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ABSTRACT 

 

It has been well documented that the empirical distribution of daily logarithmic returns from 

financial market variables is characterized by excess kurtosis and skewness. In order to capture 

such properties in financial data, heavy-tailed and asymmetric distributions are required to 

overcome shortfalls of the widely exhausted classical normality assumption. In the context of 

financial forecasting and risk management, the accuracy in modeling the underlying returns 

distribution plays a vital role. For example, risk management tools such as value-at-risk (VaR) are 

highly dependent on the underlying distributional assumption, with particular focus being placed at 

the extreme tails. Hence, identifying a distribution that best captures all aspects of the given 

financial data may provide vast advantages to both investors and risk managers. In this paper, we 

investigate major financial indices on the Johannesburg Stock Exchange (JSE) and fit their 

associated returns to classes of heavy tailed distributions. The relative adequacy and 

goodness-of-fit of these distributions are then assessed through the robustness of their respective 

VaR estimates. Our results indicate that the best model selection is not only variant across the 

indices, but also across different VaR levels and the dissimilar tails of return series. 
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1. INTRODUCTION 

 

 topic of ongoing research is the identification of the most suitable and accurate distribution to fit 

financial returns data. Accomplishing such novel finding may prove particularly useful in the context 

of financial forecasting and risk management. The modeling of financial returns distribution was 

classically reliant on the normality assumption. However, a wealth of studies has shown that financial time series 

exhibits substantial skewness and excess kurtosis that contradicts Gaussianity (Tsay, 2010). Alternative 

implementations, such as the generalized autoregressive conditional heteroscedastic model (GARCH) of Bollerslev 

(1986), the Student’s t-distribution (Huisman et al., 1998) and other skew t innovations (Azzalini & Capitanio, 2003; 

Jones & Faddy, 2003), have also been suggested by researchers in an attempt to overcome such contradictions. 

 

Recently, it has been proposed that the classes of generalized extreme value distributions and generalized 

Pareto distributions (Diebold et al., 2000; Bali, 2003; Rocco, 2014) and the class of generalized hyperbolic 

distributions (Eberlein & Keller, 1995; Eberlein & Prause, 2002; Hu & Kercheval, 2007) provide a more robust 

modeling of financial returns distribution. However, to the best of our knowledge, there has been limited study on the 

cross-comparison between the performance of these models and their related applications such as in the context of risk 

management. In particular, a gap exists in the current literature that determines which model may best forecast the rate 

of occurrence of extreme events and, as a result, yield the most precise value-at-risk (VaR) estimates for financial 

institutions to measure market risk and adjust for adequate capitalization as per the Basel Regulatory Framework. 

A 
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Furthermore, whether it is possible to identify a model that provides the most accurate VaR estimate over all 

significance levels is not immediately clear. In addition, investigations also need to be extended to evaluate the 

differences between model performances over both long and short positions of trade. In this paper, we conduct various 

statistical examinations to make robust conclusions on the above claims and the adequacy of the suggested models to 

fit financial data. In particular, we focus on the cross-comparison analyses to identify the relative performances 

between proposed heavy tailed distributions. Motivations were partially drawn from Vee et al. (2012) whom 

determined that the return series of different indices may be best depicted by different distributions. 
 

In this paper, we analyze the major indices on the Johannesburg Stock Exchange (JSE). South Africa has the 

largest and most developed economy amongst the sub-Saharan African countries. It is considered a cornucopia of 

mineral resources, with a well capitalized banking structure, sound regulatory and oversight practices, as well as 

research and development capabilities, and has an established manufacturing foundation. The Johannesburg Stock 

Exchange (JSE) Top40 Index is also a member of the BRICS Exchanges Alliance.
1
 As a member of the G-20, South 

Africa’s financial market development was ranked third out of 148 countries in the World Economic Forum’s Global 

Competitiveness Report 2013-2014. Notably, it was ranked first within the financial market development pillar due to 

its regulation of securities exchanges and legal rights index. Due to these prudent fiscal and monetary policies, the 

South African capital markets were not as largely affected by the global financial crisis as its international counterparts. 

Consequently, South Africa remains an attractive low-risk destination for many investors worldwide, with a 

sophisticated market structure and one of the largest exchanges in developing countries. Not only would our analysis 

provide a better insight into the ability of heavy tailed distributions to capture the anomalies embedded in the returns 

data of South African market, but it will also provide a glimpse into a cross-comparison of the performance of these 

models in emerging markets. It is also worthwhile mentioning that the unique characteristics of emerging markets are 

dissimilar to those of developed markets. Better modeling of the financial returns within emerging markets continues 

to draw much attention from academics and practitioners worldwide. 
 

We begin our investigation by fitting different heavy-tailed distributions to the various indices. In addition to 

the three classes of distributions mentioned above, we also include four other well-known heavy-tailed distributions in 

our analyses; namely, Burr XII (Burr, 1942; Singh & Maddala, 1976), Johnson SU (Johnson, 1949), hyperbolic secant 

(Baten, 1934; Harkness & Harkness, 1968), and Dagum (Dagum, 1975, 1977) distributions. The selection of these 

distributions is based on some of their attractive properties (such as, the ability to capture asymmetry, non-identical tail 

behaviors, excess kurtosis, and the depiction of both heavy and semi-heavy tails) that are particularly useful in 

capturing the various stylized facts embedded in financial data. Goodness-of-fit tests are first conducted before the 

performances of these models are assessed through across-comparison of their relative VaR estimations. We make use 

of the widely recognized Kupiec likelihood ratio test and the Christoffersen test to conduct our backtesting before 

drawing robust conclusions on our analyses of the VaR estimates. 
 

Our primary objective is the attempt to identify the most adequate distributional assumption that may fully 

capture the unique characteristics and stylized facts exhibit by the returns data of different indices. Furthermore, we 

examine the adequacy and goodness-of-fit by investigating their corresponding VaR estimates. Surprisingly, our 

results show that the best model selection is not only variant across different indices, but also changes across different 

VaR levels and the dissimilar tails in the return series. 
 

The remainder of the paper is structured as follows. Section 2 commences by giving a descriptive statistical 

summary of the indices and Section 3 introduces the various heavy-tailed distributions under study. Section 4 

describes the well-known value-at-risk measure and the related backtesting procedures. Empirical results from fitting 

the distributions to the indices are provided and analyzed in Section 5. Finally, Section 6 concludes the article and 

comments on possible further research. 
 

2. DESCRIPTIVE ANALYSES OF DATA 
 

The data used in this research includes eight major indices on the JSE, which were supplied by McGregor 

BFA. They are part of the FTSE/JSE Africa Index Series formulated to represent the performance of companies and 

                                                      
1Which further comprises of Brazil’s Bovespa Index, Russia’s Micex Index, the BSE India Sensitive Index, Hong Kong’s Hang Seng Index, and the 
Hang Seng China Enterprises Index. 
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different market sectors in South Africa. The daily closed value for JSE All Share Index (ALSI/J203), JSE Top 40 

Index (ALSI40/J200), JSE Resource 10 Index (RESI10/J210), JSE RAFI All Share Index (RAFI/J263), JSE SA 

Financials and Industrials Index (FINDI/J250), and JSE Capped All Share Index (CALSI/J303) were recorded from 17 

December 2003 to 17 December 2013, while the JSE All Africa 40 Index (Africa40/JA00) daily figures were recorded 

from 16 May 2011 to 17 December 2013 and the JSE South African Volatility Index (SAVI) values were recorded 

from 1 February 2007 to 17 December 2013. 

 

The importance of the inclusion of such a variety of major indices in our investigation is two-fold. Firstly, 

their inclusion allows for a complete sweeping inference on the overall performance of the South African financial 

market. Furthermore, it provides ground for clearer scrutiny on the unique behaviors and characteristics of individual 

market sectors, as well as identifying which assumed heavy tailed distribution may best capture such properties. The 

All Shares Index (ALSI), for example, is identified and utilized as the benchmark index to measure the current 

performance of the South African market as a whole. It comprises roughly 99% of the total market capitalization on 

the JSE. The JSE Top 40 on the other hand comprises the largest 40 constituents of the ALSI on the basis of their 

market capitalization. Recognized as the large cap index, the JSE Top 40 accounts for more than 80% of the ALSI and 

is used as an alternative performance benchmark. 

 

The RESI10 comprises of the top ten resources share on the JSE on the basis of market capitalization. 

Specifically, it is concentrated on the major mining companies in the South African market. In addition, Raubenheimer 

(2012) also indicated that more than 20% of the ALSI’s weighting comprises of the two largest resource-mining 

companies. As a cornucopia of mineral resources, it becomes vital to understand the associated distinct characteristics 

within the mining sector. For example, given the susceptibility of the mining sector to various extreme events, such as 

the ever scrutinized mining sector strikes seen in the recent past, identifying a distribution that may improve the ability 

to capture such phenomena may provide an edge to risk managers and investors alike. The FINDI on the other hand, 

represents the financial and industrial sectors in South Africa. Finally, Raubenheimer (2012) also found a high level of 

concentration within the ALSI. The capped indices, such as the RAFI and CALSI, breaks away from the traditional 

price-based market capitalization weighting design system. In particular, the RAFI is derived based on the weighting 

of company fundamentals (e.g. sales, cash flow, book value and dividends). Analyzing market performance based on 

such methodology contributes a further dimension to the understanding of the current state of the market. 

 

Log returns of the SAVI, considered as the “fear” gauge for the South African market, were also analyzed and 

fitted with the various heavy-tailed distributions. Apart from the sake of completeness, the inclusion of the SAVI in our 

cross-comparison may assist in further understanding of the volatility index in developing countries. The SAVI is 

commonly used as a tool to measure the market sentiment in South Africa’s emerging market. Results from such 

analysis may draw interest from both academics and practitioners, and adds to the current body of knowledge 

regarding volatility indexes. 

 

The return series for each index are calculated as the first backward-differences of the natural logarithm of the 

index values. For day t, the daily return Rt is defined as: 

 

                    
 

where    is the closed index value on day t. 

