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ABSTRACT

It has been well documented that the empirical distribution of daily logarithmic returns from
financial market variables is characterized by excess kurtosis and skewness. In order to capture
such properties in financial data, heavy-tailed and asymmetric distributions are required to
overcome shortfalls of the widely exhausted classical normality assumption. In the context of
financial forecasting and risk management, the accuracy in modeling the underlying returns
distribution plays a vital role. For example, risk management tools such as value-at-risk (VaR) are
highly dependent on the underlying distributional assumption, with particular focus being placed at
the extreme tails. Hence, identifying a distribution that best captures all aspects of the given
financial data may provide vast advantages to both investors and risk managers. In this paper, we
investigate major financial indices on the Johannesburg Stock Exchange (JSE) and fit their
associated returns to classes of heavy tailed distributions. The relative adequacy and
goodness-of-fit of these distributions are then assessed through the robustness of their respective
VaR estimates. Our results indicate that the best model selection is not only variant across the
indices, but also across different VaR levels and the dissimilar tails of return series.
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1. INTRODUCTION

CL topic of ongoing research is the identification of the most suitable and accurate distribution to fit
J financial returns data. Accomplishing such novel finding may prove particularly useful in the context

of financial forecasting and risk management. The modeling of financial returns distribution was
classically reliant on the normality assumption. However, a wealth of studies has shown that financial time series
exhibits substantial skewness and excess kurtosis that contradicts Gaussianity (Tsay, 2010). Alternative
implementations, such as the generalized autoregressive conditional heteroscedastic model (GARCH) of Bollerslev
(1986), the Student’s t-distribution (Huisman et al., 1998) and other skew t innovations (Azzalini & Capitanio, 2003;
Jones & Faddy, 2003), have also been suggested by researchers in an attempt to overcome such contradictions.

Recently, it has been proposed that the classes of generalized extreme value distributions and generalized
Pareto distributions (Diebold et al., 2000; Bali, 2003; Rocco, 2014) and the class of generalized hyperbolic
distributions (Eberlein & Keller, 1995; Eberlein & Prause, 2002; Hu & Kercheval, 2007) provide a more robust
modeling of financial returns distribution. However, to the best of our knowledge, there has been limited study on the
cross-comparison between the performance of these models and their related applications such as in the context of risk
management. In particular, a gap exists in the current literature that determines which model may best forecast the rate
of occurrence of extreme events and, as a result, yield the most precise value-at-risk (VaR) estimates for financial
institutions to measure market risk and adjust for adequate capitalization as per the Basel Regulatory Framework.
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Furthermore, whether it is possible to identify a model that provides the most accurate VaR estimate over all
significance levels is not immediately clear. In addition, investigations also need to be extended to evaluate the
differences between model performances over both long and short positions of trade. In this paper, we conduct various
statistical examinations to make robust conclusions on the above claims and the adequacy of the suggested models to
fit financial data. In particular, we focus on the cross-comparison analyses to identify the relative performances
between proposed heavy tailed distributions. Motivations were partially drawn from Vee et al. (2012) whom
determined that the return series of different indices may be best depicted by different distributions.

In this paper, we analyze the major indices on the Johannesburg Stock Exchange (JSE). South Africa has the
largest and most developed economy amongst the sub-Saharan African countries. It is considered a cornucopia of
mineral resources, with a well capitalized banking structure, sound regulatory and oversight practices, as well as
research and development capabilities, and has an established manufacturing foundation. The Johannesburg Stock
Exchange (JSE) Top40 Index is also a member of the BRICS Exchanges Alliance.* As a member of the G-20, South
Africa’s financial market development was ranked third out of 148 countries in the World Economic Forum’s Global
Competitiveness Report 2013-2014. Notably, it was ranked first within the financial market development pillar due to
its regulation of securities exchanges and legal rights index. Due to these prudent fiscal and monetary policies, the
South African capital markets were not as largely affected by the global financial crisis as its international counterparts.
Consequently, South Africa remains an attractive low-risk destination for many investors worldwide, with a
sophisticated market structure and one of the largest exchanges in developing countries. Not only would our analysis
provide a better insight into the ability of heavy tailed distributions to capture the anomalies embedded in the returns
data of South African market, but it will also provide a glimpse into a cross-comparison of the performance of these
models in emerging markets. It is also worthwhile mentioning that the unique characteristics of emerging markets are
dissimilar to those of developed markets. Better modeling of the financial returns within emerging markets continues
to draw much attention from academics and practitioners worldwide.

We begin our investigation by fitting different heavy-tailed distributions to the various indices. In addition to
the three classes of distributions mentioned above, we also include four other well-known heavy-tailed distributions in
our analyses; namely, Burr XI1I (Burr, 1942; Singh & Maddala, 1976), Johnson SU (Johnson, 1949), hyperbolic secant
(Baten, 1934; Harkness & Harkness, 1968), and Dagum (Dagum, 1975, 1977) distributions. The selection of these
distributions is based on some of their attractive properties (such as, the ability to capture asymmetry, non-identical tail
behaviors, excess kurtosis, and the depiction of both heavy and semi-heavy tails) that are particularly useful in
capturing the various stylized facts embedded in financial data. Goodness-of-fit tests are first conducted before the
performances of these models are assessed through across-comparison of their relative VaR estimations. We make use
of the widely recognized Kupiec likelihood ratio test and the Christoffersen test to conduct our backtesting before
drawing robust conclusions on our analyses of the VaR estimates.

Our primary objective is the attempt to identify the most adequate distributional assumption that may fully
capture the unique characteristics and stylized facts exhibit by the returns data of different indices. Furthermore, we
examine the adequacy and goodness-of-fit by investigating their corresponding VaR estimates. Surprisingly, our
results show that the best model selection is not only variant across different indices, but also changes across different
VaR levels and the dissimilar tails in the return series.

