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ABSTRACT 
 

This paper studies the volatility in ten European stock markets (Denmark, France, Germany, 

Ireland, Italy, Netherland, Spain, Sweden, Switzerland and United Kingdom) during the 

periods of financial crisis (East Asian currency crisis, Subprime crisis…) from 1990 to 2012. 

We apply Markov Regime Switching SW-GARCHmodel. Our results show that most of the 

European stock markets are closely interlinked to the U.S. 
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1. INTRODUCTION 

 

he question of volatility dynamics has always been the motivation of many researchers in the field of 

finance with objectives to ensure economic stability and to obtain higher rates of return for investors 

by portfolio diversification. Consequently, to financial crisis streaming, in the last few decades, a 

large literature has been focused on studying volatility. Hamao and al. (1991) found evidence of significant price-

volatility spill over from US to London and Tokyo, and from London to Tokyo stock markets. Edwards and Naim 

(1998) observed a new style “Tequila Effect” of economic crises in Latin America. A similar crisis emerged, at the 

end of 1997, in Thailand which was far more severe and engulfed far more countries than its predecessor. It’s bad 

character has been manifested by its contagion on whole region, for that reason it has been called Asian Crisis. The 

emergence of East Asian currency crisis in 1997 raised doubt about the lessons learned from Mexico by national and 

international policy makers, and economic analysts (Edwards & Naim, 1998). Then, again in 2007, the world 

witnessed the worst crisis in history after the Great Depression of 1929. The crisis appeared in U.S.A due to a 

complicated interaction of different variables, consisting principally on: 1) lower interest rates, 2) abundance of 

mortgage loans, 3) weak or no controls at an institutional level and an authoritative level, 4) and the use of 

securitization. In all the cases mentioned above, we observe lower rates of return, higher volatility, and the 

propagation of crisis to other stock markets, around the world, during the periods of turbulence. 

 

The initial empirical literature on financial crises consists on a simple comparative analysis of Pearson's 

correlation coefficient between markets “tranquil vs. crisis” periods. Financial Crises are identified when significant 

increases of correlation coefficient occurred. King and Wadhwani (1990), and Lee and Kim (1993) employed the 

correlation coefficient between stock returns to test the impact of the 1987 US stock crash on the equity markets of 

several countries. Empirical findings show that the correlation coefficients between several markets had significantly 

increased during the crash. Hamao and al. (1990) estimated the conditional variance, during the crisis of 1987, witha 

GARCH model to test correlations between market volatilities. Edward and Susmel (2001), by using a switching 

ARCH model, tested the contagion effects for many Latin American equity markets, during the times of high market 

volatility. They showed a significant correlation between studied equity markets which proved the existence of 

contagion effects. 

 

Gray (1996) was the first to introduce the Markov Regime Switching GARCH which had been applied to 

US Treasury bill rates from January 1979 to April 1994. In this word, he mentioned how an Exponential GARCH 

could be incorporated to estimate Markov Regime Switching EGARCH. This innovation led to a flood of research 

applications. Klaassen (2002) modified Gray’s model by adopting the conditional expectation of the lagged 
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conditional variance with broader information set. Fong and Koh (2002) applied a Markov Regime Switching 

EGARCH on Hong Kong stock market. They found a strong evidence of regime shifts in conditional volatility as 

well as significant volatility asymmetry in high volatility periods. Maheu and McCurdy (2004) applied Markov 

Regime Switching (MRS) with Auto-regression to study the volatility in U.S stock market. They found a strong 

evidence of: high mean and low volatility, and low mean and high volatility under two regimes. Edwards and 

Susmel (2003) studied the interest rate volatility in emerging markets by applying a modified version of MRS with 

ARCH and find evidence of regime shifts. Kanas (2005) applied Markov Switching with vector auto-regression 

(MS-VAR) to study the relationship between Mexican currency and six emerging stock markets. Hondroyiannis and 

Papapetrou (2006) studied the dynamic relationship between real stock returns and expected and unexpected 

inflation of Greece utilizing a MS-VAR. They found no evidence of relation between real stock returns and expected 

and unexpected inflation. Moore and Wang (2007) investigated the volatility in stock markets for the new European 