 

Figure 1 presents the time series plot of the different index returns under consideration. The plots strongly 

indicate the presence of heteroscedasticity and volatility clustering in all return series, except for Africa40. The 

Africa40 return series exhibit a significantly lower volatility relative to other indices, while SAVI returns seem to have 

the highest volatility. Isolated extreme returns caused by shocks to the financial market may be noticed, such as the 

2009 financial crisis (except for Africa40, where the data were only recorded post-crisis). Stationarity is also evidence 

from the plots, which is confirmed by utilizing the Augmented Dickey-Fuller (ADF) test and the Phillips–Perron (PP) 

unit root test given in Table 1. 
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Figure 1: Time Series Plots for JSE Index Returns 

 

The lag is set to zero for the ADF test using the Schwartz Information Criterion and the PP test is performed 

using the Newey-West estimator. For both tests, the p-values are interpolated from Banerjee et al. (1993). Results in 

Table 1 indicate that all return series are stationary by rejecting the null hypothesis of unit root. 

 
Table 1: Results from ADF and PP Unit Root Tests of Stock Returns on Major JSE Indices 

  ALSI ALSI40 Africa40 RESI10 RAFI FINDI CALSI SAVI 

ADF 

test 

Test statistic -49.1197 -49.7915 -23.4318 -47.9286 -48.0545 -49.0151 -49.1079 -41.5425 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

PP 

test 

Test statistic -49.6797 -50.6875 -23.3435 -48.3035 -48.3252 -49.2181 -49.6585 -41.5459 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
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Table 2: Descriptive Summary Statistics of Stock Returns on Major JSE Indices 

Index Minimum Std. dev. Skewness Kurtosis 
Jarque-Bera 

statistic (p-value) 
Maximum Mean N 

ALSI -0.0758068 0.012812 -0.201463 6.681063 1428.964 (<2.2e-16) 0.0683397 0.0005942 2501 

ALSI40 -0.0795941 0.014021 -0.13768 6.537586 1312.018 (<2.2e-16) 0.0770691 0.0005853 2501 

Africa40 -0.0407189 0.007743 -0.182689 5.489705 173.8698 (<2.2e-16) 0.0280001 0.00066 659 

RESI10 -0.1181539 0.019071 0.002971 7.311042 1936.725 (<2.2e-16) 0.1149981 0.0003798 2501 

RAFI -0.0742110 0.011958 -0.241772 5.891564 895.6661 (<2.2e-16) 0.0534232 0.0005752 2501 

FINDI -0.0647975 0.010741 -0.227742 6.253189 1124.482 (<2.2e-16) 0.0652391 0.0006986 2501 

CALSI -0.0738210 0.012388 -0.222274 6.536267 1323.738 (<2.2e-16) 0.0641731 0.0006096 2501 

SAVI -0.2434132 0.028942 0.503865 9.403844 3010.021 (<2.2e-16) 0.1944768 -0.00005 1719 

 

A descriptive statistical summary of the different return series is provided in Table 2. Apart from SAVI 

returns, all other indices depict a positive mean. This indicates that the overall returns were slightly increasing over the 

period under investigation. All return series illustrate a small skewness, all negative except for RESI10 and SAVI. 

Such property is commonly found in financial series and relates to dissimilar tail behaviors in the data (Rydberg, 1999; 

Aas & Haff, 2006). The high kurtosis’ (all above 3) signifies leptokurtic behavior in these financial series, implying 

fatter tails in the actual distribution comparing to that of the Normal. This is further confirmed by the Jarque-Bera test, 

where the normality assumption is rejected for all indices. 

 

The characteristics demonstrated in this section motivate the use of both symmetric and asymmetric 

heavy-tailed distributions for the modeling of these returns data and for the calculation of their corresponding VaR 

estimates. 

 

3. HEAVY-TAILED DISTRIBUTIONS AND PARAMETER ESTIMATION 

 

In this Section, we briefly introduce the various heavy-tailed distributions under consideration. In particular, 

we provide the probability density functions for hyperbolic, normal-inverse Gaussian, variance-gamma, generalized 

hyperbolic skew t, generalized extreme value, generalized Pareto, Burr XII, Johnson SU, hyperbolic secant, and 

Dagum distributions. 

 

3.1 The Class of Generalized Hyperbolic Distributions 

 

The generalized hyperbolic distributions (GHDs) were first introduced by Barndorff-Nielsen (1977) in an 

application to the mass-size distribution of aeolian sand deposits. The GHDs were later applied to financial data by 

other researchers, such as Eberlein and Keller (1995), Eberlein and Prause (2002), and Hu and Kercheval (2007). The 

family of GHDs portrays various beneficial properties for the modeling of financial data. For example, they cater for 

both skewness and symmetry; they are closed under conditioning, marginalization, and affine transformations; and, 

they allow for non-identical tail behaviors (Prause, 1999; Aas & Haff, 2006). 

 

We follow Prause (1999) for the parameterization of univariate generalized hyperbolic (GH) distribution. 

Suppose X is a random variable following GHD, then its probability density function (pdf) can be defined as: 

 

      
       

   
          

                     

                                  
      (1) 

 

where Kj is the modified Bessel function of the third kind with order j (Abramowitz & Stegun, 1972) and the following 

conditions apply to the parameters: 
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We utilize the maximum likelihood estimation (MLE) for parameter estimates of the GHDs. Various 

subclasses of the GHDs are obtained via different assumptions made on the parameters. These special cases are given 

as below. 

 

3.1.1 Hyperbolic Distribution (Hyp) 

 

For    , we get the hyperbolic distribution. The hyperbolic distribution is characterized by having a 

hyperbolic log-density function and exponential tails. Formally, a random variable has the hyperbolic distribution if its 

pdf is given by 

 

        
      

              
     

                (2) 

 

where    denotes the Bessel function of the third kind with index 1. The first two of the four parameters, namely   

and  , with     and          determine the shape of the distribution with   representing the gradient and  , 

the skewness.     is the scale parameter and     is the location parameter. 

 

3.1.2 Normal-Inverse Gaussian Distribution (NIG) 

 

The normal-variance Gaussian distribution is a subclass of the GHDs with       . The pdf of NIG can be 

expressed as 

 

        
  

 
    

                          

          
 (3) 

 

where    denotes the Bessel function of the third kind with index 1. The two tails of NIG are semi-heavy and 

non-identical. These make NIG attractive for financial applications (for example, see Anderson, 2001; Venter & de 

Jongh, 2002). However, it is only appropriate when the two tails are not too heavy (Aas & Haff, 2006). 

 

3.1.3 Variance-Gamma Distribution (VG) 

 

Setting     and let     in Equation (1), we obtain the pdf of the variance-gamma distribution: 

 

       
       

 
                        

               
        (4) 

 

where        denotes the Bessel function of the third kind with index      . The tails of VG decreases more 

slowly than the normal distribution, making it a suitable model for phenomena where extreme values are more 

probable than in the case of the normal distribution, such as returns from financial assets (Madan & Senata, 1990). 

 

3.1.4 GH Skew t-Distribution (GHSt) 

 

Letting α→|β| in Equation (1), we obtain the GH skew Student’s t-distribution: 

 

         
                           

                         

                   
      (5) 

 

where β≠ 0 and λ< 0. If β = 0, we get the non-central (scaled) Student’s t-distribution. An important property of this 

distribution is that it has one heavy polynomial tail and one semi-heavy exponential tail. This makes it unique for 

modeling skewed data with dissimilar tail behaviors, such as commonly found in financial returns (Aas & Haff, 2006). 
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3.2 Extreme Value Distributions 

 

The use of extreme value theory to model financial risk was first suggested by Diebold et al. (2000) and was 

followed by various work, such as Ho et al. (2000), Bali (2003), da Silva and de Melo Mendes (2003), Gençay and 

Selçuk (2004), and Gilli and Këllezi (2006). The main advantages of extreme value analysis are its ability to solely 

focus on the extreme observations (hence minimizing the bias caused by rest of the data), to cater for both asymmetry 

and heavy tails and to allow some extrapolation under certain conditions (Embrechts, 2000; Embrechts et al., 1999; 

McNeil & Frey, 2000). 

 

There are two general ways to identify extreme values in data, namely the block maxima method and the 

peaks-over-threshold approach. The former divides the data into blocks and selects the maximum observation in each 

block. The latter focuses on the realization of exceedances above a selected threshold (Coles, 2001). Two fundamental 

laws, the Fisher-Tippett-Gnedenko theorem (Fisher & Tippett, 1928; Gnedenko, 1943) and the Pickands-Balkema-de 

Haan theorem (Pickands, 1975; Balkema & de Haan, 1974), are associated with the two approaches, respectively, and 

give rise to the generalized extreme value distribution and the generalized Pareto distribution as limiting distributions. 

The asymptotic distribution of minima may be equivalently studied using the relation                
              . 
 

3.2.1 Generalized Extreme Value Distribution (GEVD) 
 

The generalized extreme value distribution (GEVD) is used to model the maxima of a long, but finite, 

sequence of independently and identically distributed (i.i.d.) random variables. Its pdf has the form: 
 

         

 
 
 

 
  

 
     

   

 
  

  
 

 
   

          
   

 
  

 
 

 
         

 

 
      

   

 
             

   

 
          

  (6) 

 

where    ,     and     are the location, scale and shape parameters, respectively. When    , the 

condition     
   

 
    must hold (Coles, 2001). Parameter estimates for the vector          are obtained by a 

maximization of the log-likelihood function                 
 
   , where   denotes the number of block 

maxima. The maximum likelihood method offers the advantage of estimating the three parameters simultaneously. 
 

3.2.2 Generalized Pareto Distribution (GPD) 
 

The two-parameter generalized Pareto distribution (GPD) is used to model peaks-over-threshold (POT). It is 

characterized by a scale parameter     anda shape parameter    . Its pdf has the form: 
 

         

 

 
    

 

 
 

 

 
  

        

 

 
     

 

 
        

  (7) 

 

where       for     and         for     (Hosking & Wallis, 1987). For peaks-over-threshold, we 

consider a random variable X and define the excess distribution function Fu above a threshold u as           
          , where x represents the magnitude of the exceedance above u. Estimates for the parameter vector 

       are obtained by maximizing the log-likelihood function                
 
   , where   denotes the number 

of observations satisfying       . 
 

