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ABSTRACT 

 

The copula theory is a fundamental instrument used in modeling multivariate distributions.  It 

defines the joint distribution via the marginal distributions together with the dependence between 

variables. Copulas can also model dynamic structures. This paper offers a brief description of the 

copulas’ statistical procedures implemented on real market data. A direct application of the 

Gaussian copula to the assessment of a portfolio of loans belonging to one of the banks operating 

in Lebanon is illustrated in order to make the implementation of the copula simple and 

straightforward.  
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INTRODUCTION 

 

he concept of “copulas
1
” was named by Sklar (1959). In statistics, the word copula describes the 

function that “joins” one dimensional distribution functions to form multivariate ones, and may serve 

to characterize several dependence concepts. It was initiated in the context of probabilistic metric 

spaces. Copulas function became a popular multivariate modeling tool in financial applications since 1999 

(Embrechts, McNeil and Straumann (1999)). They are used for asset allocation, credit scoring, default risk 

modeling, derivative pricing, and risk management (Bouyè, Durrleman, Bikeghbali, Riboulet, and Roncalli 2000; 

Cherubini, Luciano, and Vecchiato 2004). They became more and more popular because as proven, the returns of 

financial assets are non-Gaussian and show nonlinearities; therefore, copulas became an imperative modeling device 

in a non-Gaussian world. They implement algorithms to simulate asset return distributions in a realistic way by 

modeling a multivariate dependence structure separately from the marginal distributions.   

 

For multivariate distributions, the univariate margins and the dependence structure can be separated and the 

latter may be represented by a copula. The copula of a multivariate distribution whose marginals are all uniform 

over (0,1). Sklar’s Theorem states that a d-dimensional cumulative distribution function F evaluated at point X = (x1, 

…,  xd) can be represented as 

 

F(X) = C (F1(x1), . . . , Fd(xd))  (1) 

 

where C is the copula function and Fi, i = 1, ..d, are the margins. In most cases the latter function is uniquely defined 

by (1.1). 

 

If F1, F2 are continuous, then C is unique; otherwise, C is uniquely determined on Ran(F1) x Ran(F2). 

Conversely, if C is a copula and F1, F2 are distribution functions, then the function F defined in (1) is a joint 

distribution function with margins F1 and F2. For the proof demonstration, please refer to Nelsen (1999, p. 18). It is 

the converse of the Sklar’s theorem that is mostly used for modeling multivariate distributions in finance. Any group 

                                                 
1 The word copula, resp. copulare, is a latin noun, resp. verb, that means “bond”, resp. “to connect” or “to join”. The term copula 

is used in grammar and logic to describe that part of a proposition which connects the subject and predicate.  

T 
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of n univariate distributions of any type can be linked with any copula while still obtaining a valid multivariate 

distribution.  

 

Using copulas is attractive to practitioners because even under increasing transformations of the margins, 

copulas remain invariant. This requires the completion of two steps: modeling each univariate marginal distribution 

then specifying a copula that recapitulates all the dependencies between margins.  

 

In this paper our aim is to simplify the implementation of copulas for the Lebanese banks since none of 

which is using copulas for risk assessment. Section 1 introduces the model that generates the copula through the 

Archimedian and elliptical copulas. Section 2 illustrates the use of the Gaussian copula in the assessment of a 

portfolio of loans belonging to one of the banks operating in Lebanon.  Section 3 draws some concluding remarks.  

 

DEFINITION AND FAMILIES OF COPULAS 

 

The quantification of dependence in finance has led to the development of copulas. Copulas are now 

witnessing increasing interest in many areas of risk analysis. The rank order correlation
2
 used by most Monte Carlo 

simulation tools is certainly a meaningful measure of dependence but is still limited in the patterns it can produce. 

 

As described in the introduction, copulas offer an efficient flexible procedure for combining marginal 

distributions into multivariate distributions and are able to deduce the real correlation pattern. The purpose of this 

paper is not to go through the explanations and proof of the mathematics related to copulas (that can be found in any 

related book), we will rather simplify the concept and depict what is just needed to run an analysis using the copula.  

 

To this end, in what follows, we use the needed formulae for a bivariate copula for simplicity purpose. 

Related graphs of bivariate copulas will be illustrated. Multivariate copulas can be extended based on the bivariate 

concept.  

