Month Net Profit   
       Margin) – 1 

17. G12MSALES 12-month sales growth  (Current Sales / Prior 12-Month Sales) – 1 

18. G24MEPS  24-month earnings growth  (Current EPS / Prior 24-Month Earnings per Share) – 1 
19. GROWTH  Dividend growth rate   Return on Equity * (1 – Dividend Payout Ratio) 

 

(IV) OPERATING PERFORMANCE 

20. GPMARGIN Gross profit margin   Gross Profit / Sales 

21. NPMARGIN Net profit margin   Net Profit after Tax / Sales 

22. PAYOUT  Dividend payout ratio   Current Dividend per Share /Current Earnings per Share 
23. ROA  Return on assets   Net Profit Before Tax / Total Assets 

24. ROE  Return on equity   Net Profit After Tax / Ordinary Shareholders’ Equity 

25. TATURNOVER Total asset turnover   Sales / Total Assets 
 

(V) SIZE AND RETURN MOMENTUM  

26. LAGLPRICE Lagged log of market price  Ln (Prior 1-Month Share Price) 
27. LPRICE  Log of market price   Ln (Current Share Price) 

28. LSIZE  Log of market capitalization  Ln (Market Capitalization) 

29. MOM1  1-month return   (Current Return Index /Prior 1-Month Return Index) – 1 
30. MOM12  12-month return   (Current Return Index / Prior 12-Month Return Index) – 1 

31. MOM12-1  Lagged 11-month return  (Prior 1-Month Return Index / Prior 12-Month Return   

       Index) – 1 
32. MOM24  24-month return   (Current Return Index / Prior 24-Month Return Index) – 1 

33. MOM3  3-month return   (Current Return Index / Prior 3-Month Return Index) – 1 
34. MOM6  6-month return   (Current Return Index / Prior 6-Month Return Index) – 1 

 

(VI) CONSENSUS ANALYST FORECAST  

35. EARNREV Earnings forecast revision  (Consensus Next EPS Forecast / Consensus Previous EPS  

       Forecast) – 1 

36. EG1  1-year forward earnings growth  (Consensus Next EPS Forecast / Current EPS) – 1 
37. FOREY1  1-year forward earnings yield  Consensus EPS Forecast 1-year Forward 

38. FOREY2  2-year forward earnings yield  Consensus EPS Forecast 2-year Forward 

 

Source: Table adapted from Hodnett, Hsieh and van Rensburg (2012b) 
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Notes 

 

1. Linear regression is an example of direct connections from input neurons to output neurons, with no hidden 

neurons/layers. 

2. As emphasized in Hodnett, Hsieh and van Rensburg (2012b) the data downloaded is free of look-ahead bias 

as DataStream International records published financial statement information as it arrives. In addition to 

this, stocks with less than, or equal to a turnover ratio of 0.01% are excluded for that month to ensure 

sufficient liquidity for sample stocks. The retention of only liquid stocks (which are not likely to be non-

survivors), partially addresses the survivorship bias problem. Style attributes are winsorized and 

standardized according to the procedure set out in Hodnett, Hsieh and van Rensburg (2012a). Those 

companies involved in corporate restructuring, mergers and acquisitions or share splits are excluded as of 

the date of the above mentioned corporate event.  

3. Genetic algorithms have been previously employed in financial applications, for example, by Mahfoud and 

Mani (1995) for stock selection, Rutan (1993) for portfolio selection and Kingdom and Feldman (1995) for 

bankruptcy prediction, to name a few. 

4. Elite individuals are not involved in selection and reproduction but are automatically carried into the next 

generation. 

5. See Hodnett and Hsieh (2012) for the mechanics of each learning rule generation.  
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NOTES 