3.3 Burr XII Distribution (Burr) 
 

The Burr XII distribution is also known as the generalized Beta-II distribution with unit shape parameter, 

the Singh-Maddala distribution, as well as the Pareto-IV distribution. It is a member of a system of 12 distributions 
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introduced by Burr (1942) and covers a broad range of skewness and kurtosis through different choices of parameters. 

This makes it suitable for modeling a wide variety of data, such as household income (Singh & Maddala, 1976), 

extreme flood levels (Shao et al., 2004), and crop prices (Tejeda & Goodwin, 2008). With      , pdf of the 

four-parameter Burr distribution is given as: 

 

         
   

   

 
    

     
   

 
 
 
    

 (8) 

 

where    ,    are the two shape parameters,     is the scale parameter and   is the location parameter. 

 

3.4 Johnson SU Distribution (JSU) 

 

The Johnson SU distribution is a member of the four-parameter Johnson family of distributions that also 

consist of Johnson SB and the lognormal distribution (Johnson, 1949). This family covers the entire skewness-kurtosis 

region and Johnson SU distribution covers the area above the lognormal curve. This makes Johnson SU distribution a 

heavy tailed distribution and applicable to fields such as finance (Simonato, 2011) and quality control (Castagliola, 

1998). 

 

The pdf of Johnson SU distribution is given as: 

 

        
 

         
      

 

 
                 (9) 

 

where                      ),   
   

 
 and       .   and   are the shape parameters,   is the scale 

parameter and   is the location parameter. 

 

3.5 Hyperbolic Secant Distribution (HSec) 

 

The pdf of two-parameter hyperbolic secant distribution can be expressed as: 

 

         
 

  
     

      

  
   (10) 

 

where       ,    is the scale parameter and   is the location parameter. 

 

Theoretical aspects of the hyperbolic secant distribution have been considered by many authors (for example, 

see Baten, 1934; Harkness & Harkness, 1968). It shares many properties with the standard normal distribution, but it is 

leptokurtic and has finite moments. Hence, it is suitable for the depiction of heavy-tailed data. Some examples of its 

application include the modeling of asset returns (Palmitesta & Provasi, 2004) and exchange rate data (Fischer, 2006). 

 

3.6 Dagum Distribution (Dag) 

 

A series of papers by Dagum (1975, 1977), proposed the Dagum distribution as a new model for personal 

income distributions. Its heavy tails are suitable for the modeling of extreme data and have recently been applied to 

estimating the Tropospheric Ozone levels (Monroy et al., 2013). The pdf of four-parameter Dagum distribution is 

given as: 

 

        
   

   

 
     

     
   

 
 
 
    

 (11) 

 

where     and     are the two shape parameters,     is the scale parameter,   is the location parameter 

and      . It is also inversely proportional to the Burr distribution. 
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4. VALUE-AT-RISK ESTIMATION AND BACKTESTING 

 

The amount of market risk capital, set-aside by financial institutes as per the Basel Accord, is directly linked 

to the level of portfolio risk, and VaR is a common benchmark measure for evaluating such risk. VaR is intended to 

assess the maximum possible loss for a portfolio over a specified time period and its calculations focus on the tails of 

a distribution. Hence, the accuracy of VaR estimation is dependent on how well the corresponding model portrays the 

extreme data observations (McNeil et al., 2005; Jorion, 2006). This provides procedures for testing the robustness of a 

model. 

 

For a random variable X (usually the log-return of some risky financial instrument) with distribution function 

F over a specified time period, the VaR (for a given probability p) can be defined as the p-th quantile of F, i.e., 

 

              (12) 

 

where     is the quantile function. 

 

A separate treatment is required for EVT, since GEVD and GPD are fitted only to the block maxima and 

threshold exceedances, respectively (and not on the whole data series). For a small upper tail probability p, GEVD 

approximation to VaR can be written as: 

 

    
   

   
  

  
                

 
            

                                       

  (13) 

 

where n is the size of the blocks and   ,   , and    are the maximum likelihood estimates of the GEVD parameters 

(Tsay, 2013), and the GPD approximation to VaR is given by: 

 

    
  

 
 
 

 
   

  

  
  

 

  
  

   

                   

         
 

  
                   

  (14) 

 

where    and    are the estimates of the GPD parameters and    is the number of exceedances above the threshold   

in a given sample (Tsay, 2010). 

 

In this research, we test VaR model specifications and effectiveness by utilizing the widely accepted Kupiec 

likelihood ratio (LR) unconditional coverage test (Kupiec, 1995) and Christoffersen conditional coverage test 

(Christoffersen, 1998). 

 

The Kupiec test utilizes the fact that a good model should have its proportion of violations of VaR estimates 

close to the corresponding tail probability. The method consists of calculating x
α
 the number of times the observed 

returns fall below (for long positions) or above (for short positions) the VaR estimate at level α; i.e., rt < VaR
α
 or rt > 

VaR
α
, and compare the corresponding failure rates to α. The null hypothesis is that the expected proportion of 

violations is equal to α. Under this null hypothesis, the Kupiec statistic, given by: 

 

           
  

 
 
  

   
  

 
 
    

                    (15) 

 

is asymptotically distributed according to a chi-square distribution with one degree of freedom. The Christoffersen test 

extends the Kupiec test to account for serial independence of violations (i.e., clustering of extremes). The 

Christoffersen test statistic can be represented by: 
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 (16) 

 

where     is defined as the number of returns in state i while they have been in state j previously (state 1 indicates the 

VaR estimate is violated and state 0 indicates it is not) and    is defined as the probability of having an exception that 

is conditional on state i the previous day. This statistic is asymptotically chi-square distributed with two degrees of 

freedom. 

 

5. EMPIRICAL RESULTS 

 

In this section, we fit the various distributions from Section 3 to the eight major JSE indices introduced in 

Section 2. Apart from JSU, all other distributions are fitted via the maximum likelihood estimation. Estimation of the 

JSU parameters is performed using quantile estimation, following the procedure of Wheeler (1980). The 

goodness-of-fit of the models is examined by utilizing the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 

1948) and the Anderson-Darling test (Anderson & Darling, 1952). The distributions are also employed to produce VaR 

estimates for each index and are contrasted against historical simulated VaR estimates. Backtesting on the 

distributional VaR estimates is then performed using Kupiec LR unconditional coverage test and Christoffersen 

conditional coverage test. 

 

Table 3 presents results from Kolmogorov-Smirnov test and Anderson-Darling test. Note that comparisons 

on this table are not applicable to GEVD and GPD. These two distributions are not fitted onto the whole return series 

but only on block maxima and sizes of exceedances, respectively. Hence, no direct comparison is obtainable using the 

two tests discussed here. However, these results still provide insights for the performance of other models on JSE 

indices. Furthermore, it must be noted that Anderson-Darling test provide more emphasis on the tails of the data 

(Farrel & Stewart, 2006). This is critical for VaR estimation and risk analysis for extreme losses. 

 

For ALSI, JSU is evidently the most robust model, with the highest p-value in both tests, although NIG and 

GHSt also provide very good data depictions. On the other hand, tests for ALSI40 show that NIG produces a slightly 

better fit than JSU. This is most likely as a direct cause of ALSI40 having a slightly smaller skewness and kurtosis. 

Burr, HSec, and Dag can all be rejected as suitable models for ALSI and ALSI40, at 5% level of significance. 

 

None of the distributions can be rejected as suitable models for Africa40 and RESI10. With minimal 

difference, Hyp and VG appear as best models for Africa40. For RESI10, however, GHSt is undoubtedly the preferred 

model. Burr, HSec, and Dag are again rejected for all of RAFI, FINDI, and CALSI. For RAFI, the Anderson-Darling 

test indicates NIG as the best model, although Hyp, NIG, and JSU produced similar Kolmogorov-Smirnov test results. 

The FINDI and CALSI return series are best described by NIG and JSU. 

 

The SAVI returns presented the highest kurtosis and skewness, relative to all other indices (see Table 2). 

These properties make SAVI distinctive from other market indices. This is confirmed by the goodness-of-fit tests, 

which rejected all distributions for the Kolmogorov-Smirnov test and only Hyp, NIG, and GHSt were not rejected for 

the Anderson-Darling test at 5% level of significance. 
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Table 3: Kolmogorov-Smirnov Test and Anderson-Darling Test on Major JSE Indices versus Heavy-Tailed Distributions 