The remainder of the paper is structured as follows. Section 2 commences by giving a descriptive statistical
summary of the indices and Section 3 introduces the various heavy-tailed distributions under study. Section 4
describes the well-known value-at-risk measure and the related backtesting procedures. Empirical results from fitting
the distributions to the indices are provided and analyzed in Section 5. Finally, Section 6 concludes the article and
comments on possible further research.

2. DESCRIPTIVE ANALYSES OF DATA

The data used in this research includes eight major indices on the JSE, which were supplied by McGregor
BFA. They are part of the FTSE/JSE Africa Index Series formulated to represent the performance of companies and

"Which further comprises of Brazil’s Bovespa Index, Russia’s Micex Index, the BSE India Sensitive Index, Hong Kong’s Hang Seng Index, and the
Hang Seng China Enterprises Index.
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different market sectors in South Africa. The daily closed value for JSE All Share Index (ALSI/J203), JSE Top 40
Index (ALSI40/J200), JSE Resource 10 Index (RESI10/J210), JSE RAFI All Share Index (RAFI/J263), JSE SA
Financials and Industrials Index (FINDI/J250), and JSE Capped All Share Index (CALSI/J303) were recorded from 17
December 2003 to 17 December 2013, while the JSE All Africa 40 Index (Africa40/JA00) daily figures were recorded
from 16 May 2011 to 17 December 2013 and the JSE South African Volatility Index (SAVI) values were recorded
from 1 February 2007 to 17 December 2013.

The importance of the inclusion of such a variety of major indices in our investigation is two-fold. Firstly,
their inclusion allows for a complete sweeping inference on the overall performance of the South African financial
market. Furthermore, it provides ground for clearer scrutiny on the unique behaviors and characteristics of individual
market sectors, as well as identifying which assumed heavy tailed distribution may best capture such properties. The
All Shares Index (ALSI), for example, is identified and utilized as the benchmark index to measure the current
performance of the South African market as a whole. It comprises roughly 99% of the total market capitalization on
the JSE. The JSE Top 40 on the other hand comprises the largest 40 constituents of the ALSI on the basis of their
market capitalization. Recognized as the large cap index, the JSE Top 40 accounts for more than 80% of the ALSI and
is used as an alternative performance benchmark.

The RESI10 comprises of the top ten resources share on the JSE on the basis of market capitalization.
Specifically, it is concentrated on the major mining companies in the South African market. In addition, Raubenheimer
(2012) also indicated that more than 20% of the ALSI’s weighting comprises of the two largest resource-mining
companies. As a cornucopia of mineral resources, it becomes vital to understand the associated distinct characteristics
within the mining sector. For example, given the susceptibility of the mining sector to various extreme events, such as
the ever scrutinized mining sector strikes seen in the recent past, identifying a distribution that may improve the ability
to capture such phenomena may provide an edge to risk managers and investors alike. The FINDI on the other hand,
represents the financial and industrial sectors in South Africa. Finally, Raubenheimer (2012) also found a high level of
concentration within the ALSI. The capped indices, such as the RAFI and CALSI, breaks away from the traditional
price-based market capitalization weighting design system. In particular, the RAFI is derived based on the weighting
of company fundamentals (e.g. sales, cash flow, book value and dividends). Analyzing market performance based on
such methodology contributes a further dimension to the understanding of the current state of the market.

Log returns of the SAVI, considered as the “fear” gauge for the South African market, were also analyzed and
fitted with the various heavy-tailed distributions. Apart from the sake of completeness, the inclusion of the SAVI in our
cross-comparison may assist in further understanding of the volatility index in developing countries. The SAVI is
commonly used as a tool to measure the market sentiment in South Africa’s emerging market. Results from such
analysis may draw interest from both academics and practitioners, and adds to the current body of knowledge
regarding volatility indexes.

The return series for each index are calculated as the first backward-differences of the natural logarithm of the
index values. For day t, the daily return R; is defined as:

R, =In(Cy) —In (C;_y)
where C, is the closed index value on day t.

Figure 1 presents the time series plot of the different index returns under consideration. The plots strongly
indicate the presence of heteroscedasticity and volatility clustering in all return series, except for Africa40. The
Africad0 return series exhibit a significantly lower volatility relative to other indices, while SAVI returns seem to have
the highest volatility. Isolated extreme returns caused by shocks to the financial market may be noticed, such as the
20009 financial crisis (except for Africa40, where the data were only recorded post-crisis). Stationarity is also evidence
from the plots, which is confirmed by utilizing the Augmented Dickey-Fuller (ADF) test and the Phillips—Perron (PP)
unit root test given in Table 1.
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Figure 1: Time Series Plots for JSE Index Returns

The lag is set to zero for the ADF test using the Schwartz Information Criterion and the PP test is performed
using the Newey-West estimator. For both tests, the p-values are interpolated from Banerjee et al. (1993). Results in
Table 1 indicate that all return series are stationary by rejecting the null hypothesis of unit root.

Table 1: Results from ADF and PP Unit Root Tests of Stock Returns on Major JSE Indices

ALSI ALSI40 | Africa40 | RESI10 RAFI FINDI CALSI SAVI
ADF | Test statistic -49.1197 | -49.7915 | -23.4318 | -47.9286 | -48.0545 | -49.0151 | -49.1079 | -41.5425
test p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
PP Test statistic -49.6797 | -50.6875 | -23.3435 | -48.3035 | -48.3252 | -49.2181 | -49.6585 | -41.5459
test p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 2: Descriptive Summary Statistics of Stock Returns on Major JSE Indices
Jarque-Bera
statistic (p-value)
ALSI -0.0758068 | 0.012812 | -0.201463 | 6.681063 | 1428.964 (<2.2e-16) 0.0683397 0.0005942 | 2501
ALSI40 | -0.0795941 | 0.014021 | -0.13768 | 6.537586 | 1312.018 (<2.2e-16) 0.0770691 0.0005853 | 2501
Africa40 | -0.0407189 | 0.007743 | -0.182689 | 5.489705 | 173.8698 (<2.2e-16) 0.0280001 0.00066 659
RESI10 | -0.1181539 | 0.019071 | 0.002971 | 7.311042 | 1936.725 (<2.2e-16) 0.1149981 0.0003798 | 2501
RAFI -0.0742110 | 0.011958 | -0.241772 | 5.891564 | 895.6661 (<2.2e-16) 0.0534232 0.0005752 | 2501
FINDI -0.0647975 | 0.010741 | -0.227742 | 6.253189 | 1124.482 (<2.2e-16) 0.0652391 0.0006986 | 2501
CALSI -0.0738210 | 0.012388 | -0.222274 | 6.536267 | 1323.738 (<2.2e-16) 0.0641731 0.0006096 | 2501
SAVI -0.2434132 | 0.028942 | 0.503865 | 9.403844 | 3010.021 (<2.2e-16) 0.1944768 -0.00005 | 1719