Union member states by applying MRS Model and revealed that there is a tendency in emerging stock markets to 

move from high volatility regime in the earlier period of transition into the lower volatility regime as they move into 

the European Union. Brunetti et al. (2008) analysed exchange rate turmoil in South Asia with a Time Varying 

Markov Switching GARCH model. They found that the real effective exchange rates, money supply relative to 

reserves, stock index returns, and bank stock index returns and the volatility contain relevance information in order 

to identify turbulence and ordinary periods. Wang and Theobald (2008) applied MS model to study the behaviour in 

the return-generating processes of six East Asian emerging stock markets. They found strong evidence of more than 

one regime in each stock market and mixed evidence regarding the impact of financial liberalization on return 

volatility. Cologni and Manera (2009) investigated the impact of oil price shocks on economic growth of developed 

countries (G7) by applying alternative switching models. Their empirical evidence supports the notion of lesser/ 

decreasing role of oil price shocks on the business cycles of G7 member countries.  

 

In this research paper, we will study the behaviour of volatility in European stock markets. We apply 

Markov Regime Switching SW-GARCH model developed by Hamilton and Susmel (1994), Cai (1994) and Edwards 

and Susmel (2003) to study volatility of European stock markets under different regimes and under crisis period. 

The main attraction of using SW-GARCH Model lies in its ability to calculate changing variance under different 

regimes. The empirical literature on the application of SW-GARCH models to European stock markets is however 

very limited. In addition, we do not find any other research which has focused on the European countries at such as 

large scale.   

 

The remaining of the paper is organized as follows. Section 2 presents the econometric method. Section3 

reports and discusses the obtained results. Section 4 concludes the paper. 

 

2. METHODOLOGY 
 

The use of GARCH model and its different variants has become the standard for studying and analysing 

time varying conditional volatility where the conditional means and the variances of GARCH models are fixed for 

the entire sample period. Gray (1996) proposed a generalized regime-switching (GRS) model, which may be 

described as follows: 
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where 0tS or 1, )( tS and )( tt Sh are the conditional mean and conditional variances respectively. Both are 

allowed to switch between two regimes. To confirm positivity of conditional variance in each regime, indispensible 

conditions are similar to the necessary conditions in uni-regime GARCH (1, 1) model. The unobserved regime 

variable 
tS is governed by a first order Markov Chain with constant transition probabilities given by:  
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In matrix notation, 
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Then, conditional distribution of return series tr  becomes a mixture of distribution model in which mixing variable 

is ex-ante probability )/Pr( 1 tt iS  denoted by itP ,  
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where ),1/( 1 ttt Srf  denotes one of the assumed conditional distributions for errors: Normal, Student-t or 

GED. 1t denotes the information at time t-1. tp0  is the ex-ante probability of being in regime 0. The log-

likelihood function for SW-GARCH model can be written as 
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The )/Pr( 1ttS 
 
is the regime probability at time t based on the all information up to time t-1. Both Hamilton and 

Susmel (1994) and Cai (1994) limited their estimation to the Markov Regime Switching ARCH model. The reason 

is that there is an infinite path dependence problem inherent in SW-GARCH models.  

 

 In SW-ARCH models, the conditional variance at time t depends on past q squared residuals and past q 

regime variables ),..,( qtt SS  . However, in SW- GARCH model, the conditional variance at time t depends on the 

conditional variance at time t-1 and regime variable )( tS  at time t. While the conditional variance at time t-1 

depends on the conditional variance at time t-2 and regime variable )( 1tS  at time t-1, and so on. Therefore, the 

conditional variance at time t depends on the entire history of regimes up to time t. Both Hamilton and Susmel 

(1994) and Cai (1994) indicated that path dependence nature of SW-GARCH model makes estimation impossible 

for large sample size. In order to resolve problem of path dependence in SW-GARCH model, Gray (1996) proposed 

to use conditional expectation of the lagged conditional variance )( 12  tt hE  instead of lagged conditional variance

1th . This approach preserves the natural essential of the GARCH process and allows tractable estimation of model. 