Index Distributions Hyp NIG VG GHSt Burr JSU HSec Dag GEVD GPD 

ALSI 

KS 
Statistic 0.0145 0.0117 0.0157 0.0111 0.0228 0.0067 0.0294 0.0924 

n.a. n.a. 
p-value 0.6652 0.8837 0.5647 0.9151 0.1467 0.9999 0.0261 <0.001 

AD 
Statistic 0.5585 0.3244 0.7807 0.3616 3.217 0.2797 3.728 41.559 

p-value 0.6881 0.9188 0.4951 0.8857 0.0228 0.9526 0.0129 <0.001 

ALSI40 

KS 
Statistic 0.012 0.0095 0.0131 0.0116 0.0242 0.0118 0.0264 0.0342 

n.a. n.a. 
p-value 0.8635 0.9785 0.7828 0.8871 0.1063 0.8742 0.0609 0.0057 

AD 
Statistic 0.4896 0.3041 0.6753 0.3711 3.0007 0.4232 3.0957 6.9333 

p-value 0.7574 0.9350 0.5798 0.8768 0.0310 0.8255 0.0274 <0.001 

Africa40 

KS 
Statistic 0.0163 0.0176 0.0157 0.0189 0.0244 0.0204 0.0229 0.0268 

n.a. n.a. 
p-value 0.9949 0.9868 0.9970 0.9726 0.8184 0.9472 0.8719 0.7224 

AD 
Statistic 0.1493 0.1600 0.1537 0.2299 0.5152 0.1813 0.3035 0.6450 

p-value 0.9986 0.9977 0.9983 0.9800 0.3553 0.9947 0.3935 0.3318 

RESI10 

KS 
Statistic 0.0139 0.0128 0.0152 0.0101 0.0172 0.0129 0.0185 0.0196 

n.a. n.a. 
p-value 0.7206 0.8098 0.6079 0.9608 0.4461 0.8027 0.3565 0.2893 

AD 
Statistic 0.7400 0.5391 1.0286 0.2691 1.3495 0.4151 1.3221 1.1394 

p-value 0.5263 0.7073 0.3426 0.9594 0.2046 0.8336 0.2095 0.2425 

RAFI 

KS 
Statistic 0.0135 0.0135 0.015 0.0155 0.0334 0.0133 0.0383 0.0625 

n.a. n.a. 
p-value 0.7552 0.7503 0.6237 0.5851 0.0073 0.7718 0.0013 <0.001 

AD 
Statistic 0.5545 0.361 0.7735 0.6913 5.2412 0.5064 4.5721 21.599 

p-value 0.692 0.8863 0.5005 0.5661 <0.001 0.7403 <0.001 <0.001 

FINDI 

KS 
Statistic 0.0129 0.011 0.0135 0.0149 0.0295 0.0118 0.0339 0.0275 

n.a. n.a. 
p-value 0.7991 0.9228 0.7488 0.6335 0.0255 0.8797 0.0063 0.0452 

AD 
Statistic 0.6241 0.5492 0.7699 0.9207 4.509 0.4988 5.1585 2.5991 

p-value 0.6255 0.6972 0.5032 0.4017 <0.001 0.7480 <0.001 0.0463 

CALSI 

KS 
Statistic 0.0124 0.0097 0.0139 0.0123 0.0257 0.0109 0.0333 0.0917 

n.a. n.a. 
p-value 0.8351 0.9724 0.7168 0.8403 0.0723 0.9267 0.0077 <0.001 

AD 
Statistic 0.5192 0.3322 0.7258 0.4605 3.258 0.3053 3.8946 41.802 

p-value 0.7273 0.9121 0.5376 0.7874 0.0212 0.9341 0.0102 <0.001 

SAVI 

KS 
Statistic 0.0462 0.0486 0.0947 0.0452 0.0687 0.062 0.0814 0.1002 

n.a. n.a. 
p-value 0.0013 <0.001 <0.001 0.0018 <0.001 <0.001 <0.001 <0.001 

AD 
Statistic 1.982 1.795 18.188 1.9718 16.117 3.5382 8.1412 53.607 

p-value 0.0940 0.1194 <0.001 0.0952 <0.001 0.0147 <0.001 <0.001 
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Tables 4.1 to 11.2 present the distributional VaR estimates, number of VaR violations, Kupiec LR test results, 

and Christoffersen test results for the different models on the eight JSE indices. All VaR calculations and tests are 

performed at the common 0.1%, 1%, and 5% for long positions, and at 95%, 99%, and 99.9% for short positions of 

trade. These results are vital in the determination of VaR forecasting adequacy of the different models on the indices. 

Moreover, it allows comparison across distributions that are not necessarily fitted over the same part of the data. In our 

case, it allows us to compare GEVD and GPD with the other distributions. 

 

For GEVD, three different fits are performed at block sizes 5, 10, and 21 (producing weekly, fortnightly, and 

monthly maxima) and the corresponding models are denoted by GEVD5, GEVD10, and GEVD21, respectively. 

Whereas, GPD is fitted at three different threshold levels, 85%, 90%, and 95% quantiles (locating 15%, 10%, and 5% 

of observations as exceedances, respectively). These models are denoted by GPD85, GPD90, and GPD95. The 

negative tails are fitted using the relation                              , i.e., multiplying the data series 

by negative one and perform the block method and POT method as described in Section 3.2. Thereafter, VaR estimates 

are calculated as described in Section 4. 

 

It should be noted that normality is rejected almost everywhere, as one would expect due to the leptokurtic 

nature of these data series. Hence, normal distribution assumption often produces underestimates for VaR and, as a 

result, an excess number of violations. The widely recommended standard Student’s t-distribution is a better candidate 

for VaR estimation, however, it is still relatively weaker (in most cases) compared to the heavy-tailed distributions 

discussed here. 

 

For ALSI (Tables 4-1 and 4-2), there is a varying pattern of VaR estimates. While certain distributions 

underestimate the VaR at a particular significance level, they may also overestimate VaR at another. According to the 

Kupiec LR test, the best models at 0.1% VaR level are NIG, JSU, GPD85, and GPD90; the best model for 1% VaR is 

GPD85; the best model at 5% VaR is NIG; GPD95 is the best model at 95% VaR level, HSec is best for 99% VaR 

estimation, and GHSt, GEVD10, GPD85, and GPD95 are most robust for 99.9% VaR estimation. Although same 

selections are obtained for the Christoffersen test at 0.1% and 99.9% VaR levels, we can observe that the clustering of 

VaR violations start to occur at lesser extreme VaR levels (lower p-values for the Christoffersen test). This may be 

simply caused by the increase in the number of observations that exceed the VaR estimates. Similar observations can 

be made for ALSI40 (Tables 5-1 and 5-2). 

 

The Africa40 results provide a very interesting case, where most models (only exceptions being Normal, t, 

Burr and Dag at singular VaR levels) are not rejected by the Kupiec LR test and the Christoffersen test (Tables 6-1 and 

6-2). Africa40 distinctly differs from other indices by the facts that it has a lower volatility level and is recorded over a 

shorter time period. This makes the return series easier to depict by the models under consideration. However, there 

does not appear to exist a clear standout preferred model, with the best models varying across different VaR levels. 

 

Tables 7-1 and 7-2 present the VaR estimates and backtesting results for RESI10. RESI10 has the second 

highest kurtosis in our set of indices and the lowest magnitude for skewness (see Table 2). These are also evidenced by 

the high magnitude of extreme VaR estimates and relatively small differences between magnitudes of short and long 

positions. The Kupiec LR test stipulates that, GHSt and GPD95 are the most suitable models for 0.1% VaR estimation; 

1% VaR is best predicted by t, GPD85 and GPD90; JSU and GPD95 best describe the 5% VaR; JSU, GPD90, and 

GPD95 are more robust for 95% VaR estimation; 99% VaR is best modeled by GHSt, and 99.9% VaR can be depicted 

by various distributions. 

 

Results for RAFI are presented in Tables 8-1 and 8-2. It is interesting to note that Dag is a particularly bad 

model for RAFI, with the distribution rejected at all VaR levels for the Kupiec LR test and is also rejected 5 out of 6 

VaR levels for the Christoffersen test, at 5% level of significance. We may also observe that GPD90 and GPD95 

produce very good VaR estimates for RAFI. Although they do not always give the highest p-values for the Kupiec LR 

test, they are never rejected by the Kupiec LR test, at all levels of significance. 

 

GPD95 standout as a good VaR model for FINDI (Tables 9-1 and 9-2), because it has relatively high p-values 

for all VaR levels in the Kupiec LR test. However, the model with the highest Kupiec test p-value still varies across 

VaR levels. For example, the standard Student’s t-distribution is the clear best model (by far) for 99% VaR estimation. 
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Such irregularity is also presented in the Christoffersen test, where it is also evidenced that extreme clustering is 

common for 95% and 99% VaR estimates. Results for CALSI (Tables 10-1 and 10-2) depict similar observations. 

 

Tables 11-1 and 11-2 illustrate the VaR results for SAVI returns. SAVI portrays an extreme case under our 

analyses. It has the highest kurtosis value and the highest magnitude in skewness. Given its construct as the “fear” 

gauge to measure current market sentiment, such characteristics can be expected. Hence, the extreme VaR estimates 

are high in magnitude (relative to other indices) and there is a relatively large difference between the estimates of short 

and long positions. These properties make SAVI very suitable for our model fitting, as most of our distributions are 

heavy-tailed and cater for substantial skewness. Hence, none of Hyp, NIG, VG, GHSt, JSU, GEVD5, GPD85, GPD90, 

and GPD95 can be rejected by the Kupiec LR test as good models for SAVI. Interestingly, this is also the only index 

that produces the exact same best model selections from both the Kupiec LR test and the Christoffersen test. In 

particular, NIG, GHSt, JSU, and GEVD5 give the best estimation for 0.1% VaR; GHSt, JSU, GEVD10, GEVD21, 

GPD90, and GPD95 are all best suited for 1% VaR estimation; 5% VaR is best described by GPD95; both GHSt and 

GPD95 are most robust for the 95% VaR estimation; GHSt is most suitable for 99% VaR estimation; and NIG, all 

GEVDs, and all GPDs are appropriate for the 99.9% VaR estimation. Hence, there is again no one best model for the 

return series. 
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Table 4-1: VaR Estimates for ALSI Using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.06345016 -0.03448587 -0.02034420 0.01874104 0.03419627 0.06050109 

Normal -0.03899048 -0.02920541 -0.02047572 0.0216642 0.03039389 0.04017896 

t -0.05202774 -0.03463711 -0.02256283 0.02375131 0.03582559 0.05321622 

Hyp -0.05562657 -0.03507477 -0.02064146 0.02012801 0.03228777 0.04958697 

NIG -0.06326095 -0.03681981 -0.02041068 0.01989789 0.03304091 0.05378207 

VG -0.05447578 -0.03481429 -0.02073931 0.0202484 0.03227197 0.04907236 

GHSt -0.08117427 -0.03733324 -0.01966119 0.01965385 0.03293994 0.05886682 

Burr -0.04659 -0.03061 -0.01921 0.02001 0.03036 0.04473 

JSU -0.06429056 -0.03613174 -0.02026164 0.01883265 0.03023169 0.04984987 

HSec -0.05207 -0.03328 -0.02014 0.02133 0.03447 0.05325 

Dag -0.0427 -0.03022 -0.02055 0.02856 0.04494 0.068 

GEVD5 -0.052992383 -0.033190558 -0.019443917 0.01949556 0.032182857 0.051476981 

GEVD10 -0.051970393 -0.032680905 -0.018351698 0.017052601 0.030870653 0.062556659 

GEVD21 -0.056106105 -0.030348202 -0.015184599 0.015056389 0.028041325 0.073459841 

GPD85 -0.0646011 -0.034111455 -0.019248426 0.019230044 0.034125031 0.064791175 

GPD90 -0.05995494 -0.036213694 -0.020467578 0.019166717 0.034150989 0.065676166 

GPD95 -0.059731903 -0.036444093 -0.020340216 0.018737091 0.035138964 0.060475574 

 
Table 4-2: VaR Backtesting for ALSI versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 17 58 123 91 39 17 <0.001 <0.001 0.8504 0.0011 0.0094 <0.001 <0.001 <0.001 0.0045 <0.001 0.0027 <0.001 

t 5 24 102 76 21 4 0.1645 0.8381 0.0291 <0.001 0.4072 0.3834 0.3768 0.7761 0.0012 <0.001 0.0290 0.6796 