Index Minimum | Std. dev. | Skewness | Kurtosis Maximum Mean N

A descriptive statistical summary of the different return series is provided in Table 2. Apart from SAVI
returns, all other indices depict a positive mean. This indicates that the overall returns were slightly increasing over the
period under investigation. All return series illustrate a small skewness, all negative except for RESI10 and SAVI.
Such property is commonly found in financial series and relates to dissimilar tail behaviors in the data (Rydberg, 1999;
Aas & Haff, 2006). The high kurtosis’ (all above 3) signifies leptokurtic behavior in these financial series, implying
fatter tails in the actual distribution comparing to that of the Normal. This is further confirmed by the Jarque-Bera test,
where the normality assumption is rejected for all indices.

The characteristics demonstrated in this section motivate the use of both symmetric and asymmetric
heavy-tailed distributions for the modeling of these returns data and for the calculation of their corresponding VaR
estimates.

3. HEAVY-TAILED DISTRIBUTIONS AND PARAMETER ESTIMATION

In this Section, we briefly introduce the various heavy-tailed distributions under consideration. In particular,
we provide the probability density functions for hyperbolic, normal-inverse Gaussian, variance-gamma, generalized
hyperbolic skew t, generalized extreme value, generalized Pareto, Burr XII, Johnson SU, hyperbolic secant, and
Dagum distributions.

3.1 The Class of Generalized Hyperbolic Distributions

The generalized hyperbolic distributions (GHDs) were first introduced by Barndorff-Nielsen (1977) in an
application to the mass-size distribution of aeolian sand deposits. The GHDs were later applied to financial data by
other researchers, such as Eberlein and Keller (1995), Eberlein and Prause (2002), and Hu and Kercheval (2007). The
family of GHDs portrays various beneficial properties for the modeling of financial data. For example, they cater for
both skewness and symmetry; they are closed under conditioning, marginalization, and affine transformations; and,
they allow for non-identical tail behaviors (Prause, 1999; Aas & Haff, 2006).

We follow Prause (1999) for the parameterization of univariate generalized hyperbolic (GH) distribution.
Suppose X is a random variable following GHD, then its probability density function (pdf) can be defined as:

(@282 Kp12 a7+ =12 ) exp(Bx-1)
Vzrat=1/252k; (5 a?=f2 (/62 +(x—u)2)1/2_'1

fx(x) = 1)

where K; is the modified Bessel function of the third kind with order j (Abramowitz & Stegun, 1972) and the following
conditions apply to the parameters:

§>0,fl<a  if1>0
§>0,|fl<a  if1=0

6§>0,|B8| <a, ifA<O0
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We utilize the maximum likelihood estimation (MLE) for parameter estimates of the GHDs. Various
subclasses of the GHDs are obtained via different assumptions made on the parameters. These special cases are given
as below.

3.1.1  Hyperbolic Distribution (Hyp)
For 2 =1, we get the hyperbolic distribution. The hyperbolic distribution is characterized by having a

hyperbolic log-density function and exponential tails. Formally, a random variable has the hyperbolic distribution if its
pdf is given by

_ Ja*-p? —a/82+(x—u)2+B(x—p)
nyp(x) - 208K, (8 /—az—ﬁ’z) e (2)

where K; denotes the Bessel function of the third kind with index 1. The first two of the four parameters, namely «
and B, with @« > 0 and 0 < |B| < a, determine the shape of the distribution with a representing the gradient and g,
the skewness. § > 0 is the scale parameter and u € R is the location parameter.

3.1.2  Normal-Inverse Gaussian Distribution (NIG)

The normal-variance Gaussian distribution is a subclass of the GHDs with A = —1/2. The pdf of NIG can be
expressed as

_ a8 5 [ pep) K@ TR
frie(x) —€ NG )

where K; denotes the Bessel function of the third kind with index 1. The two tails of NIG are semi-heavy and
non-identical. These make NIG attractive for financial applications (for example, see Anderson, 2001; Venter & de
Jongh, 2002). However, it is only appropriate when the two tails are not too heavy (Aas & Haff, 2006).

3.1.3  Variance-Gamma Distribution (VG)

Setting 4 > 0 and let § — 0 in Equation (1), we obtain the pdf of the variance-gamma distribution:

(@282 1x—pl* 12K,y jp(@lx—pl) piee
fre(x) = NPT efitmi @

where K;_,,, denotes the Bessel function of the third kind with index 4 — 1/2. The tails of VG decreases more
slowly than the normal distribution, making it a suitable model for phenomena where extreme values are more
probable than in the case of the normal distribution, such as returns from financial assets (Madan & Senata, 1990).

3.1.4  GH Skew t-Distribution (GHSt)

Letting a—|f| in Equation (1), we obtain the GH skew Student’s t-distribution:

21244522 g 127k 1y o(BZ(82+(x—1)?) ) exp(B(x—1)) 5)
l"(—/l)\/ﬁ(\/62+(x—u)2)1/2_l

fonse(x) =

where p# 0 and A< 0. If 5 = 0, we get the non-central (scaled) Student’s t-distribution. An important property of this
distribution is that it has one heavy polynomial tail and one semi-heavy exponential tail. This makes it unique for
modeling skewed data with dissimilar tail behaviors, such as commonly found in financial returns (Aas & Haff, 2006).
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3.2 Extreme Value Distributions

The use of extreme value theory to model financial risk was first suggested by Diebold et al. (2000) and was
followed by various work, such as Ho et al. (2000), Bali (2003), da Silva and de Melo Mendes (2003), Gengay and
Selcuk (2004), and Gilli and Kéllezi (2006). The main advantages of extreme value analysis are its ability to solely
focus on the extreme observations (hence minimizing the bias caused by rest of the data), to cater for both asymmetry
and heavy tails and to allow some extrapolation under certain conditions (Embrechts, 2000; Embrechts et al., 1999;
McNeil & Frey, 2000).

