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ABSTRACT 

 

Since the seminal Black and Scholes model was introduced in the 1970s, researchers and 

practitioners have been continuously developing new models to enhance the original. All these 

models aim to ease one or more of the Black and Scholes assumptions, but this often results in a 

set of equations that is difficult if not impossible to use in practice. Nevertheless, in the wake of the 

financial crisis, an understanding of the various pricing models is essential to calm investors’ 

nerves. This paper reviews the models developed since Black and Scholes, giving the advantages 

and disadvantages of each type. It focuses on the main variable for which Black and Scholes gives 

results that differ widely from market data: implied volatility. This variable also forms the basis 

for the development of a new type of models, called “market models.” 
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1. INTRODUCTION 
 

 few years ago, the financial markets struggled through one of the biggest crises in decades. This 

period has been characterized by the highest levels of volatility ever observed on the markets, with 

the CBOE Volatility Index (VIX) reaching a level of 80.6% on October 27, 2008.
1
 Derivatives have 

been particularly hard-hit as investors begin to wonder whether such instruments are indeed sound investments. A 

lot of the suspicion about derivatives stems from a lack of understanding as well as a broad distrust of the risk 

management systems meant to keep such instruments in check. 
 

These risk management systems, as well as the associated pricing methods, are based on complex 

mathematical models. The first model was developed by Black and Scholes in the early 1970s, and models have 

been getting increasingly intricate ever since. Black-Scholes marked the beginning of a rapid expansion in 

derivatives markets, as it provides a fairly straightforward method for pricing and hedging derivatives based on 

various risk factors. The main drawback to Black-Scholes is that it is based on simplistic assumptions such as 

constant volatility and a normal distribution function for the underlying asset return. This can lead to substantial 

discrepancies between actual market prices and prices calculated using the model. 
 

These discrepancies between market and theoretical prices are most evident in the observation of different 

implied volatilities according to exercise prices (smile or skew) and maturities (term structure). Several empirical 

studies have confirmed this phenomena, including those by Rubinstein (1994) and Dumas, Fleming, and Whaley 

(1998). The implied volatility surface is not flat and varies with time. Implied volatility has subsequently become a 

preferred variable among traders who often quote options in terms of volatility rather than price. 
 

This paper compares the main modelling advancements made since Black-Scholes, highlighting the 

advantages and disadvantages of each one. Skiadopoulos (2001) has presented a literature review for pricing models 

that are consistent with the volatility smile. While extending his work, our approach is unique in that we also 

consider a new type of models —known as “market models”— based on modelling directly implied volatilities. 
 

This paper is structured as follows: Section 2 outlines the various approaches that have been developed to 

enhance the Black-Scholes model. Section 3 discusses implied volatility more precisely. Implied volatility also 
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forms the basis for the development of market models, which are becoming increasingly popular. Before the 

concluding section, a synthesis of the findings is presented, along with the most promising venues for future 

research. 

 

2. ALTERNATIVES TO THE BLACK-SCHOLES MODEL 

 

Options theory is used to price derivatives and set up hedging strategies to cover the associated risks. It was 

initiated by Black and Scholes (1973), who developed closed-form formulas to calculate the prices of European Call 

and Put options, based on certain assumptions. For instance, according to Black-Scholes, the price of the underlying 

asset S follows a lognormal process, with an expected return μ and a constant volatility σ. The diffusion process is 

thus of the form: 

 
   

  
             (1) 

 

where Wt is a standard Brownian process 

 

We now know that these assumptions are not realistic. Researchers have developed several alternatives to 

the Black-Scholes model in order to account for implied volatility smiles, and for skewness and kurtosis in the 

distribution of the returns. These alternative models can be divided into three categories, where each category 

modifies the original model in order to ease some of its constraints. The first category consists of models with a 

jump diffusion process, and was introduced by Merton in 1976—not long after Black and Scholes published their 

work. The second category appeared in the 1980s, and includes stochastic volatility models; the main models in this 

category were developed by Hull and White (1987), Stein and Stein (1991), and Heston (1993). The third category 

comprises local volatility models, which were developed primarily by Dupire (1994), Derman and Kani (1994a), 

and Rubinstein (1994). Researchers have also studied improvements to and combinations of these categories. 

 

The following sections describe each of these categories and give the benefits and limitations of each one, 

as well as proposed enhancements. 