Hyp 5 24 123 111 33 9 0.1645 0.8381 0.8504 0.1892 0.1258 0.0015 0.3768 0.7761 0.0045 0.0024 0.0651 <0.001 

NIG 3 21 125 115 29 4 0.7596 0.4072 0.9963 0.3502 0.4342 0.3834 0.9508 0.5937 0.0063 <0.001 0.0996 0.6796 

VG 5 24 123 109 33 11 0.1645 0.8381 0.8504 0.1325 0.1258 <0.001 0.3768 0.7761 0.0045 0.0040 0.0651 <0.001 

GHSt 0 20 134 117 29 3 0.0253 0.2968 0.4167 0.4555 0.4342 0.7596 0.0819 0.4939 0.0026 0.0012 0.0996 0.9508 

Burr 8 45 140 114 39 14 0.0058 <0.001 0.1780 0.3037 0.0094 <0.001 0.0216 <0.001 <0.001 <0.001 0.0027 <0.001 

JSU 3 21 127 124 39 8 0.7596 0.4072 0.8584 0.9232 0.0094 0.0058 0.9508 0.5937 0.0086 <0.001 0.0027 0.0013 

HSec 5 30 131 95 25 4 0.1645 0.3309 0.5879 0.0041 0.9984 0.3834 0.3768 0.0949 0.0052 <0.001 0.0792 0.6796 

Dag 11 48 123 47 14 1 <0.001 <0.001 0.8504 <0.001 0.0158 0.2795 <0.001 <0.001 0.0045 <0.001 <0.001 0.5570 

GEVD5 5 30 137 118 33 7 0.1645 0.3309 0.2799 0.5139 0.1258 0.0199 0.3768 0.0949 0.0012 0.0015 0.0651 0.0030 

GEVD10 5 31 151 163 36 3 0.1645 0.2459 0.0209 <0.001 0.0382 0.7596 0.3768 0.0116 <0.001 <0.001 0.0324 0.9508 

GEVD21 5 47 219 208 50 0 0.1645 <0.001 <0.001 <0.001 <0.001 0.0253 0.3768 <0.001 <0.001 <0.001 <0.001 0.0819 

GPD85 3 26 139 121 26 3 0.7596 0.8433 0.2083 0.7088 0.8433 0.7596 0.9508 0.0897 <0.001 <0.001 0.0897 0.9508 

GPD90 3 21 123 121 26 1 0.7596 0.4072 0.8504 0.7088 0.8433 0.2795 0.9508 0.5937 0.0045 <0.001 0.0897 0.5570 

GPD95 4 21 126 126 23 3 0.3834 0.4072 0.9306 0.9306 0.6822 0.7596 0.6796 0.5937 0.0074 <0.001 0.0533 0.9508 
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Table 5-1: VaR Estimates for ALSI40 using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.0672932 -0.03807286 -0.02252051 0.02065497 0.03815264 0.0655473 

Normal -0.04273466 -0.03202627 -0.02247285 0.02364338 0.03319679 0.04390518 

t -0.05674717 -0.03787282 -0.02472151 0.02589203 0.03904335 0.05791769 

Hyp -0.06070554 -0.03832927 -0.02263214 0.02212525 0.03565813 0.05487895 

NIG -0.06838663 -0.04002478 -0.02231742 0.02190274 0.03646936 0.05947935 

VG -0.05960987 -0.03810711 -0.02271426 0.02225466 0.03564405 0.05434605 

GHSt -0.08571362 -0.04032656 -0.02152649 0.02162928 0.03640946 0.06547592 

Burr -0.05066 -0.03335 -0.021 0.02197 0.03354 0.04965 

JSU -0.07312378 -0.04060119 -0.02254403 0.02062865 0.03333209 0.05552125 

HSec -0.05704 -0.03649 -0.0221 0.02327 0.03766 0.05821 

Dag -0.05187 -0.03432 -0.02177 0.02363 0.03646 0.05443 

GEVD5 -0.057617192 -0.036008593 -0.021176983 0.021390916 0.035509621 0.057215649 

GEVD10 -0.056102025 -0.035485719 -0.020128267 0.018765037 0.034137702 0.069169123 

GEVD21 -0.059423767 -0.033196529 -0.016748401 0.016705164 0.031174525 0.076407297 

GPD85 -0.064995441 -0.039019548 -0.022317858 0.021190722 0.037584242 0.07100962 

GPD90 -0.065068043 -0.038968102 -0.022337789 0.021191447 0.037707634 0.070352143 

GPD95 -0.064217893 -0.039220344 -0.022516436 0.020650686 0.038574441 0.066755763 

 
Table 5-2: VaR Backtesting for ALSI40 versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 16 51 126 92 40 16 <0.001 <0.001 0.9306 0.0015 0.0056 <0.001 <0.001 <0.001 0.0196 <0.001 0.0082 <0.001 

t 6 26 104 76 23 4 0.0611 0.8433 0.0470 <0.001 0.6822 0.3834 0.1706 0.7462 0.0024 <0.001 0.0533 0.6796 

Hyp 5 24 125 114 31 9 0.1645 0.8381 0.9963 0.3037 0.2459 0.0015 0.3768 0.7761 0.0171 0.0018 0.0869 <0.001 

NIG 3 20 126 115 30 4 0.7596 0.2968 0.9306 0.3502 0.3309 0.3834 0.9508 0.4939 0.0196 0.0023 0.0949 0.6796 

VG 5 25 125 110 31 11 0.1645 0.9984 0.9963 0.1590 0.2459 <0.001 0.3768 0.7768 0.0171 0.0018 0.0869 <0.001 

GHSt 0 20 135 116 30 3 0.0253 0.2968 0.3672 0.4008 0.3309 0.7596 0.0819 0.4939 0.0075 0.0030 0.0949 0.9508 

Burr 9 43 140 115 39 14 0.0015 0.0010 0.1780 0.3502 0.0094 <0.001 0.0063 <0.001 0.0038 0.0023 0.0121 <0.001 

JSU 2 20 125 126 39 8 0.7425 0.2968 0.9963 0.9306 0.0094 0.0058 0.9460 0.4939 0.0171 0.0026 0.0121 0.0013 

HSec 5 28 128 94 26 4 0.1645 0.5555 0.7874 0.0029 0.8433 0.3834 0.3768 0.6120 0.0248 <0.001 0.0897 0.6796 

Dag 7 35 131 93 30 11 0.0199 0.0583 0.5879 0.0021 0.3309 <0.001 0.0653 0.0074 0.0136 <0.001 0.0949 <0.001 

GEVD5 5 29 138 120 31 5 0.1645 0.4342 0.2422 0.6410 0.2459 0.1645 0.3768 0.5241 0.0035 <0.001 0.0869 0.3768 

GEVD10 6 31 153 169 36 2 0.0611 0.2459 0.0131 <0.001 0.0382 0.7425 0.1706 0.3583 <0.001 <0.001 0.0324 0.9460 

GEVD21 5 44 216 211 49 1 0.1645 <0.001 <0.001 <0.001 <0.001 0.2795 0.3768 <0.001 <0.001 <0.001 <0.001 0.5570 

GPD85 3 20 126 122 26 2 0.7596 0.2968 0.9306 0.7788 0.8433 0.7425 0.9508 0.4939 0.0196 0.0012 0.0897 0.9460 

GPD90 3 21 126 122 26 2 0.7596 0.4072 0.9306 0.7788 0.8433 0.7425 0.9508 0.5937 0.0196 0.0012 0.0897 0.9460 

GPD95 3 20 126 126 24 3 0.7596 0.2968 0.9306 0.9306 0.8381 0.7596 0.9508 0.4939 0.0196 0.0026 0.0666 0.9508 
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Table 6-1: VaR Estimates for Africa40 using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.03547472 -0.02000097 -0.01118234 0.01314262 0.02136312 0.02708866 

Normal -0.02324872 -0.01733864 -0.012066 0.01338608 0.01865872 0.02456881 

t -0.02955974 -0.02001702 -0.0131098 0.01442988 0.02133711 0.03087983 

Hyp -0.03094495 -0.01967227 -0.01174142 0.01333317 0.02164537 0.03350001 

NIG -0.03253211 -0.01974817 -0.01154204 0.01320432 0.02205369 0.03580763 

VG -0.03025697 -0.01950127 -0.01176971 0.01337838 0.02146328 0.03271498 

GHSt -0.03579924 -0.01971428 -0.0113911 0.01291395 0.0218945 0.04039046 

Burr -0.02678 -0.01766 -0.01114 0.01314 0.02038 0.03061 

JSU -0.03412504 -0.01944475 -0.0112097 0.01311631 0.02240027 0.0391158 

HSec -0.03116 -0.01981 -0.01187 0.01319 0.02113 0.03248 

Dag -0.02799 -0.01839 -0.01154 0.01272 0.01949 0.02896 

GEVD5 -0.032793816 -0.019925227 -0.011480848 0.013736753 0.020792893 0.029031259 

GEVD10 -0.03618093 -0.019487097 -0.010664574 0.013553361 0.020553032 0.028893693 

GEVD21 -0.037918587 -0.019508359 -0.010685402 0.013744118 0.020979166 0.0282553 

GPD85 -0.036001712 -0.020271111 -0.011352657 0.01373642 0.020891273 0.028271379 

GPD90 -0.035386952 -0.020449192 -0.011397043 0.01362005 0.020854378 0.02858942 

GPD95 -0.038557689 -0.019778566 -0.011189117 0.01315441 0.021940674 0.027093932 

 
Table 6-2: VaR Backtesting for Africa40 versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 5 8 27 32 12 3 <0.001 0.5933 0.2729 0.8646 0.0575 0.0355 0.0029 0.7858 0.0413 0.9238 0.0745 0.1082 

t 2 7 21 30 8 0 0.1844 0.8737 0.0225 0.5926 0.5933 0.2508 0.4120 0.9159 <0.001 0.7519 0.7858 0.5172 