There are two general ways to identify extreme values in data, namely the block maxima method and the
peaks-over-threshold approach. The former divides the data into blocks and selects the maximum observation in each
block. The latter focuses on the realization of exceedances above a selected threshold (Coles, 2001). Two fundamental
laws, the Fisher-Tippett-Gnedenko theorem (Fisher & Tippett, 1928; Gnedenko, 1943) and the Pickands-Balkema-de
Haan theorem (Pickands, 1975; Balkema & de Haan, 1974), are associated with the two approaches, respectively, and
give rise to the generalized extreme value distribution and the generalized Pareto distribution as limiting distributions.
The asymptotic distribution of minima may be equivalently studied using the relation min{X;, .......,X,} =
max{—Xy, ..., =X, }.

3.2.1  Generalized Extreme Value Distribution (GEVD)

The generalized extreme value distribution (GEVD) is used to model the maxima of a long, but finite,
sequence of independently and identically distributed (i.i.d.) random variables. Its pdf has the form:

(uve() (- (152) ) rieo
o (- (o (-en(-(2)  wreeo

where u € R, ¢ >0 and ¢ € R are the location, scale and shape parameters, respectively. When & # 0, the
condition 1 + ¢ (%) > 0 must hold (Coles, 2001). Parameter estimates for the vector (u, o, )" are obtained by a

maximization of the log-likelihood function ! = In[[2, f(x;; u, 0,&), where m denotes the number of block
maxima. The maximum likelihood method offers the advantage of estimating the three parameters simultaneously.

(6)

feevp (%) =

3.2.2  Generalized Pareto Distribution (GPD)

The two-parameter generalized Pareto distribution (GPD) is used to model peaks-over-threshold (POT). It is
characterized by a scale parameter o > 0 anda shape parameter ¢ € R. Its pdf has the form:

1
1 x 2_1
oy = {21 762) fore=0 )
lexp (—f) foré =0
a a
where 0 < x < oo for § <0 and 0 < x < &/k for & > 0 (Hosking & Wallis, 1987). For peaks-over-threshold, we
consider a random variable X and define the excess distribution function F, above a threshold u as F,(x) = P(X —
u < x| X > u), where x represents the magnitude of the exceedance above u. Estimates for the parameter vector
(0,&)" are obtained by maximizing the log-likelihood function I = In [T%, f(x;; 0, &), where k denotes the number

of observations satisfying x; —u > 0.
3.3 Burr X1 Distribution (Burr)

The Burr XII distribution is also known as the generalized Beta-Il distribution with unit shape parameter,
the Singh-Maddala distribution, as well as the Pareto-1V distribution. It is a member of a system of 12 distributions
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introduced by Burr (1942) and covers a broad range of skewness and kurtosis through different choices of parameters.
This makes it suitable for modeling a wide variety of data, such as household income (Singh & Maddala, 1976),
extreme flood levels (Shao et al., 2004), and crop prices (Tejeda & Goodwin, 2008). With y < x < oo, pdf of the
four-parameter Burr distribution is given as:

ak(CH*

fBurr (x) = ﬁ(1+(x—l_;y—)a)k+1

(8)

where k > 0,a > 0 are the two shape parameters, 8 > 0 is the scale parameter and y is the location parameter.
34 Johnson SU Distribution (JSU)

The Johnson SU distribution is a member of the four-parameter Johnson family of distributions that also
consist of Johnson SB and the lognormal distribution (Johnson, 1949). This family covers the entire skewness-kurtosis
region and Johnson SU distribution covers the area above the lognormal curve. This makes Johnson SU distribution a
heavy tailed distribution and applicable to fields such as finance (Simonato, 2011) and quality control (Castagliola,
1998).

The pdf of Johnson SU distribution is given as:

— i _1 b =102
fisu(@) = =m—exp (=3 (v + Bsinh™(2))?) ©)
where sinh™(z) = ln(z +Vz2+ 1), z = ? and —oo < x < oo. ¥y and & are the shape parameters, A is the scale
parameter and ¢ is the location parameter.
3.5 Hyperbolic Secant Distribution (HSec)

The pdf of two-parameter hyperbolic secant distribution can be expressed as:

1 (x=p)
fusec(x) = —sech (X1 (10)
where —oo < x < 00,0 > 0 is the scale parameter and p is the location parameter.

Theoretical aspects of the hyperbolic secant distribution have been considered by many authors (for example,
see Baten, 1934; Harkness & Harkness, 1968). It shares many properties with the standard normal distribution, but it is
leptokurtic and has finite moments. Hence, it is suitable for the depiction of heavy-tailed data. Some examples of its
application include the modeling of asset returns (Palmitesta & Provasi, 2004) and exchange rate data (Fischer, 2006).

3.6 Dagum Distribution (Dag)

A series of papers by Dagum (1975, 1977), proposed the Dagum distribution as a new model for personal
income distributions. Its heavy tails are suitable for the modeling of extreme data and have recently been applied to
estimating the Tropospheric Ozone levels (Monroy et al., 2013). The pdf of four-parameter Dagum distribution is
given as:

ak(%)a’k—l

X)=— T —@a —
fDag( ) ﬁ(1+(%)a)k+1

(11)

where k > 0 and a > 0 are the two shape parameters, 8 > 0 is the scale parameter, y is the location parameter
and y < x < oo. Itis also inversely proportional to the Burr distribution.
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4. VALUE-AT-RISK ESTIMATION AND BACKTESTING

The amount of market risk capital, set-aside by financial institutes as per the Basel Accord, is directly linked
to the level of portfolio risk, and VaR is a common benchmark measure for evaluating such risk. VaR is intended to
assess the maximum possible loss for a portfolio over a specified time period and its calculations focus on the tails of
a distribution. Hence, the accuracy of VaR estimation is dependent on how well the corresponding model portrays the
extreme data observations (McNeil et al., 2005; Jorion, 2006). This provides procedures for testing the robustness of a
model.