 

2.1 Jump Diffusion Models 

 

It is Merton (1976) who introduced the idea of adding a jump component (following a Poisson process) to 

the Black-Scholes diffusion process. This makes economical sense since markets receive new information in a 

discrete manner, and instantly adjust the underlying asset price accordingly. Therefore the addition of a jump 

component makes the model more representative of actual market conditions by accounting for outliers and for the 

asymmetry of the return distribution curve. The equation for the underlying asset diffusion process thus becomes: 

 

dqdWdt
S

dS
   (2) 

 

where dq is the jump component and follows a Poisson process 

 

Several studies, including those by Ball and Torous (1985), Das and Uppal (1998), and Das (2002), tested 

Merton’s model and, after estimating values for its parameters, found that the jump component is significant. The 

benefit of this type of model is that, depending on the parameter values used, it can generate several different 

volatility smile and skew shapes according to what is seen in the markets. For instance, using a jump process with a 

negative average gives the sharp skew seen for short-term maturities. Das and Foresi (1996), Bates (1996), and 

Bakshi, Cao, and Chen (1997) have illustrated the importance of the jump component for pricing very short-term 

options. For instance, Bakshi, Cao, and Chen (1997) compared several models and concluded that jumps are 

essential for modelling the underlying asset diffusion process when pricing short-term options, even if using a 

stochastic volatility model (discussed below). Models with jumps also better account for the skewness and kurtosis 

in the distribution of returns. 
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However, models with jumps are difficult to put into practice because they do not offer a simple equation to 

calculate options prices. Another significant limitation, highlighted by Andersen, Benzoni, and Lund (2002), is that 

although these models give an implied volatility smile consistent with actual observations, they do not account for 

changes in the level and shape of the implied volatility smile over time. Implied volatility smile dynamics is one of 

the main factors covered by more recent options pricing models, as discussed in the next section. 

 

2.2 Stochastic Volatility Models 

 

Stochastic volatility models form the second alternative to Black-Scholes. In these models the underlying 

asset volatility is considered stochastic and its movements are represented by a diffusion process. Hull and White 

(1987) were among the first to study this type of model, and were soon followed by Stein and Stein (1991), Heston 

(1993), among others. 

 

In these models, the underlying asset diffusion process is still considered lognormal, as given by Equation 

(1), but the volatility σ is not constant. It also follows a stochastic process, which can be correlated with the 

underlying asset diffusion process. Therefore a two-equation system is needed to model the underlying movements. 

 

Researchers have proposed several types of stochastic processes to model the volatility. For example, Hull 

and White (1987) suggest that the variance (volatility squared) also follows a lognormal process, given by: 

 
   

              (2) 

 

where δ and ξ represent, respectively, the drift and the volatility of the volatility. Unfortunately, solving this two-

equation system with partial derivatives requires complex numerical methods. Stein and Stein (1991) developed 

another model where a mean reversion process is used for the volatility diffusion process. This makes economical 

sense since volatility can neither increase nor decrease indefinitely. Their equation for the volatility diffusion 

process is: 

 

                   (3) 

 

They subsequently developed a semi-analytical equation for pricing options, but they assumed that the 

volatility is not correlated with the underlying asset—which doesn’t allow accounting for skewness. Indeed, Bakshi, 

Cao, and Chen (1997) indicate that in stochastic volatility models, the correlation between the volatility and the 

underlying asset determines the level of skewness, while the volatility of the volatility determines the level of 

kurtosis in the distribution of the underlying asset. 

 

Heston (1993) relaxed Stein and Stein’s model by allowing volatility to be correlated to the underlying 

asset; in his version, the variance follows a mean reversion function as follows: 

 

                       (4) 

 

Heston consequently developed a semi-analytical equation that can be solved by using an inverse Fourier 

transform. The advantage of stochastic volatility models is that they give different smile and skew shapes depending 

on the level of the correlation, and the parameters used for the volatility process. For example, a zero correlation 

gives a pure smile whose level depends on the volatility of the volatility; a negative correlation gives a skew 

(volatility decreases as the exercise price increases); and a positive correlation gives the opposite effect (volatility 

increases as the exercise price increases). 