 

Because the copula of a multivariate distribution describes its dependence structure, we can use measures 

of dependence such as Kendall’s
3
 tau and Spearman’s

4
 rho, as well as the coefficient of tail dependence, which are 

                                                 
2 The rank order correlation coefficient uses the ranking of the data, i.e. what position (rank) the data point takes in an ordered list 

from the minimum to maximum values, rather than the actual data values themselves. It is therefore independent of the 

distribution shapes of the data sets and allows the integrity of the input distributions to be maintained. Spearman's rho is 

calculated as: 

 

 
 

Where  

 

 
 

 
 
and where ui, vi are the ranks of the ith observation in samples 1 and  2  respectively. The correlation coefficient is symmetric i.e., 

only the difference between ranks is important and not whether distribution 1 is being correlated with distribution 2 or the other 

way round.   
3 Kendall’s tau and Spearman’s rho provide the best alternatives to the linear correlation coefficient as a measure of dependence 

for nonelliptical distributions, for which the linear correlation coefficient is inappropriate and often misleading. For more details 

we refer to Kendall and Stuart (1979), Kruskal (1958), and Lehmann (1975) and Capéraà and Genest (1993).  
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copula-based. The relationship between Kendall’s tau t of two variables X and Y and the copula C(u,v) of the 

bivariate distribution function of X and Y gives a tool for fitting a copula to a set of data. This consists in 

determining Kendall’s tau then applying a transformation in order to get the appropriate parameters for the fitted 

copula.  

 

The Copula Families 

 

The most frequently used copula families are the elliptical and Archimedean copulas. The below table 

summarizes and compares the two families. 

 
Table 1: Comparison between the most frequently used Copulas 

 Elliptical Copulas  Archimedean Copulas 

1. Definition Elliptical copulas are the copulas of elliptically 

contoured (or elliptical) distributions. The most 

famous elliptical distributions are the multivariate: 

1.  Normal5 (Gaussian copula) and  

2. Student-t6 distributions.  

Archimedean copulas are easily constructed and enjoy 

attractive properties. The most commonly used 

distributions are:  

1. Clayton7  

2. Frank8  

                                                                                                                                                             
Kendall’s tau for a two observed sets of variables  is given by: 

 
where C is the number of concordant pairs and D the number of discordant pairs. This can also be written as: 

 

 
 
This is used to measure the degree of correspondence between two variables (paired observations):  

Perfect correspondence between the two variables means that the coefficient has a value of 1  

Perfect disagreement between the two rankings means that the coefficient has a value of -1.  

For all other arrangements, the value lies between -1 and 1, 0 meaning the variables are completely independent. 
Therefore, Kendall’s tau for (X, Y )T is simply the probability of concordance minus the probability of discordance.  
4 Kendall’s tau and Spearman’s rho are both carried out on the ranks of the data as explained and defined in note 2. That is, for 

each variable separately the values are put in order and numbered. 
5 The normal copula is given by: 

 

 
 
6
 The Student-t copula is an elliptical copula defined as: 

  

 
 

where v (the number of degrees of freedom) and ρ (linear correlation coefficient) are the parameters of the copula. When v is 

large (greater than 30) the copula converges to the Normal copula just as the Student distribution converges to the Normal. In the 

opposite case, the behavior of the copulas is different: the t-copula has more points in the tails than the Gaussian one and a star 

like shape. A Student-t copula with n = 1 is sometimes called a Cauchy copula. 
7 It is an asymmetric copula, exhibiting greater dependence in the negative tail than in the positive. This copula is written as: 
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 3. Gumbel9 

                                                                                                                                                             

 
 

Its generator is: 

 

 
 

where: 

 

 
 

The relationship between Kendall’s tau and the Clayton copula parameter is given by: 

 

 
 
8 It is a symmetric copula given by: 

 

 
Its generator is: 

 

 
 

where: 

 

 
 

 The relationship between Kendall’s tau and the Frank copula parameter is given by: 

 

 
 

where: 

 

 
 
9 The Gumbel-Hougard copula is asymmetric, exhibiting greater dependence in the positive tail than in the negative. It is given 

by: 
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The relationship between the linear correlation 

coefficient ρ and Kendall’s tau t for all the elliptical 

copulas’ families is given by: 

 
 

The general relationship between Kendall's tau t and 

the generator of an Archimedean copula a(t)for a 

bivariate data set is given by: 

 
 

   
2. Advantages Different levels of correlation between the marginals 

can be easily determined. 

Easy to be deduced. 

3. 