For a random variable X (usually the log-return of some risky financial instrument) with distribution function
F over a specified time period, the VaR (for a given probability p) can be defined as the p-th quantile of F, i.e.,

VaR, = F71(1-p) 12)
where F~1 is the quantile function.
A separate treatment is required for EVT, since GEVD and GPD are fitted only to the block maxima and

threshold exceedances, respectively (and not on the whole data series). For a small upper tail probability p, GEVD
approximation to VaR can be written as:

A=3{1-[-nln(1 -]}, £#0

A —oln[-nIn(1 —p)], E=0

VaR, = { (13)

where n is the size of the blocks and /i, &, and & are the maximum likelihood estimates of the GEVD parameters
(Tsay, 2013), and the GPD approximation to VaR is given by:

{ru + g{(;—up)_g — 1}, é #0

ku—ﬁlog (Niu(l —p)), £=0

o

VaR, =

» (14)

where £ and ¢ are the estimates of the GPD parameters and N,, is the number of exceedances above the threshold u
in a given sample (Tsay, 2010).

In this research, we test VaR model specifications and effectiveness by utilizing the widely accepted Kupiec
likelihood ratio (LR) unconditional coverage test (Kupiec, 1995) and Christoffersen conditional coverage test
(Christoffersen, 1998).

The Kupiec test utilizes the fact that a good model should have its proportion of violations of VaR estimates
close to the corresponding tail probability. The method consists of calculating x“ the number of times the observed
returns fall below (for long positions) or above (for short positions) the VaR estimate at level «; i.e., r,<VaR” or r; >
VaR” and compare the corresponding failure rates to «. The null hypothesis is that the expected proportion of
violations is equal to a. Under this null hypothesis, the Kupiec statistic, given by:

LRyc =21In ((%)xa (1- %)N_xa> —2In(e** (1 — )V%) (15)

is asymptotically distributed according to a chi-square distribution with one degree of freedom. The Christoffersen test
extends the Kupiec test to account for serial independence of violations (i.e., clustering of extremes). The
Christoffersen test statistic can be represented by:
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(1-1) #0077, P01 (1—171)P1077, P11
In |(1-7)(®00+P10)(P01+¢11)|

LRec = LRyc +21n .

(16)

where ¢;; is defined as the number of returns in state i while they have been in state j previously (state 1 indicates the
VaR estimate is violated and state 0 indicates it is not) and m; is defined as the probability of having an exception that
is conditional on state i the previous day. This statistic is asymptotically chi-square distributed with two degrees of
freedom.

5. EMPIRICAL RESULTS

In this section, we fit the various distributions from Section 3 to the eight major JSE indices introduced in
Section 2. Apart from JSU, all other distributions are fitted via the maximum likelihood estimation. Estimation of the
JSU parameters is performed using quantile estimation, following the procedure of Wheeler (1980). The
goodness-of-fit of the models is examined by utilizing the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov,
1948) and the Anderson-Darling test (Anderson & Darling, 1952). The distributions are also employed to produce VaR
estimates for each index and are contrasted against historical simulated VaR estimates. Backtesting on the
distributional VaR estimates is then performed using Kupiec LR unconditional coverage test and Christoffersen
conditional coverage test.

Table 3 presents results from Kolmogorov-Smirnov test and Anderson-Darling test. Note that comparisons
on this table are not applicable to GEVD and GPD. These two distributions are not fitted onto the whole return series
but only on block maxima and sizes of exceedances, respectively. Hence, no direct comparison is obtainable using the
two tests discussed here. However, these results still provide insights for the performance of other models on JSE
indices. Furthermore, it must be noted that Anderson-Darling test provide more emphasis on the tails of the data
(Farrel & Stewart, 2006). This is critical for VaR estimation and risk analysis for extreme losses.

For ALSI, JSU is evidently the most robust model, with the highest p-value in both tests, although NIG and
GHSt also provide very good data depictions. On the other hand, tests for ALSI40 show that NIG produces a slightly
better fit than JSU. This is most likely as a direct cause of ALSI40 having a slightly smaller skewness and kurtosis.
Burr, HSec, and Dag can all be rejected as suitable models for ALSI and ALSI40, at 5% level of significance.

None of the distributions can be rejected as suitable models for Africa40 and RESI10. With minimal
difference, Hyp and VG appear as best models for Africa40. For RESI10, however, GHSt is undoubtedly the preferred
model. Burr, HSec, and Dag are again rejected for all of RAFI, FINDI, and CALSI. For RAFI, the Anderson-Darling
test indicates NIG as the best model, although Hyp, NIG, and JSU produced similar Kolmogorov-Smirnov test results.
The FINDI and CALSI return series are best described by NIG and JSU.