 

Nevertheless, these models have their share of limitations. First, an unrealistic (extremely negative) 

correlation between the volatility and the underlying asset must be used to obtain a skew consistent with what is 

seen in the markets. For instance, Taylor and Xu (1993) found that the smile calculated using a stochastic volatility 

model with reasonable parameters is half of what is actually observed. Second, stochastic volatility models are 

multi-factor models that are difficult to use and cannot be employed for dynamic hedging. Third, these models are 
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not very effective at pricing short-term options unless an unrealistic value is used for the volatility of the volatility 

(see Bakshi, Cao, & Chen, 1997). 

 

Stochastic Volatility and Jumps: Some researchers, including Bates (1996), Bakshi, Cao, and Chen (1997), 

and Andersen, Benzoni, and Lund (2002), have added a jump component to stochastic volatility models so as to 

merge the best elements of the two model types. They compared stochastic volatility models with and without 

jumps, and found that it is very important to account for the stochastic volatility—but that requires using improbable 

values for correlation and volatility of the volatility to represent the skewness and kurtosis in the distribution of the 

returns. Adding a jump component improves the model substantially, especially for short-term options. 

 

Therefore both elements—jump components and stochastic volatility processes—are needed to 

appropriately represent market data, and to price options. A negative correlation between the volatility and the 

underlying asset must also be used in order to obtain the implied volatility skew. Note also that Andersen, Benzoni, 

and Lund (2002) did not use options to estimate the parameter values of their jump-augmented stochastic volatility 

model; their work then showed that the jump component, as well as the volatility’s stochastic nature and its negative 

correlation with the underlying asset are intrinsic features of the underlying asset movements. 

 

Finally, Bates (1996), Bakshi, Cao, and Chen (1997), and Andersen, Benzoni, and Lund (2002) all 

concluded that any reasonable representation of the underlying asset price diffusion must incorporate both a 

stochastic volatility and a jump diffusion process. 

 

2.3 Local Volatility Models 

 

The introduction of jumps (Merton, 1976) and stochastic volatility (Hull & White, 1987) make the model 

no longer complete; indeed, since only the underlying asset (and not the volatility) is a traded asset, the market itself 

is incomplete. But completeness is a central concept in options pricing and arbitrage-free hedging. 

 

According to Schönbucher (1999), stochastic volatility models can reproduce the implied volatility curve 

shapes typically seen in the markets (smile and skew), but cannot easily be calibrated with any implied volatility 

surface. Moreover, they do not give a simple equation for pricing standard options. 

 

Research into a model that can be easily calibrated from the observed implied volatility surface at a given 

moment led to the development of local volatility models. These models provide a simple way to price options using 

implied trees. There are currently two types of local volatility models: deterministic local volatility models and 

stochastic local volatility models, each of which is described below. 

 

2.3.1 Deterministic Local Volatility Models 

 

Dupire (1993a, 1994) initiated research into deterministic local volatility models. He removed the constant 

volatility assumption and introduced the local volatility theory, whereby the instantaneous volatility is considered to 

be a deterministic function of time and the underlying asset. This gives the following equation for the underlying 

asset diffusion process: 

 
   

  
                   (6) 

 

The local volatility σL(t, St) is equal to the instantaneous volatility σ(t, St) at a future time t and 

corresponding underlying asset value St, so that all observed options are priced in a consistent manner. Dupire 

showed that the local volatility function can be uniquely determined from a market price surface C(T, K) of standard 

European options with different exercise prices and maturities. This led to the famous Dupire formula: 

 

  
                  

  

  
       

  

  
   

     

   

 (7) 
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Once the local volatility function has been determined, the model can be used to calculate future underlying 

asset prices. Therefore any option can be priced using this diffusion process, and the resulting price will be 

consistent with all liquid options on the same underlying asset (standard European options). Dupire also suggested 

using trinomial trees to make this process a discrete process. 

 

Meanwhile, Derman and Kani (1994a) and Rubinstein (1994) developed a similar approach using binomial 

trees. Derman, Kani, and Chriss (1996) subsequently extended this approach to implied trinomial trees, which are 

more flexible than binomial trees. The advantage of the latter approach is that the local volatility can be calculated 

from the smile without needing to make any assumptions about its shape. 

