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ABSTRACT 

 

This paper recounts the history of early warning failure models and then adds to that literature by 

evaluating the proposition that all suppliers can be treated similarly when evaluating failure 

tendencies. The work is performed for the automobile supplier industry because that industry has 

a long and complex supply chain structure and because we have a history of working with major 

automotive OEMs to protect their supply chain. The project benefited from the support and 

cooperation of BBK Ltd. the largest turnaround firm worldwide engaged by the automobile sector. 

In contrast to previous work which utilized a single predictive model to indicate the likelihood that 

a supplier company was in distress, our effort tested the idea that large and small automobile 

suppliers face different exigencies and therefore require separate predictive models. The paper 

concludes by identifying the key factors to consider when reviewing the health of automobile 

suppliers. 
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INTRODUCTION 

 

arge manufacturing companies are critically dependent on their suppliers. Nowhere is this reliance 

more acute than in the automobile industry. Companies such as General Motors or Toyota rely on 

3,000 or more suppliers to design, assemble, and deliver components ranging from dashboards to door 

handles from tires to software. Many supplier relationships are sole sourced by OEMs as a method of obtaining the 

best possible price, fastest delivery, and overall highest responsiveness to the manufacturer’s needs. While this 

symbiotic relationship has many advantages to the purchaser it creates a major supply chain failure risk. For 

example, General Motors was recently forced to shut down more than 30 vehicle and component plants and idle 

17,000 workers as a result of a strike at American Axle & Manufacturing Inc. (Jeff Bennett, Wall Street Journal, 

March 29, 2008, “GM Is Hit Hard by Parts Strike,” page A10) with Wall Street warning that the strike will take a 

toll on profits [General Motors and its other suppliers]. Similar dramatic effects can arise from breaches of the 

supply chain caused by financial weakness.  

 

 To avoid unexpected supply chain disruptions, OEM automobile companies and their purchasing 

departments keep a sharp eye on the financial health and well being of suppliers. A few manufacturers rely on bond 

rating agencies and other heuristically based expert systems for alerts indicating that suppliers are in danger of 

failing. Other companies utilize statistically based early warning models that bifurcate suppliers into those with a 

high probability of remaining financially healthy and thus supply contracted parts in a timely basis and those not 

likely to deliver products or services in a reliable fashion, default on their obligations, or go bankrupt. This paper 

reports on one such statistical model developed by an academic team with the business guidance of a consulting 

group that has a long history of involvement with automobile OEMs.  

 

 Approximately seven years ago this same group of researchers created its first early warning model for the 

automobile industry, (Platt and Platt, 2002). That model, which was built using data covering the mid 1990s, was 

subsequently used extensively by the industry. A single model was developed for all auto suppliers regardless of 

their size. Over time as the model was employed by OEMs, financial institutions, and other related companies it 

became apparent that its success rate was asymmetric with the greatest success occurring with larger firms. It seems 

L 
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that the health of small firms was more difficult to judge with the original model. This paper discusses a second 

round of model building that improved model performance by accounting for supplier size.  

 

The development of early warning systems is not a new phenomenon. The earliest efforts occurred in the 

late 1960s and were directed at predicting which companies were likely to go bankrupt. The breakthrough work was 

conducted by Beaver (1966) who performed a univariate analysis and then later by Altman (1968). Since then other 

researchers have made statistical contributions (Palepu, 1986), considered the impact of industry on the failure 

process (Lev, 1969), and more recently have studied not failure but financial distress (Platt and Platt, 2002). This 

final paper was the first to directly address the supply chain viability and it provided a basis for early intervention at 

automotive supply companies to ameliorate incipient problems before they resulted in total failure.  

 

THE NATURE OF THE PROBLEM 

 

OEM automobile manufacturers depend heavily on reliable delivery of critical components from their 

suppliers. With the industry’s adoption of just-in time-inventory methods, failure to supply needed components by 

any supplier can quickly shut down an entire production line, if not an entire company. For that reason, the concern 

amongst OEMs is not bankruptcy by their suppliers but an earlier phenomenon known as financial distress. 