Disadvantages 

Absence of closed form expressions, impossibility to 

have radial symmetry. 

The definition doesn't extend to a multivariate data set 

of n variables because there will be multiple values of 

tau, one for each pairing10.  

 

Graphics of Copula Families 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Source: Vose Software, Risk Software Specialists 

                                                                                                                                                             
Its generator is: 

 

 
 

where: 

 

 
 

The relationship between Kendall’s tau and the Gumbel copula parameter is given by: 

 

 
 
10 This constraint can be solved by calculating tau for each pair and then using the average. 

http://www.vosesoftware.com/ModelRiskHelp/Help_on_ModelRisk/List_of_all_VoseFunctions_explained/VoseCopulaBiNormal.htm
http://www.vosesoftware.com/ModelRiskHelp/Help_on_ModelRisk/List_of_all_VoseFunctions_explained/VoseCopulaBiT.htm
http://www.vosesoftware.com/ModelRiskHelp/Help_on_ModelRisk/Copulas/Vose_Bivariate_Copula.htm
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APPLICATIONS 

 

The purpose of this section is to illustrate a direct example on how to implement a one factor model of the 

Gaussian copula (normal copula) on a portfolio of loans belonging to a Lebanese bank operating in Lebanon (Naïmy 

(2012)).  

 

The portfolio is constituted of 30 different companies. We define Ti (1 ≤ i ≤ N) as the date upon which the 

company will default. We consider that all the studied companies in the portfolio can eventually default (Naïmy 

(2011)) however; this cannot happen except over long periods sometimes exceeding 50 years or more.  

 

The Model 

 

Qi is the distribution of Ti. In order to define a correlation structure among the Ti based on a one factor 

model of a Gaussian copula, we have transformed each variable, percentile per percentile, into a Ui variable, 

following a standardized bivariate distribution. We followed the below factorial model (one factor model) for the 

correlation structure:  

 

Ui = aiF + √(1-a
2

iZi) (2) 

 

Where F and Zi follow a normal distribution N(0,1). The link between Ui and Ti implies: 

 

Prob(Ui<U) = Prob(Ti<T) 

 

Where U = N
-1

 [Qi(T)] (3) 

 

According to equation (2), the probability of Ui < U conditional to the value of F is: 

 

Prob(Ui<U/F) = N[U-aiF)/(√(1-a
2

iZi)] (4) 

 

Equation (4) can be written for Prob(Ti<T): 

 

Prob(Ti<T/F) = N[(N
-
1 [Qi(T)]-aiF)/(√(1-a

2
i)] (5) 

 

In order to simplify the reasoning process, we can assume that the time distribution of default Q i is the 

same for each i and equals Q. We also assume for simplicity purpose that the copula correlation between each pair 

of companies is the same and equals ρ. In this case, for each pair of companies i and j, the correlation is aiaj, which 

means that for each i, ai = √ρ. Therefore we can rewrite equation (5) as follow: 

   

Prob(Ti<T/F) = N[(N
-
1 [Q (T)]- √ρ F)/(√(1-ρ)] (6) 

 

For a portfolio constituted of a huge number of loans, this equation offers a valid approximation of the 

proportion of companies that can default on date T. We name this proportion the default rate.  When F decreases, the 

default rate increases. Therefore what is the cap level that this rate can reach? Since F follows a standardized 

bivariate distribution, the probability for F to have a value less than N
-1

(Y) is Y. Therefore, there is a probability Y 

for the default rate to be greater than: 

 

N[(N
-
1 [Q (T)]- √ρ N

-1
(Y))/(√(1-ρ)] 

 

We note that the default rate V(T,X) will not be exceeded with a probability of X. In other words, we are 

sure up to X% that the default rate V(T,X) will not be exceeded. The value V(T,X) is measured by substituting 1-X to 

Y:  

 

V(T,X)= N[(N
-
1 [Q (T)]+ √ρ N

-1
(X))/(√(1-ρ)] (7) 
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This output has been first developed by Vasicek (1987).  

 

If we assume that the total value of the loan in USD is L and the recovery rate in case of default is R. The 

VaR of a loan over a horizon period of T and a confidence level of X is: 

 

VaR(T,X) = L x R x V(T,X)  (8) 

 

The Sample 

 

We were able to analyze the loan portfolio of a Lebanese bank operating in Lebanon. For discretion 

purpose we will omit the name of the bank however, the below tables and graphs are enough to give an idea about 

the portfolio details and the financial performance of this bank. The main purpose of this section is to directly 

implement the Normal copula model in order to measure the expected loss on a portfolio of loan.  