 

Many traders use the local volatility approach because it is both easy to use (thanks to the implied binomial 

and trinomial trees) and retains the market completeness of the Black-Scholes model. However, Andersen and 

Andreasen (2000) have criticised this approach, claiming that movements in the smile in a deterministic local 

volatility model lead to highly unstationary implied volatilities, and indicate that the implied volatility skew will 

disappear in the near future—which contradicts what is seen in empirical observations. Andersen and Andreasen 

therefore extended deterministic local volatility models to account for jumps in the underlying asset diffusion 

process. Their model brings together the best features of both model types; the jump process allows for the 

modelling of steep short-term skews, and the local volatility approach ensures that the model is in line with market 

options prices. 

 

We should also consider another important point: binomial and trinomial trees account for the overall 

implied volatility structure seen in the markets, but they cannot reflect dynamic changes in this structure. This is 

why they perform so poorly in dynamic asset management. For example, Dumas, Fleming, and Whaley (1998) 

tested the predictive and hedging power of a deterministic local volatility model (with a parametric local volatility 

surface) in dynamic asset management, and found that it performed no better than the simple Black-Scholes model. 

This led to the extension of these deterministic local volatility models to account for the stochastic nature of the 

local volatility, as discussed below. 

 

2.3.2 Stochastic Local Volatility Models 

 

Due to the dynamic hedging limitations of deterministic local volatility models, several researchers sought 

to enhance them, including the developers of these models themselves—who often proposed extensions to their own 

models. Dupire (1993b, 1996) added a stochastic dynamic to the volatility term structure to model the realised 

volatility. Derman and Kani (1998) extended their implied tree approach by adding a stochastic dynamic to the total 

local volatility surface (term structure and smile). They derived restrictions on local volatility trends in order to 

exclude any arbitrage opportunities. However these researchers have themselves admitted that their models contain 

complicated conditions and are difficult to use. 

 

More recently, Alexander and Nogueira (2004) pointed out that the deterministic local volatility 

assumption implies that the instantaneous volatility is also deterministic—but this is inconsistent with numerous 

empirical studies that have proved the importance of stochastic volatility models. Therefore Alexander and Nogueira 

developed a stochastic local volatility model to merge these two model types. Although the local volatility surface 

may occasionally (at each implied tree calibration) be a deterministic function of t and S, the surface changes with 

time in a stochastic manner. They came up with the following equation for the underlying asset diffusion process: 
 
   

  
                             (8) 

 

The functions ν(t) = (ν1(t), …, νn(t)) are those of a deterministic local volatility model; they are stochastic 

functions correlated with each other and with the underlying asset. Therefore the instantaneous volatility σ (t, St; 

ν(t)) is also stochastic. 
 

Similarly, Carmona and Nadtochiy (2009) propose a model based on the prescription of stochastic 

dynamics for the local volatility surface, and characterize the absence of arbitrage by means of a drift and a spot 

consistency conditions. 
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However, as stated by Alexander and Nogueira (2004), these models work just as well as the implied 

volatility market models developed by Schönbucher (1999) in terms of hedging performance. The next section looks 

more closely at implied volatility and Schönbucher’s market models. 

 

3. THE IMPLIED VOLATILITY SURFACE 

 

The past few years have seen a growing interest in implied volatility as an exogenous variable. This interest 

stems from the emergence of models in which implied volatility is considered as a state variable with a well-studied 

diffusion process. These models, called market models, assume that there is a sufficient number of standard options 

traded on the markets, and that these options can be used to price illiquid and exotic options in a way that is 

consistent with the smile. 

 

Modelling implied volatility rather than instantaneous volatility (as is done in traditional stochastic 

volatility models) has many advantages. First, implied volatility can be observed directly in the markets—unlike 

instantaneous and local volatility—using options prices and without having to make any assumptions about the 

process. The diffusion process parameters are easier to estimate, especially the volatility of the implied volatility 

parameter. Second, options pricing models obtained by modelling implied volatility lead to prices that are 

automatically in adequacy with standard options prices seen in the markets. The implied tree models initially 

developed by Dupire (1993a, 1994), Derman and Kani (1994a, 1994b), and Rubinstein (1994) also have this benefit, 

but they do not account for the stochastic nature of implied volatility surfaces. Third, implied volatility models can 

easily be extended to multi-factor models. 

 

One advantage relevant to traders is that traders are more familiar with implied volatility, and use it as a 

market risk indicator. They often quote options in terms of their implied volatility, since this requires fewer updates 

than quoting the price itself. 