Financial distress is not a well defined construct. Unlike bankruptcy which occurs when a company files a document 

in a Federal Bankruptcy Court, financial distress arises from a large number of causes but always results in a 

weakened though still functioning company.  

 

The vast majority of research in this area has examined bankrupt companies and sought to explain the 

causes of bankruptcy. As mentioned above, OEMs are not really interested in bankruptcy prediction since they want 

to preserve their supplier relationship. Financial distress research is generally complicated by the question of which 

companies are financially distressed and which are healthy. BBK Ltd with some assistance obtained from OEMs is a 

remarkable source of information as to which auto suppliers are healthy and which are financially distressed. Our 

original examination of auto suppliers (Platt and Platt, 2002) was one of the initial studies of financial distress. For 

that project, BBK Ltd took charge of creating a sample of auto supply companies bifurcated into financially 

distressed and healthy groups.  

 

The issue of how to separate the sample into firms that are financially distressed and those that are not is 

critical to any effort to model the likelihood of financial distress. Prior studies have used both single indicators 

(reductions in employment, net income loss, or ending of dividends) and multiple indicators (Platt & Platt, 2002) to 

bifurcate samples into distressed and non-distressed groups. While Platt & Platt (2002) offer a compelling argument 

as to why multiple indicators would be preferred to single indicators, a substantial amount of data are required to do 

so. At this point, there is no consensus in the literature as to the best categorization scheme. As described below, the 

current effort combined an assessment from multiple indicators with the views of industry experts.  

 

Again, this study seeks to assess size effects in the prediction of financial distress in the automotive supply 

chain. Size may simply affect the constant of a linear equation or it may affect the estimated coefficients as well.  

Because prior observations have suggested that, after many years of use, a model used to predict financial distress in 

the automotive supply chain was more successful for larger firms than smaller firms, we want to directly test the 

assumption that there is no difference in model components between large and small automotive suppliers. 

 

METHODOLOGY 

 

Sample Data and Variables Used in the Analysis 

 

The vast majority of automobile suppliers are privately held companies. The COMPUSTAT database, for 

example, only contains 69 public companies in the 3714 SIC or the 336211 – 336399 NAISC (auto supplier) codes. 

Of these 69 listed firms, 48 had sufficient data available during the sample period, 2005 -- 2006. Fortunately, BBK 

Ltd. provided us with access to their data base of private companies. With this support a larger database of 106 

companies was assembled including 48 public and 58 private companies. The data were limited to the period 

between 2005 and 2006 as a way to circumvent unequal real values issues (Platt, Platt and Pedersen, 1994).  
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Auto suppliers include both domestic and international firms. Global variations in accounting rules, labor 

legislation, union participation, capital availability, etc. means that international companies operate under different 

conditions from those in the US. Consequently, OEM’s prefer to test foreign suppliers for financial distress with 

specific national or continental early warning models. Our data is therefore exclusively comprised of US firms.  

 

Dependent Variable: Financial Condition Group 

 

As discussed above, there have been several approaches taken in past studies to separate samples into 

distressed and non-distressed firms. For this effort at building a financial distress early warning model of the auto 

supply industry, we triangulated the problem using subjective decisions and objective measures to separate the 

sample into financially distressed and non-distressed groups. In addition to relying on the experts at BBK Ltd. we 

reviewed data (none of which was later used in the model building effort) thought to identify weaker companies. 

Our analytical test considered a company’s return on assets (ROA) and its auditor’s going concern opinion (a 

qualitative variable). Nearly 95% of the two bifurcations of the sample, from the two teams, were identical. 

Disagreements were resolved by continued discussion between the teams until a consensus emerged.  

 

Using this approach, the financially distressed group was comprised of 61% public and 39% private 

companies. Similarly, the non-distressed group had 60% public and 40% private companies.  

 

Independent Variables 

  

Financial statement data were obtained from COMPUSTAT for public firms and from BBK Ltd’s files for private 

firms. A small minority of BBK Ltd’s data was unaudited, but in those cases the information was carefully reviewed 

in consultation with BBK Ltd. Financial statement data were obtained for the year prior to the onset of financial 

distress or for an equivalent time period for the healthy firms in the sample. 