Hyp 2 8 29 32 5 0 0.1844 0.5933 0.4715 0.8646 0.5156 0.2508 0.4120 0.7858 0.0922 0.9238 0.7791 0.5172 

NIG 2 8 30 32 5 0 0.1844 0.5933 0.5926 0.8646 0.5156 0.2508 0.4120 0.7858 0.1276 0.9238 0.7791 0.5172 

VG 2 8 29 32 5 0 0.1844 0.5933 0.4715 0.8646 0.5156 0.2508 0.4120 0.7858 0.0922 0.9238 0.7791 0.5172 

GHSt 1 8 31 34 5 0 0.6964 0.5933 0.7249 0.8519 0.5156 0.2508 0.9253 0.7858 0.1681 0.9652 0.7791 0.5172 

Burr 3 8 34 33 9 0 0.0355 0.5933 0.8519 0.9929 0.3714 0.2508 0.1082 0.7858 0.2925 0.9631 0.5920 0.5172 

JSU 1 8 33 34 4 0 0.6964 0.5933 0.9929 0.8519 0.2741 0.2508 0.9253 0.7858 0.2542 0.9652 0.5366 0.5172 

HSec 2 7 28 32 8 0 0.1844 0.8737 0.3643 0.8646 0.5933 0.2508 0.4120 0.9159 0.0634 0.9238 0.7858 0.5172 

Dag 3 8 30 35 10 0 0.0355 0.5933 0.5926 0.7167 0.2148 0.2508 0.1082 0.7858 0.1276 0.9310 0.1524 0.5172 

GEVD5 1 7 30 31 9 0 0.6964 0.8737 0.5926 0.7249 0.3714 0.2508 0.9253 0.9159 0.1276 0.8510 0.5920 0.5172 

GEVD10 1 8 38 31 9 0 0.6964 0.5933 0.3777 0.7249 0.3714 0.2508 0.9253 0.7858 0.3395 0.8510 0.5920 0.5172 

GEVD21 1 8 38 31 8 0 0.6964 0.5933 0.3777 0.7249 0.5933 0.2508 0.9253 0.7858 0.3395 0.8510 0.7858 0.5172 

GPD85 1 7 32 31 9 0 0.6964 0.8737 0.8646 0.7249 0.3714 0.2508 0.9253 0.9159 0.2115 0.8510 0.5920 0.5172 

GPD90 1 6 31 31 9 0 0.6964 0.8146 0.7249 0.7249 0.3714 0.2508 0.9253 0.9206 0.1681 0.8510 0.5920 0.5172 

GPD95 1 8 33 33 5 1 0.6964 0.5933 0.9929 0.9929 0.5156 0.6964 0.9253 0.7858 0.2542 0.9631 0.7791 0.9253 
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Table 7-1: VaR Estimates for RESI10 using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.09396051 -0.05199949 -0.02953367 0.02855521 0.05007265 0.1035711 

Normal -0.05854103 -0.0439762 -0.03098228 0.03174192 0.04473584 0.05930067 

t -0.07705341 -0.05171818 -0.03396445 0.03472409 0.05247782 0.07781305 

Hyp -0.07685876 -0.04944006 -0.03011218 0.03037305 0.04905526 0.07545615 

NIG -0.08396262 -0.05101173 -0.02987517 0.03013175 0.050342 0.08170223 

VG -0.07532223 -0.04920109 -0.03024126 0.03059851 0.04908793 0.07458935 

GHSt -0.09618747 -0.0508996 -0.02908365 0.02948061 0.05009455 0.09082008 

Burr -0.06782 -0.04501 -0.02872 0.02999 0.04671 0.07016 

JSU -0.08203889 -0.04916091 -0.02942634 0.02866594 0.04644286 0.0757165 

HSec -0.078 -0.05005 -0.03048 0.03124 0.05081 0.07876 

Dag -0.07052 -0.04707 -0.02977 0.02909 0.0453 0.06878 

GEVD5 -0.076419809 -0.048126721 -0.028759959 0.029437468 0.048841893 0.077910687 

GEVD10 -0.074494929 -0.047512228 -0.027557696 0.026448973 0.046846716 0.086283603 

GEVD21 -0.08121959 -0.043261028 -0.022818916 0.024572043 0.044120567 0.087118577 

GPD85 -0.091362171 -0.051871602 -0.029227576 0.029141335 0.051280598 0.093332054 

GPD90 -0.09161431 -0.051693318 -0.029275834 0.028799235 0.050852149 0.097970781 

GPD95 -0.092610603 -0.051410683 -0.029528819 0.02864884 0.051339117 0.095705283 

 
Table 7-2: VaR Cacktesting for RESI10 versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 16 41 110 102 36 14 <0.001 0.0033 0.1590 0.0291 0.0382 <0.001 <0.001 0.0013 <0.001 0.0034 <0.001 <0.001 

t 6 26 89 77 23 7 0.0611 0.8433 <0.001 <0.001 0.6822 0.0199 0.1706 0.7462 <0.001 <0.001 0.0533 0.0030 

Hyp 6 30 121 112 28 8 0.0611 0.3309 0.7088 0.2232 0.5555 0.0058 0.1706 0.4330 <0.001 0.0552 0.1004 <0.001 

NIG 6 27 122 113 24 5 0.0611 0.6930 0.7788 0.2614 0.8381 0.1645 0.1706 0.6888 0.0012 0.0681 0.0666 0.0083 

VG 6 30 120 112 28 8 0.0611 0.3309 0.6410 0.2232 0.5555 0.0058 0.1706 0.4330 <0.001 0.0552 0.1004 <0.001 

GHSt 3 27 129 119 25 5 0.7596 0.6930 0.7184 0.5759 0.9984 0.1645 0.9508 0.6888 0.0041 0.0923 0.0792 0.0083 

Burr 9 39 131 115 32 9 0.0015 0.0094 0.5879 0.3502 0.1781 0.0015 0.0063 0.0306 0.0052 0.0999 0.0110 <0.001 

JSU 6 30 126 124 32 7 0.0611 0.3309 0.9306 0.9232 0.1781 0.0199 0.1706 0.4330 0.0026 0.1724 0.0110 0.0030 

HSec 6 27 114 106 24 7 0.0611 0.6930 0.3037 0.0730 0.8381 0.0199 0.1706 0.6888 <0.001 0.0122 0.0666 0.0030 

Dag 8 34 122 122 33 10 0.0058 0.0867 0.7788 0.7788 0.1258 <0.001 0.0216 0.1809 0.0012 0.1389 0.0100 <0.001 

GEVD5 6 31 130 119 28 7 0.0611 0.2459 0.6517 0.5759 0.5555 0.0199 0.1706 0.3456 0.0046 0.0923 0.1004 0.0030 

GEVD10 6 33 140 149 32 5 0.0611 0.1258 0.1780 0.0327 0.1781 0.1645 0.1706 0.1993 0.0038 0.0032 0.0110 0.0083 

GEVD21 6 43 214 181 37 5 0.0611 0.0010 <0.001 <0.001 0.0245 0.1645 0.1706 <0.001 <0.001 <0.001 <0.001 0.0083 

GPD85 4 26 128 122 24 5 0.3834 0.8433 0.7874 0.7788 0.8381 0.1645 0.6796 0.7462 0.0035 0.1389 0.0666 0.0083 

GPD90 4 26 128 124 24 5 0.3834 0.8433 0.7874 0.9232 0.8381 0.1645 0.6796 0.7462 0.0035 0.1724 0.0666 0.0083 

GPD95 3 27 126 124 24 5 0.7596 0.6930 0.9306 0.9232 0.8381 0.1645 0.9508 0.6888 0.0026 0.1724 0.0666 0.0083 
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Table 8-1: VaR Estimates for RAFI using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.05357548 -0.03292602 -0.02004062 0.01853224 0.032919 0.04985304 

Normal -0.03637012 -0.02723749 -0.01908988 0.02024026 0.02838787 0.0375205 

t -0.04815221 -0.03215902 -0.02098416 0.02213454 0.0333094 0.04930259 

Hyp -0.05277788 -0.0331125 -0.01935216 0.0190764 0.03103078 0.04806589 

NIG -0.06137297 -0.03517588 -0.01913473 0.01871592 0.03152274 0.05210736 

VG -0.05134968 -0.0326092 -0.01927233 0.01920303 0.03109179 0.04776555 

GHSt -0.08283004 -0.03608319 -0.01850445 0.01844769 0.03140874 0.0574016 

Burr -0.04666 -0.03138 -0.02049 0.01653 0.02609 0.0393 

JSU -0.07787022 -0.038889 -0.01991437 0.01867114 0.03335821 0.06315589 

HSec -0.04858 -0.03105 -0.01878 0.01993 0.0322 0.04973 

Dag -0.04025 -0.02661 -0.0166 0.0252 0.03801 0.05599 

GEVD5 -0.04953552 -0.031618043 -0.01854755 0.01845054 0.030345798 0.048066972 

GEVD10 -0.048916708 -0.031629163 -0.017691954 0.016640345 0.029408631 0.055409206 

GEVD21 -0.05453539 -0.029156564 -0.014162166 0.014557746 0.027243947 0.060748366 

GPD85 -0.052845058 -0.034189447 -0.019852259 0.018247854 0.031892433 0.059162774 

GPD90 -0.053026273 -0.033981172 -0.019829278 0.018642444 0.032257528 0.052961141 

GPD95 -0.053202975 -0.033695439 -0.020104445 0.018528649 0.032611754 0.051527015 

 
Table 8-2: VaR Backtesting for RAFI versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 18 55 135 100 42 15 <0.001 <0.001 0.3672 0.0174 0.0019 <0.001 <0.001 <0.001 0.0182 0.0017 <0.001 <0.001 

t 4 29 115 76 24 4 0.3834 0.4342 0.3502 <0.001 0.8381 0.3834 0.6796 0.5241 0.0456 <0.001 0.0666 0.6796 