 

Finally, implied volatility is increasingly recognised by markets as an independent variable, as seen in the 

newly-introduced implied volatility indices and their associated derivatives. One possible drawback to this type of 

modelling is that there is not a single implied volatility value, but an entire implied volatility surface. Therefore all 

implied volatilities must be accounted for at the same time, which could quickly lead to systems with high-

dimension problems. However, Cont and Da Fonseca (2002) noted that the implied volatility surface represents 

options on the same underlying asset, and are linked by non-arbitrage relationships; the implied volatilities for 

different exercise prices and maturities are highly correlated and do not move independently. This suggests that the 

implied volatility surface dynamic can be modelled by just a few factors. 

 

Thus a study of implied volatility behaviour —including the number and form of factors representing the 

implied volatility surface dynamic— is essential to developing a market model. The next section discusses the 

various market models presented in the literature as well as the resulting non-arbitrage conditions. This is followed 

by a review of empirical studies of the implied volatility surface dynamic. 

 

3.1 Implied Volatility Market Models 

 

Schönbucher (1999) was the first to develop a stochastic implied volatility model. He was followed by 

several others, including Brace, Goldys, Klebaner, and Womersley (2001), Ledoit, Santa-Clara, and Yan (2002), 

Cont, Da Fonseca, and Durrleman (2002), Le (2005), Daglish, Hull, and Suo (2007), and more recently Kallsen and 

Krühner (2014). Their work was motivated by the explosion in the derivatives market in the last decades. Indeed, the 

significant advancement represented by the Black-Scholes model, and the creation the same year of the first options 

market in Chicago, spurred an exponential growth in the volume and liquidity of traded options. Moreover, traders 

began using increasingly complex options (barrier options, Asian options, etc.). 

 

Thus on the one hand options were becoming increasingly complex, and on the other standard European 

and American options were becoming increasingly liquid. Schönbucher (1999) noted that these developments gave 

researches valuable new information to study volatility. This information is crucial for pricing options but cannot be 

observed from the underlying asset price. Cont and Da Fonseca (2002) pointed out that since derivative markets 
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have been operating with increasing independence, options prices depend not only on movements in the underlying 

asset but also on the specific features of these markets. For example, Bakshi, Cao, and Chen (2000) showed that 

models based on a single diffusion process
2
 are not consistent with observed changes in options prices. They 

concluded that options are not redundant instruments (i.e., they cannot be replicated with the underlying asset and a 

risk-free asset). Along the same lines, Fleming, Ostdiek, and Whaley (1995) showed that underlying asset volatility 

predictions based on the implied volatilities of options are more reliable than those obtained from the underlying 

asset process alone. Therefore it is clear that options contain information that is not in the underlying asset price —

and this information should be taken into account. 

 

Implied volatility models aim to incorporate the information available from standard options, using these 

options’ liquidity to price and hedge more complicated and less liquid options. More specifically, they aim to factor 

the randomness inherent to derivatives markets, which cannot be found in the underlying asset. Implied volatility is 

considered to move in a stochastic manner depending on numerous noise sources, possibly correlated with the 

process that generates the underlying asset price. 

 

In these models the underlying asset process is represented by a lognormal function with stochastic 

volatility σ, as follows: 

 
   

  
                   (9) 

 

For a given exercise price K and maturity T, the implied volatility diffusion process is generally given by: 

 

                                         
 
    (10) 

 

The implied volatility thus derives from the Brownian motions dZi, and dWt; the latter Brownian motion is 

the same as the one used to represent the underlying asset dynamic. γ(T,K)dWt represents the correlation between the 

underlying asset and the implied volatility (we typically see a negative correlation). 

 

Schönbucher (1999) uses the opposite approach from that used in stochastic volatility models. Whereas 

stochastic volatility models specify the instantaneous volatility diffusion process and subsequently derive options 

prices and implied volatilities, Schönbucher specifies the implied volatility process and derives a consistent process 

for the instantaneous volatility. Schönbucher’s approach seems to be more pragmatic since instantaneous volatilities 

cannot be observed in the market. 