 

Table 1 contains a listing of the individual financial items that were obtained for each company in the 

sample. The table also details the variety of financial ratios that were created from the individual variables to 

measure concepts within the five main categories of corporate information: profitability, liquidity, operational 

efficiency, leverage and growth. As can be seen in Table 1, the raw data that were obtained were those typically 

reported on financial statements.  

 

 A typical OEM has thousands of suppliers. The diversity among auto suppliers is extraordinary with some 

having annual net sales as small as $20 million while others are mega businesses whose sales exceeding $20 billion. 

Table 2 below illustrates this point by comparing mean and median values for net sales, net income, and total assets 

for small (less than $100 million in annual net sales) and large (larger than $100 million in annual net sales) 

companies. The consulting firm guided our decision on where to break the size categories. Larger auto suppliers are 

over 150 times larger on average than small companies based on sales, and 140 times larger based on total assets.  

 

The general approach to deal with extreme size differences between sample companies is to convert data 

into ratios using net sales or total assets as the equilibrating numeraire. Underlying this approach is the belief that 

after conversion to ratios, differences between large and small companies are inconsequential. Generally researchers 

accept the truth of this supposition; we chose to verify it. To test the theory, three common financial ratios return on 

equity (ROE), the current ratio (current assets divided by current liabilities), and the debt ratio (total debt divided by 

total assets) were calculated for the auto suppliers in our sample. Table 3 presents the average value for these ratios 

for auto suppliers whose annual net sales exceed $100 million and those with annual net sales below $100 million. 

The comparison of means t-test indicates that for all three ratios the differences across the two size ranges are 

significant at or beyond the .10 level of significance. While it is possible (though not certain) that the same factors 

affect the onset of corporate distress among large and small companies, the large ratio differences between large and 

small firms suggests the likely impact of these factors is dissimilar.  
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Table 1:  Individual Items from Financial Statements and Financial Ratios Used in Modeling 

Individual Financial Items Financial Ratios 

Data Date Inventories (Inv) Profit Margin Liquidity Operating Efficiency 

Status Current Assets (CA) EBITDA/S CA/CL COGS/Inv 

Net Sales (S) Net Fixed Assets (NFA) NI/S (CA-Inv)/CL S/AR 

COGS Total Assets (TA) CF/S WC/TA S/TA 

Deprec+Amort (DA) Accounts Payable (AP)  Profitability CA/TA AR/TA 

SGA Notes Payable (NP) EBITDA/TA NFA/TA S/WC 

EBIT Current Liabilities (CL) NI/TA Cash Position S/CA 

Interest Expense (Int) Long-term Debt (LTD) EBIT/TA Cash/CL AR/Inv 

Net Income (NI) Total Liabilities (TL) CF/TA Cash/DA (AR+Inv)/TA 

Cash Share Equity (EQ) NI/EQ Cash/TA COGS/S 

Accounts Receivable (AR)  Financial Leverage Growth SGA/S 

  TL/TA S-Growth % (COGS+SGA)/S 

Calculated Items  CL/TA NI/TA-Growth % DA/S 

EBITDA = EBIT + DA  CL/TL CF-Growth % DA/EBIT 

CF = NI + DA  NP/TA Miscellaneous S/CA 

WC = CA - CL  NP/TL EBIT/Int  

  LTD/TA Int/S  

  EQ/TA LTD/S  

  LTD/EQ CF/Int  

   CF/TL  

   AP/S  
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Table 2 (all in $000s) 

Panel A: Sample Means by Firm Size – All Firms 

 Large (n = 62) Small (n = 42) 

Net Sales $4,361.37 $28.28 

Net Income ($42.35) $0.69 

Total Assets $2,840.84 $20.33 

 

 

Panel B:  Sample Means by Firm Size – Non-Financially Distressed Firms 

 Large (n = 32) Small (n = 23) 

Net Sales $4,240.27 $234.07 

Net Income $101.83 $2.56 

Total Assets $2,793.14 $21.85 

 

 

Panel C:  Sample Means by Firm Size – Financially Distressed Firms 

 Large (n = 30) Small (n = 19) 

Net Sales $4,648.19 $20.97 

Net Income ($388.83) ($1.92) 