Hyp 3 25 132 119 35 4 0.7596 0.9984 0.5273 0.5759 0.0583 0.3834 0.9508 0.7768 0.0351 <0.001 0.0074 0.6796 

NIG 1 19 135 123 32 2 0.2795 0.2072 0.3672 0.8504 0.1781 0.7425 0.5570 0.3903 0.0182 0.0015 0.0110 0.9460 

VG 4 26 134 118 34 4 0.3834 0.8433 0.4167 0.5139 0.0867 0.3834 0.6796 0.7462 0.0172 <0.001 0.0088 0.6796 

GHSt 0 18 141 127 32 0 0.0253 0.1381 0.1512 0.8584 0.1781 0.0253 0.0819 0.2922 0.0093 0.0030 0.0110 0.0819 

Burr 4 31 120 158 50 14 0.3834 0.2459 0.6410 0.0036 <0.001 <0.001 0.6796 0.3456 0.0482 <0.001 <0.001 <0.001 

JSU 0 13 127 124 24 0 0.0253 0.0079 0.8584 0.9232 0.8381 0.0253 0.0819 0.0273 0.0525 0.0018 0.0666 0.0819 

HSec 4 32 138 110 27 3 0.3834 0.1781 0.2422 0.1590 0.6930 0.7596 0.6796 0.2667 0.0202 0.0053 0.0970 0.9508 

Dag 11 59 181 53 14 0 <0.001 <0.001 <0.001 <0.001 0.0158 0.0253 <0.001 <0.001 <0.001 <0.001 0.0101 0.0819 

GEVD5 4 30 140 127 37 4 0.3834 0.3309 0.1780 0.8584 0.0245 0.3834 0.6796 0.4330 0.0092 0.0030 0.0047 0.6796 

GEVD10 4 30 154 156 42 0 0.3834 0.3309 0.0102 0.0062 0.0019 0.0253 0.6796 0.4330 <0.001 <0.001 <0.001 0.0819 

GEVD21 3 48 238 206 47 0 0.7596 <0.001 <0.001 <0.001 <0.001 0.0253 0.9508 <0.001 <0.001 <0.001 <0.001 0.0819 

GPD85 3 21 128 131 29 0 0.7596 0.4072 0.7874 0.5879 0.4342 0.0253 0.9508 0.5937 0.0248 0.0018 0.0996 0.0819 

GPD90 3 22 128 124 27 2 0.7596 0.5369 0.7874 0.9232 0.6930 0.7425 0.9508 0.6798 0.0248 0.0018 0.0970 0.9460 

GPD95 3 22 124 126 27 2 0.7596 0.5369 0.9232 0.9306 0.6930 0.7425 0.9508 0.6798 0.0368 0.0026 0.0970 0.9460 
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Table 9-1: VaR Estimates for FINDI using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.04254271 -0.03060448 -0.01688861 0.01650247 0.03080411 0.04290212 

Normal -0.03248829 -0.02428472 -0.01696597 0.01836311 0.02568186 0.03388543 

t -0.04295248 -0.02865968 -0.01865087 0.02004801 0.03005682 0.04434962 

Hyp -0.04819379 -0.03013057 -0.01748241 0.01694143 0.02706588 0.04145187 

NIG -0.05505486 -0.03165666 -0.01721803 0.0167729 0.02765248 0.04489185 

VG -0.0473395 -0.02995412 -0.01758038 0.0169437 0.02684473 0.04075536 

GHSt -0.07348652 -0.03225621 -0.01652153 0.01669449 0.02768841 0.04893703 

Burr -0.04153 -0.02792 -0.01822 0.01478 0.02331 0.03512 

JSU -0.05873317 -0.0314563 -0.01692576 0.01646147 0.02730146 0.04722285 

HSec -0.04344 -0.0277 -0.01668 0.01808 0.0291 0.04484 

Dag -0.04145 -0.02744 -0.01688 0.01625 0.02464 0.03687 

GEVD5 -0.044887841 -0.027965703 -0.016180517 0.01652948 0.027254575 0.043443046 

GEVD10 -0.043058244 -0.027467348 -0.015452632 0.014786947 0.0265889 0.052470224 

GEVD21 -0.045995645 -0.025410914 -0.013046802 0.013612306 0.024529679 0.054050499 

GPD85 -0.047990551 -0.030130332 -0.017457649 0.016509658 0.02887113 0.05190397 

GPD90 -0.048644606 -0.030013653 -0.017323262 0.016543844 0.028875464 0.051455572 

GPD95 -0.048533292 -0.030380116 -0.016885171 0.016499195 0.029591885 0.048028699 

 
Table 9-2: VaR Backtesting for FINDI versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 19 53 125 98 44 16 <0.001 <0.001 0.9963 0.0100 <0.001 <0.001 <0.001 <0.001 0.3420 <0.001 <0.001 <0.001 

t 3 33 98 81 27 3 0.7596 0.1258 0.0100 <0.001 0.6930 0.7596 0.9508 0.0651 0.0054 <0.001 0.0970 0.9508 

Hyp 2 26 118 115 40 3 0.7425 0.8433 0.5139 0.3502 0.0056 0.7596 0.9460 0.0897 0.1626 0.0023 <0.001 0.9508 

NIG 2 20 123 119 39 2 0.7425 0.2968 0.8504 0.5759 0.0094 0.7425 0.9460 0.0196 0.2922 <0.001 <0.001 0.9460 

VG 2 28 117 115 40 4 0.7425 0.5555 0.4555 0.3502 0.0056 0.3834 0.9460 0.1004 0.1398 0.0023 <0.001 0.6796 

GHSt 0 20 130 122 38 2 0.0253 0.2968 0.6517 0.7788 0.0153 0.7425 0.0819 0.0196 0.0302 0.0012 <0.001 0.9460 

Burr 3 35 105 154 52 13 0.7596 0.0583 0.0588 0.0102 <0.001 <0.001 0.9508 0.0423 0.0217 <0.001 <0.001 <0.001 

JSU 2 21 125 127 40 2 0.7425 0.4072 0.9963 0.8584 0.0056 0.7425 0.9460 0.0290 0.3420 <0.001 <0.001 0.9460 

HSec 3 35 127 102 33 2 0.7596 0.0583 0.8584 0.0291 0.1258 0.7425 0.9508 0.0423 0.1130 0.0012 0.0100 0.9460 

Dag 4 36 126 130 45 7 0.3834 0.0382 0.9306 0.6517 <0.001 0.0199 0.6796 0.0324 0.2049 <0.001 <0.001 0.0030 

GEVD5 2 34 136 125 40 3 0.7425 0.0867 0.3216 0.9963 0.0056 0.7596 0.9460 0.0534 0.0419 <0.001 <0.001 0.9508 

GEVD10 3 36 158 154 41 2 0.7596 0.0382 0.0036 0.0102 0.0033 0.7425 0.9508 0.0324 <0.001 <0.001 <0.001 0.9460 

GEVD21 2 46 218 181 45 2 0.7425 <0.001 <0.001 <0.001 <0.001 0.7425 0.9460 <0.001 <0.001 <0.001 <0.001 0.9460 

GPD85 2 26 118 125 33 2 0.7425 0.8433 0.5139 0.9963 0.1258 0.7425 0.9460 0.0897 0.1626 <0.001 0.0100 0.9460 

GPD90 2 27 120 124 33 2 0.7425 0.6930 0.6410 0.9232 0.1258 0.7425 0.9460 0.0970 0.2126 <0.001 0.0100 0.9460 

GPD95 2 26 126 126 31 2 0.7425 0.8433 0.9306 0.9306 0.2459 0.7425 0.9460 0.0897 0.2049 <0.001 0.0116 0.9460 
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Table 10-1: VaR Estimates for CALSI using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.06295644 -0.03338476 -0.01954707 0.01828953 0.03272231 0.05643041 

Normal -0.03766442 -0.02820333 -0.01976269 0.02098198 0.02942262 0.03888371 

t -0.05011895 -0.03339734 -0.02175973 0.02297902 0.03461663 0.05133825 

Hyp -0.05405648 -0.03403098 -0.0199731 0.01951675 0.03134565 0.04818933 

NIG -0.06162635 -0.03578807 -0.01976096 0.01927992 0.03200351 0.05211939 

VG -0.05260507 -0.03358922 -0.0199824 0.0196674 0.03139124 0.04776451 

GHSt -0.07944913 -0.0362653 -0.01900618 0.019055 0.03190365 0.05683948 

Burr -0.04587 -0.03069 -0.01986 0.0178 0.02792 0.04201 

JSU -0.06318285 -0.03500696 -0.01943994 0.01840708 0.03008193 0.05070773 

HSec -0.05031 -0.03215 -0.01944 0.02066 0.03337 0.05153 

Dag -0.04134 -0.02924 -0.01987 0.02769 0.04355 0.06587 

GEVD5 -0.051128188 -0.032111587 -0.018821711 0.018917662 0.031191398 0.049754191 

GEVD10 -0.050234251 -0.031798967 -0.017941304 0.017002319 0.029950466 0.055535787 

GEVD21 -0.05399263 -0.029408182 -0.014814386 0.014824084 0.027407832 0.071281936 

GPD85 -0.057602946 -0.034899852 -0.01988702 0.018717626 0.032991516 0.061633688 

GPD90 -0.058256603 -0.034763567 -0.01980496 0.018555241 0.032852433 0.064932041 

GPD95 -0.057528835 -0.035294933 -0.019543134 0.018360101 0.033841294 0.05771447 

 
Table 10-2: VaR Backtesting for CALSI versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 18 54 124 93 37 16 <0.001 <0.001 0.9232 0.0021 0.0245 <0.001 <0.001 <0.001 0.0368 <0.001 0.0047 <0.001 

t 5 25 103 75 22 4 0.1645 0.9984 0.0372 <0.001 0.5369 0.3834 0.3768 0.0792 0.0120 <0.001 0.0404 0.6796 