 

Brace, Goldys, Klebaner, and Womersley (2001), Ledoit, Santa-Clara, and Yan (2002), and Zilber (2007) 

developed models similar to Schönbucher’s; the only difference is the function used to represent the volatility 

surface. Schweizer and Wissel (2008a, 2008b) generalised Schönbucher’s work to other payoff functions. Le (2005) 

does not make any assumptions about the underlying asset process. Kallsen and Krühner (2014) adapt the Heath-

Jarrow-Morton approach on interest rates to stock options, using time-inhomogeneous Lévy processes. All of these 

researchers specified a diffusion process for each implied volatility. Since implied volatilities can follow a stochastic 

dynamic, they had to be careful that the resulting pricing model did not allow for any arbitrage opportunities. This 

was done by setting specific conditions for the drift coefficient in the implied volatility process. 
 

The drawback to these various approaches is that they result in a problem of high dimension; an empirical 

analysis of the implied volatility surface dynamic can help scale the number of dimensions down. 
 

Cont, Da Fonseca, and Durrleman (2002) used the Principal Component Analysis (PCA hereafter) method 

developed by Cont and Da Fonseca (2002) (see next section) to determine a limited number of factors to model the 

stochastic movement of the implied volatility surface. They developed a linear factor model for the implied volatility 

logarithm, using mean-reversion functions for the factors. This model gives a simple estimation of parameter values 

based on historical data. 

                                                 
2 This includes traditional models like those developed by Black and Scholes (1973), Merton (1973), and Cox and Ross (1976) as well as the 
local volatility models developed by Dupire (1994), Derman and Kani (1994a), and Rubinstein (1994). 
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Daglish, Hull, and Suo (2007) addressed the problem in the same way as Schönbucher but they chose to 

model the implied variance (square of the implied volatility). Their work led to the following equation: 

 

     
                              

                 
 
    (11) 

 

They then outlined the non-arbitrage conditions that the diffusion parameters must meet, and examined the 

effect that these conditions have on the observed implied volatility surface. The resulting general equation models 

implied volatility surface movements through certain factors (which could be correlated with the underlying asset), 

which were selected using an approach similar to the PCA and which meet the non-arbitrage conditions. 

 

These latter two studies show the importance of an empirical study of the implied volatility surface 

dynamic. The following section discusses the main focuses of research in this area. 

 

3.2 Implied Volatility Surface Dynamics 

 

In order to develop market models, researchers must be able to identify the number and form of shocks that 

can cause the implied volatility surface to change over time and space given the possible states of the underlying 

asset. 

 

The main studies of implied volatility surface dynamics use a PCA, which is a classic data reduction 

method. These studies looked either at the implied volatility term structure (Zhu & Avellaneda, 1997; Fengler, 

Härdle, & Schmidt, 2002; Sylla & Villa, 2000) or at the smile (Skiadopoulos, Hodges, & Clewlow, 1999; 

Alexander, 2001). Meanwhile, Kamal and Derman (1997), Skiadopoulos, Hodges, and Clewlow (1999), and Mixon 

(2002) used the same approach, but in a vector form, for the entire surface. Some researchers have developed 

variations of the PCA in order to account for specific features of the implied volatility surface. For instance, Ané and 

Labidi (2001) used an Independent Component Analysis to obtain components that are easy to interpret. Fengler, 

Härdle, and Villa (2003) jointly decomposed maturity groups using a Common PCA to account for the 

interdependence between the exercise price and maturity dimensions. Fengler, Härdle, and Mammen (2007) drew 

from the degenerating nature of the implied volatility surface to develop a semi-parametric factor model to bring the 

surface into a finite-dimension function space. Along the same lines, Cont and Da Fonseca (2002) and Kermiche 

(2008) used a functional form extension of the traditional PCA. 

 

The advantage of the PCA is that the entire surface (or curve in the case of the term structure and smile) 

can be modelled using just a few variables, thereby reducing the size of the risk space. The above studies showed 

that two or three factors can generally be used to model between 60% and 95% of the total implied volatility surface 

variance. The first factor represents the curve’s parallel movements, the second represents its slope, and the third 

represents its curvature. 

 

Consequently an options pricing model must contain three or four factors to be consistent with the smile: 

one factor for the underlying asset and two or three factors for the implied volatility. Researchers including Cont and 

Da Fonseca (2002) and Kermiche (2008) have suggested using a mean-reversion process like Ornstein-Uhlenbeck to 

model volatility factors. 