Total Assets $2,953.82 $18.41 

 

 

Table 3  Comparison of Means: Key Financial Ratios by Size for Just Non-Financially Distressed Firms 

 Large 

(n = 32) 

Small 

(n = 23) 

 

p-value 

CA.CL 2.209 1.571 0.0509 

NI.TA 0.050 0.157 0.0006 

TD.TA 0.185 0.269 0.0593 

ROE 0.092 0.507 0.0019 

 

 

Where: 

 

CA.CL = Current Assets/Current Liabilities 

NI.TA = Net Income/Total Assets 

TD.TA = Total Debt/Total Assets 

ROE = Net Income/Shareholders’ Equity 

TD = Notes Payable + Current Portion of Long-term Debt + Long-term Debt 

 

Model Design and Estimation Method 
 

Early warning statistical models specify a relationship between causal factors and a qualitative dependent 

variable that assumes the value of either zero in the case of healthy companies or unity for companies thought to be 

financially distressed. Perhaps the most common statistical method used in developing these models is logit 

regression analysis. Among the advantages of logit regression are its statistical powers (Lo, 1986) and its flexibility 

(McFadden, 1984) which arises in part from its non-linear form. Our model utilizes the logit format.  

 

The typical estimation method to obtain parameter estimates for a logit model is a non-linear maximum-

likelihood estimation procedure. The form of the equation is shown below in equation (1). 

 

]exp  [1

1
 P

)X   . . .  X  X  ( -i
inni22i110  


  (1) 
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where: 

 

Pi =probability of financial distress of the i
th

 firm,  

Xij =j
th

 variable of the i
th

 firm, and 

βj =estimated coefficient for the j
th

 variable. 

 

The modeling process began with the core model specification previously identified by Platt and Platt 

(2002). Only one of the six independent variables in the original model remained significant with the newer data set. 

After excluding insignificant variables in the initial set, additional explanatory variables were sought from groups of 

possible variables in Table 3 that did not have a variable included in the current set. This iterative process expanded 

the core set of variables when an additional factor yielded a coefficient with the correct sign, statistical significance, 

and improved classification accuracy (correctly identifying a company as financially distressed or healthy). An 

additional advantage of this approach is that it minimizes the likelihood of multicollinearity by working through the 

possible variable list in a systematic fashion and thereby avoiding using two independent variables design to capture 

similar information. The selection of the final set of financial and operating ratios was based on the statistical 

significance and direction of estimated parameters and on the model’s classification accuracy. 

 

Equation (1) assumes that all companies, in this case auto suppliers, are similar and that a single model and 

set of parameter estimates adequately represent the industry’s financial distress likelihood. However, the data 

observed above in Tables 2 and 3 demonstrate a disparity between large and small auto supply companies and casts 

doubt on the appropriateness of a single model for all companies. This issue is discussed below using, for simplicity 

purposes, a linear depiction of equation (2). 

 

 
j.ij0i XP  (2) 

 

where 
ji

X
.

 represents a vector of variables describing the financial distress condition of all firms in the auto 

supply industry. This equation represents the null hypothesis that assumes similarity in the financial distress 

condition of all auto suppliers.  

 

The alternate hypothesis argues that estimates of the probability of financial distress can be improved by 

accounting for size differences between auto suppliers. The alternate hypothesis is shown in equation (3). 

 

  j,ismalljj.ijsmall00i XDXDP  (3) 

 

where smallD  is a indicator variable with a value of 0 for large auto supply companies (larger than $100 million in 

annual sales) and a unit value for small companies, 0  is the constant term differential for small firms, and 
j  

represents a vector of coefficient estimates derived for interactions between the indicator variable smallD  and X i,j  

the vector of independent variables.  

 

If the estimation process yields a nonzero value for 0  which is significantly different than zero then large 

and small firms require different constant terms in a financial distress model. Similarly, whenever an estimated 

coefficient in the j  vector is nonzero and significant the independent variable associated with that particular 

variable has unequal impacts on the probability of financial distress for large and small firms. In the event that both 

0  and each coefficient in the 
j  vector is significant there are then two separate models, one for large and one for 

small firms, which can be represented as in equations (4a) and (4b).  