Hyp 5 23 122 112 36 9 0.1645 0.6822 0.7788 0.2232 0.0382 0.0015 0.3768 0.7427 0.0650 <0.001 0.0060 <0.001 

NIG 3 20 124 112 32 4 0.7596 0.2968 0.9232 0.2232 0.1781 0.3834 0.9508 0.4939 0.0368 <0.001 0.0766 0.6796 

VG 5 25 122 109 36 10 0.1645 0.9984 0.7788 0.1325 0.0382 <0.001 0.3768 0.0792 0.0650 <0.001 0.0060 <0.001 

GHSt 0 20 132 113 32 3 0.0253 0.2968 0.5273 0.2614 0.1781 0.7596 0.0819 0.4939 0.0149 0.0013 0.0766 0.9508 

Burr 6 36 123 131 44 15 0.0611 0.0382 0.8504 0.5879 <0.001 <0.001 0.1706 0.0060 0.0743 <0.001 <0.001 <0.001 

JSU 3 21 126 124 36 5 0.7596 0.4072 0.9306 0.9232 0.0382 0.1645 0.9508 0.5937 0.0472 <0.001 0.0060 0.3768 

HSec 5 30 126 96 24 4 0.1645 0.3309 0.9306 0.0055 0.8381 0.3834 0.3768 0.0118 0.0472 <0.001 0.0666 0.6796 

Dag 11 48 123 46 13 0 <0.001 <0.001 0.8504 <0.001 0.0079 0.0253 <0.001 <0.001 0.0743 <0.001 <0.001 0.0819 

GEVD5 5 30 133 115 36 6 0.1645 0.3309 0.4701 0.3502 0.0382 0.0611 0.3768 0.0118 0.0161 0.0023 0.0060 0.0056 

GEVD10 5 30 151 151 36 3 0.1645 0.3309 0.0209 0.0209 0.0382 0.7596 0.3768 0.0118 <0.001 <0.001 0.0060 0.9508 

GEVD21 5 45 227 207 47 0 0.1645 <0.001 <0.001 <0.001 <0.001 0.0253 0.3768 <0.001 <0.001 <0.001 <0.001 0.0819 

GPD85 4 21 123 117 25 1 0.3834 0.4072 0.8504 0.4555 0.9984 0.2795 0.6796 0.5937 0.0743 0.0012 0.0792 0.5570 

GPD90 4 21 124 122 25 0 0.3834 0.4072 0.9232 0.7788 0.9984 0.0253 0.6796 0.5937 0.0368 0.0012 0.0792 0.0819 

GPD95 4 21 126 124 23 3 0.3834 0.4072 0.9306 0.9232 0.6822 0.7596 0.6796 0.5937 0.0472 <0.001 0.0533 0.9508 

 



The Journal of Applied Business Research – July/August 2014 Volume 30, Number 4 

Copyright by author(s); CC-BY 1283 The Clute Institute 

Table 11-1: VaR Estimates for SAVI using Heavy-Tailed Distributions 

 VaR Estimates 

Distr 0.1% 1% 5% 95% 99% 99.9% 

Historical -0.1106904 -0.06543635 -0.03962137 0.04613077 0.09104422 0.1523955 

Normal -0.08946097 -0.06735913 -0.04764112 0.04754159 0.0672596 0.08936144 

t -0.119959 -0.0800319 -0.05250346 0.05240393 0.07993237 0.1198594 

Hyp -0.106403 -0.06881783 -0.04245153 0.04829278 0.08238721 0.1310872 

NIG -0.1119719 -0.0686886 -0.0414328 0.04837206 0.08962371 0.1574404 

VG -0.1213116 -0.07427668 -0.04201986 0.04751201 0.08281545 0.1343157 

GHSt -0.1129284 -0.06669665 -0.04097826 0.04628706 0.09222452 0.2244312 

Burr -0.12347 -0.08287 -0.05391 0.04533 0.07136 0.10745 

JSU -0.1135567 -0.06664149 -0.04016629 0.04563555 0.08120824 0.1458117 

HSec -0.119 -0.07657 -0.04688 0.04679 0.07647 0.1189 

Dag -0.06428 -0.05428 -0.04341 0.0854 0.15564 0.28008 

GEVD5 -0.111054748 -0.06832769 -0.041405138 0.045719649 0.088577905 0.172265208 

GEVD10 -0.120882978 -0.066833803 -0.038878977 0.043327121 0.08455424 0.164541885 

GEVD21 -0.124127444 -0.066318321 -0.037322173 0.043257233 0.08308032 0.160459987 

GPD85 -0.115591867 -0.067836273 -0.040858235 0.048397602 0.088571139 0.158081653 

GPD90 -0.122392068 -0.066121504 -0.040095258 0.047994349 0.088140724 0.162980192 

GPD95 -0.124284618 -0.06612048 -0.039629372 0.046146934 0.090744711 0.15408346 

 
Table 11-2: VaR Backtesting for SAVI versus Heavy-Tailed Distributions 

 Number of Violations p-value of Kupiec Test p-value of Christoffersen Test 

Distr 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 0.1% 1% 5% 95% 99% 99.9% 

Normal 4 15 50 80 42 19 0.1382 0.5874 <0.001 0.5055 <0.001 <0.001 0.3302 0.7563 <0.001 0.0381 <0.001 <0.001 

t 1 8 40 67 25 5 0.5514 0.0128 <0.001 0.0294 0.0762 0.0423 0.8370 0.0434 <0.001 0.0055 0.1404 0.1255 

Hyp 3 14 72 80 22 3 0.3771 0.4243 0.1127 0.5055 0.2637 0.3771 0.6735 0.6478 0.2841 0.0381 0.3020 0.6735 

NIG 2 14 76 80 18 1 0.8345 0.4243 0.2617 0.5055 0.8455 0.5514 0.9761 0.6478 0.5003 0.0381 0.8109 0.8370 

VG 1 10 74 80 21 3 0.5514 0.0586 0.1759 0.5055 0.3721 0.3771 0.8370 0.1578 0.3602 0.0381 0.3527 0.6735 

GHSt 2 16 77 86 17 0 0.8345 0.7704 0.3137 0.9956 0.9632 0.0636 0.9761 0.8245 0.5751 0.0428 0.8428 0.1791 

Burr 1 8 35 95 36 12 0.5514 0.0128 <0.001 0.3243 <0.001 <0.001 0.8370 0.0436 <0.001 0.0386 <0.001 <0.001 

JSU 2 16 82 93 23 3 0.8345 0.7704 0.6597 0.4410 0.1805 0.3771 0.9761 0.8245 0.7781 0.0349 0.2456 0.6735 

HSec 1 9 52 83 30 6 0.5514 0.0289 <0.001 0.7427 0.0050 0.0111 0.8370 0.0878 <0.001 0.0252 0.0162 0.0390 

Dag 19 35 68 20 1 0 <0.001 <0.001 0.0395 <0.001 <0.001 0.0636 <0.001 <0.001 0.1180 <0.001 <0.001 0.1791 

GEVD5 2 14 76 93 19 1 0.8345 0.4243 0.2617 0.4410 0.6661 0.5514 0.9761 0.6478 0.5003 0.0349 0.7367 0.8370 

GEVD10 1 16 93 107 20 1 0.5514 0.7704 0.4410 0.0246 0.5067 0.5514 0.8370 0.8245 0.5046 0.0021 0.6338 0.8370 

GEVD21 1 16 104 108 21 1 0.5514 0.7704 0.0528 0.0187 0.3721 0.5514 0.8370 0.8245 0.1468 0.0020 0.3527 0.8370 

GPD85 1 14 80 80 19 1 0.5514 0.4243 0.5055 0.5055 0.6661 0.5514 0.8370 0.6478 0.6438 0.0381 0.7367 0.8370 

GPD90 1 16 83 80 19 1 0.5514 0.7704 0.7427 0.5055 0.6661 0.5514 0.8370 0.8245 0.8353 0.0381 0.7367 0.8370 

GPD95 1 16 85 86 18 1 0.5514 0.7704 0.9161 0.9956 0.8455 0.5514 0.8370 0.8245 0.9191 0.0428 0.8109 0.8370 
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6. CONCLUSIONS 

 

In this research, we have made comprehensive examinations in the performances of various heavy-tailed 

distributions when fitted to eight major JSE indices. The distributions studied include Hyp, NIG, VG, GHSt, Burr, 

JSU, HSec, Dag, GEVD, and GPD, and are contrasted against the normal distribution, the standard Student’s 

t-distribution in the context of goodness-of-fit and the estimation of VaR. Moreover, VaR backtesting procedures 

provided a uniform measure among these models, which were employed for cross-comparisons between their 

corresponding relative model performances for extreme tail depictions. 

 

Contrary to prior findings, we show that EVT does not always produce the best model fit for all indices, 

and similarly for the GHDs. Rather, as partially hinted by Vee et al. (2012), no one best model exist for all 

financial indices. Although a suitable model may often be identified (i.e., not rejected for any level of VaR by the 

Kupiec LR test) for a particular return series, it cannot be deemed the optimal distribution for all VaR levels, as 

shown in our study. Our results suggest that the inconsistency and variation of a best model selection does not only 

occur across indices, but also across different VaR levels, and dissimilarities also exist between both short and 

long positions of trade. The demonstration of inconsistencies in the preferred model across different VaR levels is 

particularly striking. Such a finding further contributes to the contradiction of believe in the existence of a best 

model to capture all features within a financial returns distribution. Hence, our findings motivate for investigation 

and possible implementation of stepwise function, mixture of distributions, or model-switching procedures that 

may better capture the behaviors of financial returns. These may be further explored in prospective further 

research. 
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