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ABSTRACT 

 

Xu and Ouenniche (2012a) proposed an input-oriented radial super-efficiency Data Envelopment 

Analysis (DEA) based model to address a common methodological issue in the evaluation of 

competing forecasting models; namely, ranking models based on a single performance measure at a 

time, which typically leads to conflicting ranks. However, their approach suffers from a number of 

issues. In this paper, we overcome these issues by proposing a slacks-based context-dependent DEA 

framework and use it to rank forecasting models of oil prices’ volatility. 
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1. INTRODUCTION 

 

he design of quantitative models for forecasting continuous variables in a wide range of application 

areas has attracted the attention of a large number of academics and professionals for some time; 

however, the performance evaluation of competing forecasting models has not received as much 

attention. Nowadays, although most published research involve using several performance criteria and measures to 

compare models, the performance evaluation exercise remains of a unidimensional nature; that is, models are ranked 

by a single measure and typically the obtained rankings are conflicting. Therefore, one cannot make an informed 

decision as to which model performs better under several criteria and their measures. To the best of our knowledge, the 

only papers that both raised concerns about this methodological issue and addressed it are the ones by Xu and 

Ouenniche (2011, 2012a, 2012b). A super-efficiency data envelopment analysis model has been proposed by Xu and 

Ouenniche (2011) to devise a multi-criteria ranking of competing forecasting models of oil prices’ volatility; however, 

their approach suffers from the following issues. First, in many applications such as the ranking of forecasting models, 

the choice of an orientation is irrelevant. Second, under the variable returns-to-scale assumption, input-oriented scores 

can be different from output-oriented ones, which may lead to different rankings. Third, radial DEA models could 

only take account of technical efficiency and ignore potential slacks in inputs and outputs and thus may over-estimate 

efficiency scores. Fourth, radial super-efficiency DEA models may be infeasible for some efficient decision making 

units (DMUs) and would lead to unresolved ties. Finally, within a super-efficiency DEA framework, super-efficiency 

scores are used to rank order the efficient DMUs; however, the reference set changes from one efficient DMU 

evaluation to another, which in some contexts might be viewed as “unfair” benchmarking. In this paper, we overcome 

these issues by proposing a slacks-based context-dependent DEA (CDEA) framework (Morita, Hirokawa, & Zhu, 

2005; Seiford & Zhu, 2003) for assessing the relative performance of competing volatility forecasting models.  

 

The remainder of this paper is organized as follows. In Section 2, we describe the proposed slacks-based 

CDEA framework to evaluate the relative performance of competing volatility forecasting models. In Section 3, we 

report on our empirical findings. Section 4 concludes the paper. 

 

 

 

T 
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2. A SLACKS-BASED CDEA MODEL FOR ASSESSING FORECASTING MODELS 
 

In this paper, we propose a slacks-based CDEA framework to assess the relative performance of competing 

forecasting models for crude oil prices’ volatility. The proposed framework is a three-stage process which could be 

summarized as follows: 
 

Stage 1 – Returns-to-Scale (RTS) Analysis: Perform RTS analysis to find out whether to solve a DEA 

model under constant returns-to-scale (CRS) conditions, variable returns-to-scale (VRS) conditions, increased 

returns-to-scale (IRS) conditions, or decreased returns-to-scale (DRS) conditions – see Banker, Cooper, Seiford, 

Thrall, and Zhu (2004) and Majid (2012) for details. 
 

Stage 2 – Classification of DMUs: Use the following algorithm to partition the set of DMUs into several 

levels of best-practice frontiers or evaluation contexts, say L : 
 

Initialization Step 
 

Initialize the performance level counter   to 1 and the set of DMUs  to evaluate at level  , say J , to

 nkDMUk ,...,1,  . Use the relevant DEA model to evaluate J  and set the  th
-level best-practice frontier E

accordingly; that is,  1 S   
kcoreEfficiencyJkE  . Exclude the current performance level best-practice 

frontier 
E from the set of DMUs  to evaluate next; that is, set

 EJJ 1
, increment   by 1 and proceed to the 

iterative step. 
 