The SAVI returns presented the highest kurtosis and skewness, relative to all other indices (see Table 2).
These properties make SAVI distinctive from other market indices. This is confirmed by the goodness-of-fit tests,
which rejected all distributions for the Kolmogorov-Smirnov test and only Hyp, NIG, and GHSt were not rejected for
the Anderson-Darling test at 5% level of significance.
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Table 3: Kolmogorov-Smirnov Test and Anderson-Darling Test on Major JSE Indices versus Heavy-Tailed Distributions

Index Distributions Hyp NIG VG GHSt Burr JSU HSec Dag GEVD GPD

KS Statistic 0.0145 0.0117 0.0157 0.0111 0.0228 0.0067 0.0294 0.0924

ALSI p-vglu_e 0.6652 0.8837 0.5647 0.9151 0.1467 0.9999 0.0261 <0.001 na na

AD Statistic 0.5585 0.3244 0.7807 0.3616 3.217 0.2797 3.728 41.559 - -
p-value 0.6881 0.9188 0.4951 0.8857 0.0228 0.9526 0.0129 <0.001
KS Statistic 0.012 0.0095 0.0131 0.0116 0.0242 0.0118 0.0264 0.0342

ALSI40 p-vglu_e 0.8635 0.9785 0.7828 0.8871 0.1063 0.8742 0.0609 0.0057 na na
AD Statistic 0.4896 0.3041 0.6753 0.3711 3.0007 0.4232 3.0957 6.9333
p-value 0.7574 0.9350 0.5798 0.8768 0.0310 0.8255 0.0274 <0.001
KS Statistic 0.0163 0.0176 0.0157 0.0189 0.0244 0.0204 0.0229 0.0268

Africad0 p-vglu_e 0.9949 0.9868 0.9970 0.9726 0.8184 0.9472 0.8719 0.7224 na na
AD Statistic 0.1493 0.1600 0.1537 0.2299 0.5152 0.1813 0.3035 0.6450
p-value 0.9986 0.9977 0.9983 0.9800 0.3553 0.9947 0.3935 0.3318
KS Statistic 0.0139 0.0128 0.0152 0.0101 0.0172 0.0129 0.0185 0.0196

RESI10 p-vglu_e 0.7206 0.8098 0.6079 0.9608 0.4461 0.8027 0.3565 0.2893 na na
AD Statistic 0.7400 0.5391 1.0286 0.2691 1.3495 0.4151 1.3221 1.1394
p-value 0.5263 0.7073 0.3426 0.9594 0.2046 0.8336 0.2095 0.2425
KS Statistic 0.0135 0.0135 0.015 0.0155 0.0334 0.0133 0.0383 0.0625

RAE p-ve_llu_e 0.7552 0.7503 0.6237 0.5851 0.0073 0.7718 0.0013 <0.001 na na
AD Statistic 0.5545 0.361 0.7735 0.6913 5.2412 0.5064 45721 21.599
p-value 0.692 0.8863 0.5005 0.5661 <0.001 0.7403 <0.001 <0.001
KS Statistic 0.0129 0.011 0.0135 0.0149 0.0295 0.0118 0.0339 0.0275

FINDI p-ve_llu_e 0.7991 0.9228 0.7488 0.6335 0.0255 0.8797 0.0063 0.0452 na na
AD Statistic 0.6241 0.5492 0.7699 0.9207 4.509 0.4988 5.1585 2.5991
p-value 0.6255 0.6972 0.5032 0.4017 <0.001 0.7480 <0.001 0.0463
KS Statistic 0.0124 0.0097 0.0139 0.0123 0.0257 0.0109 0.0333 0.0917

CALSI p-ve_llu_e 0.8351 0.9724 0.7168 0.8403 0.0723 0.9267 0.0077 <0.001 na na
AD Statistic 0.5192 0.3322 0.7258 0.4605 3.258 0.3053 3.8946 41.802
p-value 0.7273 0.9121 0.5376 0.7874 0.0212 0.9341 0.0102 <0.001
KS Statistic 0.0462 0.0486 0.0947 0.0452 0.0687 0.062 0.0814 0.1002

SAVI p-ve_llu_e 0.0013 <0.001 <0.001 0.0018 <0.001 <0.001 <0.001 <0.001 na na
AD Statistic 1.982 1.795 18.188 1.9718 16.117 3.5382 8.1412 53.607
p-value 0.0940 0.1194 <0.001 0.0952 <0.001 0.0147 <0.001 <0.001
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Tables 4.1 to 11.2 present the distributional VaR estimates, number of VaR violations, Kupiec LR test results,
and Christoffersen test results for the different models on the eight JSE indices. All VaR calculations and tests are
performed at the common 0.1%, 1%, and 5% for long positions, and at 95%, 99%, and 99.9% for short positions of
trade. These results are vital in the determination of VaR forecasting adequacy of the different models on the indices.
Moreover, it allows comparison across distributions that are not necessarily fitted over the same part of the data. In our
case, it allows us to compare GEVD and GPD with the other distributions.

For GEVD, three different fits are performed at block sizes 5, 10, and 21 (producing weekly, fortnightly, and
monthly maxima) and the corresponding models are denoted by GEVDS5, GEVD10, and GEVD21, respectively.
Whereas, GPD is fitted at three different threshold levels, 85%, 90%, and 95% quantiles (locating 15%, 10%, and 5%
of observations as exceedances, respectively). These models are denoted by GPD85, GPD90, and GPD95. The
negative tails are fitted using the relation min{Xj, ......., X} = max{—X,, ..., —X,,}, i.e.,, multiplying the data series
by negative one and perform the block method and POT method as described in Section 3.2. Thereafter, VaR estimates
are calculated as described in Section 4.

It should be noted that normality is rejected almost everywhere, as one would expect due to the leptokurtic
nature of these data series. Hence, normal distribution assumption often produces underestimates for VaR and, as a
result, an excess number of violations. The widely recommended standard Student’s t-distribution is a better candidate
for VaR estimation, however, it is still relatively weaker (in most cases) compared to the heavy-tailed distributions
discussed here.

For ALSI (Tables 4-1 and 4-2), there is a varying pattern of VaR estimates. While certain distributions
underestimate the VaR at a particular significance level, they may also overestimate VaR at another. According to the
Kupiec LR test, the best models at 0.1% VaR level are NIG, JSU, GPD85, and GPD90; the best model for 1% VaR is
GPD85; the best model at 5% VaR is NIG; GPD95 is the best model at 95% VaR level, HSec is best for 99% VaR
estimation, and GHSt, GEVD10, GPD85, and GPD95 are most robust for 99.9% VaR estimation. Although same
selections are obtained for the Christoffersen test at 0.1% and 99.9% VaR levels, we can observe that the clustering of
VaR violations start to occur at lesser extreme VaR levels (lower p-values for the Christoffersen test). This may be
simply caused by the increase in the number of observations that exceed the VaR estimates. Similar observations can
be made for ALSI40 (Tables 5-1 and 5-2).