 

4. SYNTHESIS AND FUTURE RESEARCH 

 

The table below offers a synthetic view of the advantages and disadvantages of each family of models. In 

the light of this synthesis, we can see that both jump diffusion models and stochastic volatility models have several 

advantages and disadvantages: jump diffusion models have good performances for short-term options but do not 

account for changes in the volatility, whereas stochastic volatility models allow volatility to move but are not very 

effective at pricing short-term options. By combining the two family models, we can greatly improve their 

performances. Nonetheless, these models fail to retain the market completeness and thus ignore important 

information offered by highly liquid standard options. Local volatility models overtake this shortfall and offer 

simple to use pricing tools. Unfortunately, the deterministic version of these models poorly performs in dynamic 

hedging. 
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The stochastic local volatility models, as well as the market models offer interesting alternative to the 

previous models. Both use the information available on the highly liquid standard options market and present good 

performances on dynamic hedging. These models seem to be the most interesting ones to develop in the near future. 

To this end, and especially in times of excessive volatility on the markets, it seems important for researchers to focus 

on the empirical study of the volatility, and more precisely on the interactions between its different dimensions. This 

will help practitioners better forecast and hedge the excess volatility arising during crises. 

 

Family Models Advantages Disadvantages 

Black-Scholes Model 
Straightforward method for pricing and 

hedging derivatives 

Non-realistic assumptions: 

 Constant volatility 

 Normal distribution of the 

underlying’s returns 

Jump Diffusion Models 

Generate volatility smile and skew 

consistent with market observations; 

Outperform stochastic volatility models for 

short-term options; 

Better account for skewness and kurtosis in 

the distribution of returns 

No simple equation to calculate option 

prices; 

Do not account for the change in the level 

and shape of implied volatility over time 

Stochastic Volatility Models 

Different smile and skew shapes can be 

obtained depending on the correlation and 

the parameters used for the volatility 

process 

Unrealistic correlation needed to obtain 

market skew; 

Multi-factor models that are difficult to 

use for dynamic hedging; 

Not very effective at pricing short-term 

options 

Local Volatility Models 

Easy to use; 

Resulting prices are consistent with liquid 

options on the same underlying; 

Retains the market completeness of the 

Black-Scholes model 

Highly unstationary implied volatility; 

Skew disappear in the near future; 

The deterministic models poorly perform 

in dynamic hedging 

Implied Volatility Market 

Models 

Based on observed information; 

Consistent with the smile; 

Good performance for dynamic hedging 

High-dimension problems 

 

5. CONCLUSION 

 

The Black-Scholes model (1973) is a founding element of modern options theory, and continues to be 

widely-used today. However, several of its assumptions have been challenged, especially in light of the substantial 

discrepancies between the model’s assumptions and what is actually seen in the market. These discrepancies are 

most visible in the implied volatility surface (which depends on the exercise price and option maturity), and a non-

normal density function for the underlying asset return. 

 

Several models have been developed over the past decades to remedy the shortcomings of Black-Scholes. 

These models can be divided into three categories: (i) jump diffusion models, introduced by Merton in 1976 soon 

after the emergence of Black-Scholes; (ii) stochastic volatility models, introduced in the late 1980s and consisting 

mainly on the work done by Hull and White (1987), Stein and Stein (1991), and Heston (1993); and (iii) local 

volatility models developed by Dupire (1994), Derman and Kani (1994a), and Rubinstein (1994). Researchers have 

also studied improvements to and combinations of these different categories. 

 

The advantage of these models is that they give smiles that are consistent with what is seen in the markets, 

and return density curves with a negative skewness and excess kurtosis. However their drawbacks are that their 

parameters are often difficult to estimate (requiring unrealistic values), and that they can give options price and 

volatility smile movements that are not in line with market data—making them unsuitable for dynamic asset 

management. 

 

A new family of models, called market models, has recently emerged; their name comes from the fact that 

they describe a variable (implied volatility) that can be estimated directly from options prices observed in the 
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market. These models view highly-liquid options prices as market data, and use them to price illiquid and exotic 

options. In order to refine these models, empirical studies have been carried out to identify the shock factors that can 

affect these variables and the dynamics of these factors. Early research has focused on the term structure and the 

implied volatility smile, generally ignoring the interactions between these two dimensions. Few empirical studies 

have been carried out so far on the implied volatility surface as a whole, and these interactions still need to be 

explored. This is certainly an important area to develop, in order to offer the tools for implementing market models, 

which are definitely the most promising way for future research. 
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