Iterative Step 
 

While J  Do  

{ 

Use the relevant DEA model to evaluate
J , set the  th

-level best-practice frontier 
E  accordingly, set

 EJJ 1
, and increment   by 1; 

} 

 

where the relevant DEA model to use is the slacks-based measure (SBM) model of Tone (2001): 
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where the thi  input and 
thr  output of  n,...,jDMU j 1  are denoted by  m,...,ix j,i 1 and  s,...,ry j,r 1 , 

respectively, j  is the weight assigned to jDMU  in constructing its ideal benchmark, 


k,is  and 


k,rs  are slack 

variables associated with the first and the second sets of constraints, respectively, and 
k  denotes the SBM efficiency 

score of kDMU  achieved at performance level  . If the optimal value of 1
k , then kDMU  is classified as 

efficient; otherwise kDMU  is classified as inefficient. Note that model 1 above is solved as it is if stage 1 reveals that 

the CRS conditions hold; otherwise, one would have to impose one of the following additional constraints depending 

on whether VRS, IRS, or DRS conditions prevail, respectively: 
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 (2) 

 

Obviously, once DMUs have been partitioned into L efficient frontiers with different levels of performance, 

one could rank order them from best to worst starting with 1
st
-level efficient frontier DMUs as best and ending with the 

thL -level efficient frontier DMUs as worst. Note that ties might exist between DMUs on the same efficient frontier 

and the next stage is designed to break those ties. 

 

Stage 3 – Break Efficiency Ties: First, for each efficient frontier  L2,..., E , compute relative progress 

scores 1
k s with respect to the best evaluation context,

1
 1E , by solving the following model for each EDMU k 

and rank order DMUs on efficient frontier 
E according to the values of these scores: 
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(3) 

 

where 


k,it  (respectively, 


k,rt ) denotes the amount by which input i  (respectively, output r ) of kDMU should be 

decreased (respectively, increased) to reach the efficient frontier corresponding to evaluation context 
1E . Second, for 

DMUs belonging to the best efficient frontier
1E , compute relative attractiveness scores 2

k s with respect to the 

second best evaluation context,
2
 

2E , by solving the following model for each 1EDMU k   and rank order DMUs on 

the best efficient frontier according to the values of these scores: 
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where 

kit ,  (respectively, 


krt , ) denotes the amount by which input i  (respectively, output r ) of 1EDMU k  should 

be increased (respectively, decreased) to reach the frontier corresponding to evaluation context 
2E . 

 

In the next section, we use the proposed procedure to rank order competing forecasting models of crude oil 

prices’ volatility and report on our empirical findings. 

 

 

                                                 
1 The rationale behind this choice is to set a common global target for all lower level efficient frontiers for the sake of fairness in benchmarking. 
2 The rationale behind this choice is to compare the most efficient DMUs with those that have the closest performance. 
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3. EMPIRICAL INVESTIGATION AND RESULTS 

 

For comparison purposes with the results obtained by Xu and Ouenniche (2012a), we use the same data, 

inputs, outputs, and forecasting models.
3
 Note that RTS analysis revealed that VRS conditions hold and therefore 

models 1, 3, and 4 are augmented with the following constraint:  
Jj j 1 . Table 1 (respectively, Tables 2 and 4) 

provide the unidimensional (respectively, multidimensional) rankings of 14 forecasting models of crude oil prices’ 

volatility based on 9 measures of 3 criteria: biasedness, goodness-of-fit, and correct sign. Table 1 is a typical output 

presented by most existing forecasting studies – these unidimensional rankings are devised as follows: models are 

ranked from best to worst using the relevant measure of each of the criteria under consideration. Notice that different 

criteria led to different unidimensional rankings, which provides evidence of the problem resulting from the use of a 

unidimensional approach in a multicriteria setting. Table 2 summarizes multidimensional rankings, where the models 

are ranked from best to worst based on the corresponding super-efficiency scores obtained using both input-oriented 

and output-oriented radial super-efficiency DEA models. Notice that, under VRS conditions, the rankings of input- 

and output-oriented analyses are different and the rankings of output-oriented analysis show more ties. Table 3 

provides the efficient frontiers obtained with SBM-CDEA. These results suggest that the best and the worst efficient 

frontiers are insensitive to adjusting biasedness measures for volatility. Note that any rankings based on these efficient 

frontiers would lead to a large number of ties. In order to break these ties, we use relative progress and attractiveness 

scores obtained by solving models 3 and 4, respectively, which results in the multidimensional rankings provided in 

Table 4 where models are ranked from best to worst based on these relative scores. Notice that Tables 2 and 4 reveal 

that the multicriteria rankings of models obtained by input- and output-oriented super-efficiency DEA analyses and 

SBM-CDEA analysis are different. These differences are due to the fact that input-oriented analysis minimizes inputs 

for fixed amounts of output and output-oriented analysis maximizes outputs for fixed amounts of input, whereas 

orientation-free analysis optimizes both inputs and outputs simultaneously. In addition, oriented super-efficiency 

analyses only take account of technical efficiency, whereas orientation-free CDEA analysis takes account of an 

additional performance component; namely, slacks. In fact, for our data set – see Table 4, the efficient model SMA20 

maintained its best position in the rankings regardless of the type of DEA analysis, because it is always on the best 

efficient frontier and has zero slacks regardless of the performance measures used. As to the rankings of the remaining 

models, there are differences that are mainly due to the presence of slacks and the nature of benchmarks. 