The Africad0 results provide a very interesting case, where most models (only exceptions being Normal, t,
Burr and Dag at singular VaR levels) are not rejected by the Kupiec LR test and the Christoffersen test (Tables 6-1 and
6-2). Africa40 distinctly differs from other indices by the facts that it has a lower volatility level and is recorded over a
shorter time period. This makes the return series easier to depict by the models under consideration. However, there
does not appear to exist a clear standout preferred model, with the best models varying across different VaR levels.

Tables 7-1 and 7-2 present the VaR estimates and backtesting results for RESI10. RESI10 has the second
highest kurtosis in our set of indices and the lowest magnitude for skewness (see Table 2). These are also evidenced by
the high magnitude of extreme VaR estimates and relatively small differences between magnitudes of short and long
positions. The Kupiec LR test stipulates that, GHSt and GPD95 are the most suitable models for 0.1% VaR estimation;
1% VaR is best predicted by t, GPD85 and GPD90; JSU and GPD95 best describe the 5% VaR; JSU, GPD90, and
GPD95 are more robust for 95% VaR estimation; 99% VaR is best modeled by GHSt, and 99.9% VaR can be depicted
by various distributions.

Results for RAFI are presented in Tables 8-1 and 8-2. It is interesting to note that Dag is a particularly bad
model for RAFI, with the distribution rejected at all VaR levels for the Kupiec LR test and is also rejected 5 out of 6
VaR levels for the Christoffersen test, at 5% level of significance. We may also observe that GPD90 and GPD95
produce very good VaR estimates for RAFI. Although they do not always give the highest p-values for the Kupiec LR
test, they are never rejected by the Kupiec LR test, at all levels of significance.

GPD95 standout as a good VaR model for FINDI (Tables 9-1 and 9-2), because it has relatively high p-values
for all VaR levels in the Kupiec LR test. However, the model with the highest Kupiec test p-value still varies across
VaR levels. For example, the standard Student’s t-distribution is the clear best model (by far) for 99% VaR estimation.
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Such irregularity is also presented in the Christoffersen test, where it is also evidenced that extreme clustering is
common for 95% and 99% VaR estimates. Results for CALSI (Tables 10-1 and 10-2) depict similar observations.

Tables 11-1 and 11-2 illustrate the VaR results for SAVI returns. SAVI portrays an extreme case under our
analyses. It has the highest kurtosis value and the highest magnitude in skewness. Given its construct as the “fear”
gauge to measure current market sentiment, such characteristics can be expected. Hence, the extreme VaR estimates
are high in magnitude (relative to other indices) and there is a relatively large difference between the estimates of short
and long positions. These properties make SAVI very suitable for our model fitting, as most of our distributions are
heavy-tailed and cater for substantial skewness. Hence, none of Hyp, NIG, VG, GHSt, JSU, GEVDS5, GPD85, GPD90,
and GPD95 can be rejected by the Kupiec LR test as good models for SAVI. Interestingly, this is also the only index
that produces the exact same best model selections from both the Kupiec LR test and the Christoffersen test. In
particular, NIG, GHSt, JSU, and GEVDS5 give the best estimation for 0.1% VaR; GHSt, JSU, GEVD10, GEVD21,
GPD90, and GPD95 are all best suited for 1% VaR estimation; 5% VaR is best described by GPD95; both GHSt and
GPD95 are most robust for the 95% VaR estimation; GHSt is most suitable for 99% VaR estimation; and NIG, all
GEVDs, and all GPDs are appropriate for the 99.9% VaR estimation. Hence, there is again no one best model for the
return series.
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Table 4-1: VaR Estimates for ALSI Using Heavy-Tailed Distributions

VaR Estimates

Distr 0.1% 1% 5% 95% 99% 99.9%
Historical -0.06345016 -0.03448587 -0.02034420 0.01874104 0.03419627 0.06050109
Normal -0.03899048 -0.02920541 -0.02047572 0.0216642 0.03039389 0.04017896
t -0.05202774 -0.03463711 -0.02256283 0.02375131 0.03582559 0.05321622
Hyp -0.05562657 -0.03507477 -0.02064146 0.02012801 0.03228777 0.04958697
NIG -0.06326095 -0.03681981 -0.02041068 0.01989789 0.03304091 0.05378207
VG -0.05447578 -0.03481429 -0.02073931 0.0202484 0.03227197 0.04907236
GHSt -0.08117427 -0.03733324 -0.01966119 0.01965385 0.03293994 0.05886682
Burr -0.04659 -0.03061 -0.01921 0.02001 0.03036 0.04473
JSU -0.06429056 -0.03613174 -0.02026164 0.01883265 0.03023169 0.04984987
HSec -0.05207 -0.03328 -0.02014 0.02133 0.03447 0.05325
Dag -0.0427 -0.03022 -0.02055 0.02856 0.04494 0.068
GEVD5 -0.052992383 -0.033190558 -0.019443917 0.01949556 0.032182857 0.051476981
GEVD10 -0.051970393 -0.032680905 -0.018351698 0.017052601 0.030870653 0.062556659
GEVD21 -0.056106105 -0.030348202 -0.015184599 0.015056389 0.028041325 0.073459841
GPD85 -0.0646011 -0.034111455 -0.019248426 0.019230044 0.034125031 0.064791175
GPD90 -0.05995494 -0.036213694 -0.020467578 0.019166717 0.034150989 0.065676166
GPD95 -0.059731903 -0.036444093 -0.020340216 0.018737091 0.035138964 0.060475574

Table 4-2: VaR Backtesting for ALSI versus Heavy-Tailed Distributions
Number of Violations p-value of Kupiec Test p-value of Christoffersen Test