Gray’s approach recombines 0)( 11  tt Sh and 1)( 11  tt Sh into 1th , and recombines 0)( 11  tt S and 

1)( 11  tt S into 1t by taking conditional expectations of 1th and 1t based on the ex-ante probabilities. That 

is, 
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Similarly, error terms 1t is given by  
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Given equations (6) and (7), the conditional variance )( tt Sh in Gray’s model can be written as 
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The procedure of conditional expectation of the lagged conditional variance )( 12  tt hE instead of lagged 

conditional variance 1th makes conditional variance at time t depends on only current regime tS  and inference 

about 1tS . Therefore, the Gray’s collapsing procedure simplifies and makes tractable the estimation of SW-GARCH 

models. Given initial values for regime probabilities, conditional mean and conditional variance in each regime, the 

parameters of SW-GARCH model can be obtained by maximizing numerically the log-likelihood function given in 

equation (5). The log-likelihood function is constructed recursively similar to that in a uni-regime GARCH models. 

 

3. DATA AND EMPIRICAL RESULTS 

 

3.1 Data 

 

The dataset includes monthly data for stock markets: Finland (Helsinki General), France (CAC 40), 

Germany (DAX 30), Ireland (ISEQ), Italy (Milan MIB), Netherlands (AEX), Spain (Madrid General Index), 

Denmark (KFX Copenhagen), Sweden (Stockholm Index), UK (FTSE 100) from 02/01/1990 to 01/03/2012. Stocks 

index are obtained from Datastream International database. Monthly stock returns are calculated (see figure 1) from 

stock market indices according to the formula Table 1 presents descriptive statistics for stock 

market returns. Average stock returns are positive for all considered countries and range from 0.1% (Italy) to 0.7% 

(Finland). United Kingdom is the least volatile market with a standard deviation of 4.5%, while the highest volatility 

is found for Finland (9.0%). Expect Italy, the coefficients of skewness are negatives which means that the return 

distributions are skewed to the left and the probability of observing extreme negative returns is higher than that of a 

normal distribution. Kurtosis coefficients are significant and greater than three in all cases and thus reveal the 

leptokurtic behavior of return distributions. Altogether, the non-normality of all the return series is clearly confirmed 

by the Jarque-Bera test. We also find the presence of ARCH effects for all the series. 

 

 

 

 

 

 

Rit = ln(Pt /Pt-1).

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/


The Journal of Applied Business Research – November/December 2014 Volume 30, Number 6 

Copyright by author(s); CC-BY 1571 The Clute Institute 

 Graphic 1:  Stock Markets Returns 

 
Table 1: Descriptive Statistics Of Return Series 

 FRA ITA UK ESP IRL DNK SWE FIN GER NLD 

Mean 0,004 0,001 0,004 0,003 0,003 0,006 0,005 0,007 0,004 0,003 

Median 0,011 0,001 0,010 0,008 0,015 0,010 0,013 0,006 0,009 0,010 

Max. 0,125 0,210 0,119 0,150 0,181 0,178 0,183 0,305 0,126 0,114 

Min. -0,280 -0,181 -0,146 -0,166 -0,282 -0,209 -0,203 -0,305 -0,172 -0,256 

St. Dev. 0,056 0,065 0,045 0,056 0,067 0,055 0,048 0,090 0,057 0,056 

Skew. -1,000 0,058 -0,518 -0,534 -1,000 -0,664 -0,818 -0,151 -0,718 -1,250 

Kurt. 5,587 3,555 3,807 3,434 5,378 4,269 5,561 3,959 3,623 6,156 

J.B 118,111+++ 3,557+++ 19,033+++ 14,686+++ 106,617+++ 37,271+++ 102,0+++ 11,156+++ 27,055+++ 178,96+++ 

ARCH(1) 0,356+++ 0,169+++ 0,561+++ 0,896+++ 0,343+++ 0,289+++ 0,987+++ 0,111+++ 0,473+++ 0,221+++ 

Notes: This table shows the basic statistics and the stochastic properties for stock returns +++ indicate that the null hypothesis of 

normality, no autocorrelation and no ARCH effect is rejected at the 1% rate. 

 

3.2 Discussion Results 
 

Are there regime shifts in the return generating processes? 

 

Several authors, such as Wang and Theobald (2008), stressed that the identification of regime change is 

difficult as the search for the number of regimes cannot be observed through the use of simple Wald ratio and the 

test of likelihood ratio. 