 

                                                 
3 Inputs (respectively, outputs) consist of performance metrics to be minimized (respectively, maximized) according to the principle of the less 

(respectively, the more) the better – for space limitations, description of performance metrics and forecasting models are provided in Xu and 
Ouenniche (2012). 
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Table 1: Unidimensional Rankings of Competing Forecasting Models 

Criteria Measures Ranked From Best to Worst 

Biasedness 
Mean Error (ME) 3511914101241362871 

Mean Volatility-Scaled Errors (MVolScE) 359&10&11&12&1446&132871 

Goodness-of-fit 

Mean Absolute Error (MAE) 85639&10111271413412 

Mean Absolute Volatility-Scaled Errors (MAVolScE) 5&83&69&10&11&127&1413412 

Mean Squared Error (MSE) 1413101211953648721 

Mean Squared Volatility-Scaled Errors (MSVolScE) 14131011&12953648721 

Mean Mixed Error Under-estimation penalized (MMEU) 1435101312911468721 

Mean Mixed Error Over-estimation penalized (MMEO) 1278611129131014453 

Correct Sign Percentage of correct direction change predictions (PCDCP) 3510&1291441368111&72 

*1RW [Random Walk]; 2 HM [Historical Mean]; 3SMA20 [Simple Moving Average]; 4SMA60; 5SES [Single Exponential Smoothing]; 6ARMA(1, 1) [Auto Regressive Moving Average]; 7AR(1) 
[AutoRegressive]; 8AR(5); 9GARCH(1, 1) [Generalized Auto Regressive Conditional Heteroscedasticity]; 10GARCH-M(1, 1); 11EGARCH (1,1) [Exponential GARCH]; 12TGARCH (1, 1) [Threshold 

GARCH];  13PARCH (1, 1) [Power Auto Regressive Conditional Heteroscedasticity]; 14CGARCH(1,1) [Component GARCH] 

 
Table 2: Input- and Output-oriented Super-Efficiency Rankings 

Panel A: Combinations of Performance Measures used as Inputs Along With 

Output PCDCP in Input-Oriented Analysis 

Panel B: Combinations of Performance Measures used as Inputs Along With 

Output PCDCP in Output-Oriented Analysis 

Inputs Models Ranked from Best to Worst Inputs Models Ranked from Best to Worst 

ME; MAE 3 586910111214713412 ME; MAE 3&5&810&12914641311172 

ME; MAVolScE 3 5869&10&11&1214713412 ME; MAVolScE 3&510&129144813611172 

ME; MSE 3 145111012913648721 ME; MSE 31451012913461181&72 

ME; MSVolScE 3 145111012913648721 ME; MSVolScE 31451012913461181&72 

ME; MMEU 3 145101312911468721 ME; MMEU 3&14510&1294136811172 

ME; MMEO 3121158691210714413 ME; MMEO 3211158691210714413 

MVolScE; MAE 3 5869&10111214713412 MVolScE; MAE 3&5&810&129146413111&72 

MVolScE; MAVolScE 3 5869&10&11&1214713412 MVolScE; MAVolScE 3&510&129144813611172 

MVolScE; MSE 3 145101291113648721 MVolScE; MSE 31451012913461181&72 

MVolScE; MSVolScE 3 145101291113648721 MVolScE; MSVolScE 31451012913461181&72 

MVolScE; MMEU 3 145101312911468721 MVolScE; MMEU 3&14510&1294136811172 

MVolScE; MMEO 3121158612910147413 MVolScE; MMEO 3211158612910714413 

*1RW; 2 HM; 3SMA20; 4SMA60; 5SES; 6ARMA(1, 1); 7AR(1); 8AR(5); 9GARCH(1,1); 10GARCH-M(1,1); 11EGARCH(1,1); 12TGARCH(1,1); 13PARCH(1, 1); 14CGARCH(1,1) 
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Table 3: Efficient Frontiers With Different Performance Levels 