 
Table 1: Selected Consolidated Statements 

  IFRS11 

        

13/31/1133  13/31/1131  13/31/1112  13/31/1112  

Assets Quality         

Loan Loss Res. / Gross Loans 35.4 45.3 45.3 45.3 

Loan Loss Prov. / Net Int. Rev .0503 3533 35.. .5.4 

Loan Loss Res / Impaired Loans 50.5.. 5..54. 54.5.. .3.5. 

Impaired Loans / Gross Loans 555. .534 .534 5554 

NCO / Average Gross Loans -05.  -055.  -0504  n.a5 

NCO / Net Inc Bef. Ln. Loss Prov. -550.  -35.3  -053.  n.a5 

Impaired Loans / Equity .534 4533 35.. .5.3 

Equity (Bil LBP) 2,484.800 2,456.400 1,952.800 1,618.409 

Net Income (Bil LBP) 270.900 267.800 219.400 183.915 

Capital         

Total Capital Ratio 13.61 14.70 15.31 24.10 

Equity / Total Assets 9.93 10.66 9.54 9.56 

Capital Funds / Liabilities 12.56 13.60 12.37 12.75 

Operations         

Net Interest Margin 2.12 2.29 2.42 2.76 

Return on Average Assets (ROAA) 1.13 1.23 1.17 1.17 

Return on Average Equity (ROAE) 10.97 12.15 12.29 13.28 

Cost to Income Ratio 43.38 45.53 46.28 47.34 

Liquidity         

Net Loans / Total Assets 24.14 24.67 23.55 24.85 

Net Loans / Customer & ST Funding 28.80 29.14 28.03 29.72 

Liquid Assets / Cust & ST Funding 28.66 24.26 34.20 33.64 

Source: Bankscope 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11 International Financial Reporting Standards 
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hparG 1 :Evolution of tGe Key Vapiable Loan Loss Resepves  /hposs Loans )2007-2011( 

 
 

hparG 2 :Evolution of tGe Key Vapiable Equity  /Net Loans )2007-2011( 

 
 

Table 2: Description of the Portfolio 

Description Variables 

N 30  

Type of Companies SMEs 

Type of loans Commercial 

Average Term of the loans  78 months 

Average loan’s size USD 1.8 millions 

Interest rate type Floating 

Average interest rate 9.75% 
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Results 

 

The total amount of loan on which we applied the model is USD 56.4 millions. Based on our observation 

we have been able to determine a default probability over a horizon period of one year of 2%. The recovered amount 

in case of default was quantified by the bank at a level of 72%. Using the Vose Software
12

 we deduced a copula 

correlation rate of 0.1. 

 

Based on the above and according to equation (7): 

 

V(1, 0.999) =  N[(N
-
1 [0.02]+ √0.1 N

-1
(0.999))/(√(1-0.1)] = 0.128 

 

In other words, the bank is 99% confident that the default rate cannot exceed 12.8%. Therefore the Value at 

Risk, VaR, or the losses cannot exceed:  

 

0.128 x 56.4 x (1-0.72) = USD 2, 021,376 

 

CONCLUDING REMARKS 

 

This work showed how the Gaussian copulas theory can be very powerful tool in estimating the expected 

losses on a portfolio of loans.    

 

Risk managers often estimate the marginal distribution between each of the variables and face the 

obligation to set hypothesis on the structure of the variables’ correlation. When the marginal distributions are 

normal, it is natural to consider that these variables follow multivariate normal distributions. In the opposite cases, 

copulas are therefore used. Variables are transformed into normal variables based on a percentile per percentile 

adjustment process. The correlation is then indirectly defined among the transformed variables. When many 

variables are studied, a factorial model is used by analysts. This approach allows reducing the number of correlation 

to be calculated. The correlations between variables are described by the correlations of variables toward the 

common factor. The default correlation between many firms can be modeled based on a Gaussian copula factorial 

model.  

 

Despite all the benefits of copula models, specifying a copula that recapitulates all the dependencies 

between margins suffers from some statistical pitfalls especially for most of multivariate financial series. This is due 

to temporal dependencies such as serial autocorrelation, or time varying heteroskedasticity, etc. Further research 

must be done in order to broaden the scope of implementations to higher dimensions while considering the 

limitations of copulas in general.    
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