 

To resolve this problem, we have applied the likelihood ratio test developed by Garcia and Perron (1996) to 

verify the existence of regime change for each studied markets. However, we test the null hypothesis of no regime 

change for the stock market returns represented by the GARCH (1,1) model with a single regime against the SW-

GARCH (1,1) specification, which implies the existence of more than one regime for each studied stock market. We 

start by determining the number of delays with the help of autoregressive model by applying the Akaike Information 

Criteria (1974) and of Hannan and Quinn (1977). The LR test is defined as
GARCHGARCHMS LLLR lnln2  

and 

the critical value for model with two regime shifts is tabulated by Garcia and Perron (1996) and Garcia (1998) based 

on the study of Davies (1987).  Table 2 shows that the LR test statistics are higher than the critical value for all 

markets. Hence, we can reject the null hypothesis of no regime change at a significance level of 1%. However, it is 

clear that stock market returns of the OECD are better described by a Markov Switching GARCH model compared 

to a GARCH (1,1) with a single regime. 
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Table 2: Likelihood Ratio Test 

   Test LR 

France -1704.54 -1682.98 22.02+++ 

Italy -1352.72 -1304.42 20.58+++ 

United Kingdom  -1392.33 -1374.68 18.33+++ 

Netherlands -1631.19 -1608.4 22.79+++ 

Spain -1602.79 -1565.92 37.17+++ 

Ireland -1896.1 -1828.07 68.03+++ 

Denmark -1682.07 -1642.71 39.36+++ 

Sweden -1709.68 -1663.62 46.04+++ 

Finland -2244.68 -1789.62 455.06+++ 

Germany -1987.38 -1789.83 188.55+++ 

Note: +++ indicate the null hypothesis of no regime switching volatility is rejected at the 1% level. 

 

The results of the estimation of MS-GARCH model (table 3) allow us to identify types of regimes: A first 

regime with a positive average return with a low volatility for all studied markets and a second regime with higher 

volatility and positive average returns. 

 

Referring to Maheu and McCurdy (2000), regime 0 is considered a “bull market”, while regime 1 is 

considered as ''bear market''. The average returns during regime 0 ranges from -0.026 for Spain to 0.50 for the 

UK. While the average return is positive for all markets for regime 1. The average ranges between 0.016 for Spain 

to 0.56 for UK. MS-GARCH model also shows that the probability that a day of low volatility will be followed by 

another day of low volatility. The probability of transition from regime 0 to regime 1 is 0.98 for 

the Netherland followed by Italy, Ireland and Sweden (0.97), while the UK has the lowest probability (0.43). The 

probability that a day of high volatility will be followed by another day of high volatility varies between 

0.02 for Italy to 0.66 for the UK.  

 
Table 3: MS-GARCH Results 

 FRA ITA GBR ESP IRL DNK SWE FIN GER NLD 
 0.19 0.03 0.50 -0.026 0.11 0.17 0.12 0.14 0.11 0.096 

 (0.26) 0.13 (0.13) (0.013) 0.08 (0.15) 0.09 (0.10) (0.09) 0.08 
 0.25 0.08 0.56 0.016 0.42 0.29 0.18 0.21 0.19 0.101 

 (0.06) (0.06) (0.20) (0.003) (0.09) (0.09) (0.08) (0.08) (0.08) 0.104 
 0.03 0.03 0.03 0.07 0.08 0.07 0.04 0.05 0.07 0.05 

 (0.01) (0.003 (0.004) (0.006) (0.005) (0.012) (0.003) (0.005) (0.005) (0.003) 
 0.05 0.07 0.04 0.08 0.09 0.09 0.08 0.107 0.09 0.07 

 (0.002) (0.003) (0.003) (0.003) (0.002) (0.005) (0.006) (0.007) (0.002) (0.002) 

P00 0.86 0.97 0.43 0.84 0.97 0.91 0.97 0.96 0.96 0.98 

P11 0.066 0.020 0.661 0.065 0.030 0.033 0.033 0.027 0.027 0.020 
 8.44 54.00 2.78 7.44 40.50 23.67 44.33 31.25 29.25 49.00 
 21.00 105.50 10.31 22 54.33 48.50 47.00 46.67 49.33 59.00 

L. likelihood 405.91 363.41 456.12 405.53 368.49 99.47 347.83 281.26 401.12 474.63 

Note: standard deviations are reported in parentheses 

 

 Table 4 reports the results from the Normality test and the ARCH test for conditional heteroscedasticity in 

the standardized residuals. The null hypothesis of ARCH effects is rejected at conventional levels for all markets. 