 
Panel A: Combinations of Performance Measures used as Inputs Along 

With Output PCDCP  

Panel B: Combinations of Performance Measures used as Inputs Along With 

Output PCDCP 

Efficient 

Frontiers 

ME & 

MAE 

ME & 

MAVolScE 

ME & MSE; 

ME & 

MSVolScE 

ME & 

MMEU 
ME & MMEO 

MVolScE 

& MAE 

MVolScE & 

MAVolScE 

MVolScE & 

MSE; MVolScE 

& MSVolScE 

MVolScE 

& MMEU 

MVolScE & 

MMEO 

1E
 

{3,5,8} {3,5} {3,5,14} {3,14} {1,2,3,5,6,8,11} {3,5,8} {3,5} {3,5,14} {3,14} {1,2,3,5,6,8,11} 

2E
 

{6,9,10,11} {6,8,9,10,11} {9,10,11,13} {5} {7,9,1012} {6,11} {6,8,10,12} {10,13} {5} {7,12} 

3E
 

{12,14} {12,14} {12} {9,10,11} {13,14} {9,12} {9} {12} {10} {9,10} 

4E
 

{4,7,13} {4,7,13} {4,6} {12,13} {4} {4,7,13} {11,14} {9,11} {12,13} {13,14} 

5E
 

{1,2} {1,2} {2,8} {4}  {1,2} {4,7,13} {4,6} {9} {4} 

6E
 

  {7} {6}   {1,2} {2,8} {4,11}  

7E
 

  {1} {2,8}    {7} {6}  

8E
 

   {7}    {1} {2,8}  

9E
 

   {1}     {7}  

10E
 

        {1}  

*1RW; 2 HM; 3SMA20; 4SMA60; 5SES; 6ARMA(1, 1); 7AR(1); 8AR(5); 9GARCH(1,1); 10GARCH-M(1,1); 11EGARCH(1,1); 12TGARCH(1,1); 13PARCH(1, 1); 14CGARCH(1,1) 

 
Table 4: SBM-CDEA Rankings 

Panel A: Combinations of Performance Measures used as Inputs Along With 

Output PCDCP 

Panel B: Combinations of Performance Measures used as Inputs Along With Output 

PCDCP 

Inputs Models Ranked from Best to Worst Inputs Models Ranked from Best to Worst 

ME; MAE 3 5869&10111214134721 MVolScE; MAE 3 586109121411134721 

ME; MAVolScE 3 511910681412413721 MVolScE; MAVolScE 3 510&126891411413721 

ME; MSE 3 514911101312468271 MVolScE; MSE 3 514101312911468271 

ME; MSVolScE 3 514911101312468271 MVolScE; MSVolScE 3 514101312911468271 

ME; MMEU 3 145910111213468271 MVolScE; MMEU 3 145101213911468271 

ME; MMEO 352111689,10&1214134 MVolScE; MMEO 3 52111681279&1014134 

*1RW; 2 HM; 3SMA20; 4SMA60; 5SES; 6ARMA(1, 1); 7AR(1); 8AR(5); 9GARCH(1,1); 10GARCH-M(1,1); 11EGARCH(1,1); 12TGARCH(1,1); 13PARCH(1, 1); 14CGARCH(1,1) 
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4. CONCLUSION 

 

Xu and Ouenniche (2012a) proposed an input-oriented radial super-efficiency DEA-based framework to 

evaluate the performance of competing forecasting models of crude oil prices’ volatility, which delivers a single 

ranking based on multiple performance criteria; such a framework suffers from several issues that were overcome in 

this paper. The main results may be summarized as follows. First, models that are on the efficient frontier and have 

zero slacks regardless of the performance measures used (e.g., SMA20) maintain their ranks regardless of the choice 

of DEA analysis and its orientation. Second, the multicriteria rankings of the best and the worst models seem to be 

relatively robust to changes in most performance measures; in sum, SMA20 is the best across the board and, for the 

remaining models, differences in rankings were mainly due to the presence of slacks and the nature of benchmarks. 

Finally, when under-estimated forecasts are penalized, most GARCH types of models tend to perform well – 

suggesting that they often produce forecasts that are over-estimated. On the other hand, when over-estimated forecasts 

are penalized, averaging models such as RW, HM, SES tend to perform very well – suggesting that these models often 

produce forecasts that are under-estimated. 
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