 

 
j.ismall,jsmallsmalli X,P  (4a) 
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 
j.ieargl,jeargleargl,i XP  (4b) 

 

The null and alternate hypotheses presented conceptually in equations (2) and (3) are compared using the 

Chow test (Chow, 1960), which tests whether the coefficients in two linear regression equations are equal for two 

different sample groups. The null hypothesis tested is essentially: 0j0   . 

 

The Chow test calculates the following F statistic: 

 

)K2mn/()SSESSE(

K/)SSESSESSE(
F

earglsmallearglsmall

earglsmallC

)K2mn,K





 

 

where:  

 

SSEC =SSE for the equation based on the combined sample, shown in equation (2) with sample size of n + m 

SSEsmall =SSE for the equation based on the small firms, shown in equation (4a), with sample size of n 

SSElarge =SSE for the equation based on the large firms, shown in equation (4b), with sample size of m 

K =number of degrees of freedom for the combined model 

 

MODEL RESULTS 

 

Using the entire sample and the iterative method described above, financial distress was found to be 

positively related to financial leverage (TD.TA), but negatively related to the EBITDA margin (EBITDA.S), the 

current ratio (CA.CL), the times interest earned ratio (TIE) and sales turnover (S.TA). Thus, the probability that a 

company is financially distressed increases with higher financial leverage, but decreases with higher EBITDA 

margin, current ratio, times interest earned, or sales turnover. The relationship of each of the five independent 

variables with the likelihood of financial distress is as expected a priori. The final form of the model is shown in 

Table 4 along with measures of model fit, R
2
 and classification accuracy as well as the sum of the squared errors. 

The model fits well, with a 76.3% R
2
 and an overall classification rate between the two groups of 90.6%. 

 

 

Table 4:  Logit Regression Financial Distress Model: All Firms 

Independent Variable Estimated Regression Coefficient* p-value 

Constant -1.56 0.188 

EBITDA.S -18.15 0.000 

S.TA -1.25 0.001 

TD.TA 3.01 0.000 

CA.CL -1.16 0.015 

TIE  -3.19 0.041 

Model Fit: Nagelkerk R2 = 76.3%  
 

Classification Accuracy:  

% All Firms Correctly Classified 90.6% 

% Non-Financially Distressed Firms Correctly Classified 92.9% 

% Financially Distressed Firms Correctly Classified 88.0% 

*Coefficients are scaled to disguise their true values since they are the property of BBK Ltd. 
 

 

Where: 

 

EBITDA.S = EBITDA margin (EBITDA/sales) 

S.TA = Sales turnover (sales/total assets) 

TD.TA =  Financial leverage (total debt/total assets) 

CA.CL = Liquidity (current assets/current liabilities) 

TIE = Times interest earned ((net income + interest expense + taxes)/interest expense) 
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Because the automotive OEMs are concerned about size effects, we tested the null hypothesis that firm size 

does not affect the estimated coefficient values; that is, size has no effect on the prediction of financial distress in the 

automotive supply chain. Using the Chow test described above, the model containing the five significant 

independent variables, financial leverage, EBITDA margin, current ratio, and times interest earned and sales 

turnover, was estimated for the sample of small firms (less than or equal to $100 M in annual net sales) and for large 

firms. Table 5 contains the estimated coefficients for these two models along with measures of fit and the sum of 

squared errors. The Chow test results yielded an F3, 98 = 15.05, p < .01; thus, the null hypothesis of no size effect 

must be rejected. Alternatively, the small firm and large firm model estimated coefficients shown in Table 5 are 

significantly different. This result suggests that while the determinants of financial distress have similar relationships 

to the likelihood of financial distress for the two size groups, the magnitude of the effects differ significantly 

between small versus large firms. Thus, to predict financial distress among the automotive supply chain, one should 

use the appropriate model, based on a firm’s size.  

 

It should be noted that model fit improves when the sample is bifurcated into large and small firms: the R
2
 

is 85.0% for small firms and 87.2% for large firms while the overall classification rate increases to 92.9% for small 

firms and 96.8% for large firms. Therefore, by estimating separate models for large and small firms, alternate 

coefficients are estimated with improved model fit. Effectively, size-based samples improve the ability to predict 

financial distress of auto suppliers. 
 