With regard to Jarque-Bera test, we confirm the acceptation of normality statistics. The empirical statistic of 

Portmanteau for autocorrelation reveals that the autocorrelations of the standardized residuals are no longer 

significant. 
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Table 4: Normality Test For Scaled Residuals 

 FRA ITA GBR ESP IRL DNK SWE FIN GER NLD 

Skewness 0.11 -0.02 -0.20 -0.33 -0.26 -0.34 -0.21 -0.20 -0.43 -0.31 

Ex. Kurtosis -0.51 -0.07 -0.10 0.35 -0.02 -0.03 -0.43 -0.10 -0.45 0.17 

2 (2) 3.88 0.02 12.57 6.35 5.31 6.32 5.37 2.20 19.99 4.34 

 [0.14] [0.98] [0.11] [0.14] [0.54] [0.26] [0.26] [0.33] [0.12] [0.11] 

ARCH (1) 0.04 0.053 -0.002 0.007 -0.02 -0.06 -0.01 -0.13 -0.051 0.24 

 (0.06) (0.06) (0.006) (0.006) (0.02) (0.06) (0.26) (0.16) (0.06) (0.26) 

P. (36) 25.74 32.77 36.68 25.74 30.88 31.22 32.06 26.16 30.85 65.78 

 [0.89] [0.45] [0.43] [0.89] [0.41] [0.44] [0.65] [0.88] [0.71] [0.66] 

Notes: 2 (2) and ARCH (1) refer to empirical statistics of the Jarque-Beratest to standardized residuals, and the ARCH test for 

conditional heteroscedasticity with 1 lag. Numbers in bracket are the associated p-values. P refers to empirical statistic of 

Portmanteau for autocorrelation of order 36 applied to standardized residuals. 

 

Volatility Behaviour Of Stock Markets Across Regimes 

 

A close look on smoothed probabilities (see figure 2) indicates that there is no common pattern in the 

regime shift dates among stock markets considered. The unique exception is around the year of 2008, when the 

smoothed probability of high volatility state increases for all markets, thus reflecting the advent of the US subprime 

crisis followed by a global financial crisis. Other regime shifts tend to be coincided with several economic and 

political events occurring over the study period. We now focus on these specific patterns by performing a country by 

country analysis. 

 

We find a similar pattern in the regime shifts for France, Spain and Switzerland since the three markets 

experienced a high volatility regime during the September 11 terrorist attack effects starting in 2001. For the 

Denmark, United Kingdom, Ireland and Netherland, the Japanese asset price bubble that started in 1991 marked the 

beginning of its first high volatility episode. Another high volatility regime is identified during the Russian and 

Brazilian financial crisis of 1998-1999. This finding indicates that the Spain, U.K, France, Sweden and Ireland stock 

markets are more likely to be affected by financial contagion and in crisis periods. The final episode of high 

volatility happened between 2008 and 2011 for all stock markets studied due to the Subprime crises. 
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5- France                               6- Sweden 

 
7- Nederland               8-Italy 

 
9-Ireland        10-Germany 

 
Figure 2: The Smooth Probability In Regime 1 And Regime 2 
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Finally, our results suggest that changes in the volatility level and regime duration vary across countries and 

types of event. Economic, political and social events, thus, cause each market’s volatility to change differently, a 

finding that is consistent with that of Aggarwalandal. (1999). 

 

4. CONCLUSION 

 

In this paper, we studied the volatility of 10 European stock markets. We employed the MS-GARCH 

empirical approaches.  We used the Markov regime shifts in order to study the behaviour of the European stock 

markets during the financial crises (1990-2012).  We proved that most of the European stock markets are closely 

interlinked to the U.S. highlighting some contagion between markets. However, the relationship of correlation 

increased significantly during the periods of crises that have affected these markets.  
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