Distr 0.1% | 1% | 5% | 95% | 99% | 99.9% | 0.1% 1% 5% 95% 99% | 99.9% | 0.1% 1% 5% 95% 99% | 99.9%
Normal 17 58 | 123 | 91 39 17 <0.001 | <0.001 | 0.8504 | 0.0011 | 0.0094 | <0.001 ] <0.001 | <0.001 | 0.0045 | <0.001 | 0.0027 | <0.001
t 5 24 | 102 | 76 21 4 0.1645 | 0.8381 | 0.0291 | <0.001 | 0.4072 | 0.3834 | 0.3768 | 0.7761 | 0.0012 | <0.001 | 0.0290 | 0.6796
Hyp 5 24 | 123 | 111 33 9 0.1645 | 0.8381 | 0.8504 | 0.1892 | 0.1258 | 0.0015 | 0.3768 | 0.7761 | 0.0045 | 0.0024 | 0.0651 | <0.001
NIG 3 21 | 125 | 115 29 4 0.7596 | 0.4072 | 0.9963 | 0.3502 | 0.4342 | 0.3834 | 0.9508 | 0.5937 | 0.0063 | <0.001 | 0.0996 | 0.6796
VG 5 24 | 123 | 109 33 11 0.1645 | 0.8381 | 0.8504 | 0.1325 | 0.1258 | <0.001 | 0.3768 | 0.7761 | 0.0045 | 0.0040 | 0.0651 | <0.001
GHSt 0 20 | 134 | 117 29 3 0.0253 | 0.2968 | 0.4167 | 0.4555 | 0.4342 | 0.7596 | 0.0819 | 0.4939 | 0.0026 | 0.0012 | 0.0996 | 0.9508
Burr 8 45 | 140 | 114 39 14 0.0058 | <0.001 | 0.1780 | 0.3037 | 0.0094 | <0.001 | 0.0216 | <0.001 | <0.001 | <0.001 | 0.0027 | <0.001
JSU 3 21 | 127 | 124 39 8 0.7596 | 0.4072 | 0.8584 | 0.9232 | 0.0094 | 0.0058 | 0.9508 | 0.5937 | 0.0086 | <0.001 | 0.0027 | 0.0013
HSec 5 30 | 131 | 95 25 4 0.1645 | 0.3309 | 0.5879 | 0.0041 | 0.9984 | 0.3834 | 0.3768 | 0.0949 | 0.0052 | <0.001 | 0.0792 | 0.6796
Dag 11 48 | 123 | 47 14 1 <0.001 | <0.001 | 0.8504 | <0.001 | 0.0158 | 0.2795 | <0.001 | <0.001 | 0.0045 | <0.001 | <0.001 | 0.5570
GEVD5 5 30 | 137 | 118 33 7 0.1645 | 0.3309 | 0.2799 | 0.5139 | 0.1258 | 0.0199 | 0.3768 | 0.0949 | 0.0012 | 0.0015 | 0.0651 | 0.0030
GEVD10 5 31 | 151 | 163 36 3 0.1645 | 0.2459 | 0.0209 | <0.001 | 0.0382 | 0.7596 | 0.3768 | 0.0116 | <0.001 | <0.001 | 0.0324 | 0.9508
GEVD21 5 47 | 219 | 208 50 0 0.1645 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0253 | 0.3768 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0819
GPD85 3 26 | 139 | 121 26 3 0.7596 | 0.8433 | 0.2083 | 0.7088 | 0.8433 | 0.7596 | 0.9508 | 0.0897 | <0.001 | <0.001 | 0.0897 | 0.9508
GPD90 3 21 | 123 | 121 26 1 0.7596 | 0.4072 | 0.8504 | 0.7088 | 0.8433 | 0.2795 | 0.9508 | 0.5937 | 0.0045 | <0.001 | 0.0897 | 0.5570
GPD95 4 21 | 126 | 126 23 3 0.3834 | 0.4072 | 0.9306 | 0.9306 | 0.6822 | 0.7596 | 0.6796 | 0.5937 | 0.0074 | <0.001 | 0.0533 | 0.9508
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Table 5-1: VaR Estimates for ALS140 using Heavy-Tailed Distributions

VaR Estimates

Distr 0.1% 1% 5% 95% 99% 99.9%
Historical -0.0672932 -0.03807286 -0.02252051 0.02065497 0.03815264 0.0655473
Normal -0.04273466 -0.03202627 -0.02247285 0.02364338 0.03319679 0.04390518
t -0.05674717 -0.03787282 -0.02472151 0.02589203 0.03904335 0.05791769
Hyp -0.06070554 -0.03832927 -0.02263214 0.02212525 0.03565813 0.05487895
NIG -0.06838663 -0.04002478 -0.02231742 0.02190274 0.03646936 0.05947935
VG -0.05960987 -0.03810711 -0.02271426 0.02225466 0.03564405 0.05434605
GHSt -0.08571362 -0.04032656 -0.02152649 0.02162928 0.03640946 0.06547592
Burr -0.05066 -0.03335 -0.021 0.02197 0.03354 0.04965
JSU -0.07312378 -0.04060119 -0.02254403 0.02062865 0.03333209 0.05552125
HSec -0.05704 -0.03649 -0.0221 0.02327 0.03766 0.05821
Dag -0.05187 -0.03432 -0.02177 0.02363 0.03646 0.05443
GEVD5 -0.057617192 -0.036008593 -0.021176983 0.021390916 0.035509621 0.057215649
GEVD10 -0.056102025 -0.035485719 -0.020128267 0.018765037 0.034137702 0.069169123
GEVD21 -0.059423767 -0.033196529 -0.016748401 0.016705164 0.031174525 0.076407297
GPD85 -0.064995441 -0.039019548 -0.022317858 0.021190722 0.037584242 0.07100962
GPD90 -0.065068043 -0.038968102 -0.022337789 0.021191447 0.037707634 0.070352143
GPD95 -0.064217893 -0.039220344 -0.022516436 0.020650686 0.038574441 0.066755763

Table 5-2: VaR Backtesting for ALS140 versus Heavy-Tailed Distributions
Number of Violations p-value of Kupiec Test p-value of Christoffersen Te