Table 5 

Panel A: Logit Regression Financial Distress Model: Small Firms 

Independent Variable Estimated Regression Coefficient* p-value 

Constant 0.33 0.143 

EBITDA.S -29.73 0.018 

S.TA -1.84 0.068 

TD.TA 3.32 0.065 

CA.CL -1.99 0.024 

TIE -2.76 0.033 

Model Fit: Nagelkerk R2 = 85.0%  

Classification Accuracy:  

% All Firms Correctly Classified 92.9% 

% Non-Financially Distressed Firms Correctly Classified 95.7% 

% Financially Distressed Firms Correctly Classified 89.5% 

*Coefficients are scaled to disguise their true values since they are the property of BBK Ltd. 

 

Panel B: Logit Regression Financial Distress Model: Large Firms 

Independent Variable Estimated Regression Coefficient* p-value 

Constant 0.45 0.212 

EBITDA.S -52.11 0.010 

S.TA -2.42 0.083 

TD.TA 10.11 0.006 

CA.CL -2.54 0.034 

TIE -3.16 0.048 

Model Fit: Nagelkerk R2 = 87.2%  

Classification Accuracy:  

% All Firms Correctly Classified 96.8% 

% Non-Financially Distressed Firms Correctly Classified 96.9% 

% Financially Distressed Firms Correctly Classified 96.7% 

*Coefficients are scaled to disguise their true values since they are the property of BBK Ltd. 

 

Where: 

 

EBITDA.S = EBITDA margin (EBITDA/sales) 

S.TA = Sales turnover (sales/total assets) 

TD.TA =  Financial leverage (total debt/total assets) 

CA.CL = Liquidity (current assets/current liabilities) 

TIE = Times interest earned ((net income + interest expense + taxes)/interest expense) 
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The estimated coefficients of the small firm model, shown in the upper panel of Table 5, and the large firm 

model, shown in the lower panel of Table 5, have the expected sign. All are significant beyond the .05 level, using a 

one-tailed test. The R
2
 values for both models have improved from that found in the combined model shown in 

Table 4, and the classification accuracy for both models has improved as well. This last point is especially 

important, since the real test of a prediction model is its ability to correctly classify companies as financially 

distressed or not. In both models, there is a slightly higher accuracy of predicting non-financially distressed 

companies. This differential in classification accuracy between non-distressed and distressed firms is typical of these 

types of models and probably occurs because of the multiplicity of ways that companies depart from normality. 

 

DISCUSSION AND CONCLUSION 

 

Steps that companies take to protect their supply chain are multifaceted, including a) the sharing of 

technologies and the making of plant location decisions jointly with suppliers, b) writing contracts which protect 

suppliers against resource price changes and which provide sole sourcing, and as discussed in this paper c) taking 

steps to identify and ameliorate troubled suppliers. Trying to fix a broken supplier after it files for bankruptcy court 

protection is probably too late to resolve financial or operational issues in a timely fashion to ensure the reliable 

delivery of components through the supply chain and most certainly creates a disruption in short-term deliveries. A 

better strategy is to build early warning models to identify troubled suppliers possibly even before they are aware of 

impending problems themselves.  

 

Model builders, such as those who build early warning tools to help companies identify weak links in the 

supply chain, may rely incorrectly on commonly known but factually inaccurate suppositions. This paper discusses 

and tests one such supposition that states that the creation of ratios corrects for size differences between large and 

small firms. A statistical test determined that the underlying concept was not supported by the data. The issue was 

resolved by developing two models: one each for large and small companies. While financial distress among small 

and large auto supply companies was found to be related to the same set of variables (financial leverage, EBITDA 

margin, the current ratio, the times interest earned ratio and sales turnover), estimated coefficients were found to be 

statistically significantly different between the two types of firms based on size. The models estimated after 

bifurcating large and small firms not only produced alternate coefficient estimates but produced improved model fit 

as measured by goodness of fit and more importantly by the models’ classification accuracy. Prediction of financial 

distress among auto suppliers should be improved as a result of this finding. 
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