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ABSTRACT 
 

This study compares the performance of the Macmillan (1986), Barone-Adesi and Whaley (1987) 
MBAW model, Ju and Zhong (1999) MQuad model, Black-Scholes model and Put-Call Parity in 
pricing American put options of pharmaceutical companies. These are evaluated using actual 
option prices for three companies over 2000 to 2005, as opposed to the previous use of generated 
binomial option pricing data. We compare the forecasting accuracy by maturity, moneyness, and 
variance estimate. Contrary to Ju and Zhong (1999), we find that the MBAW outperforms the 
other models for at-the-money, and out-of-the-money options. The MQuad model performs best for 
in-the-money options. However, in this case both the MBAW and MQuad models estimates are 
very similar. Our results are consistent irrespective of option maturities and volatility estimates. 
These findings raise questions regarding the practice of using actual prices as the true value, 
compared to the previous results that use simulated prices. 

 
 
I.      INTRODUCTION 
 

ith the advent of Black and Scholes (BS) (1973) seminal work, a significant portion of finance 
literature has examined the forecasting accuracy of option pricing models. With the exception of 
Zhu (2006), American option pricing models have lacked mathematically closed formula, Zhu 

closed-form exact solution is written in the form of a Taylor's series expansion   containing infinitely many terms. 
Consequently, for ease of implementation and effective computation researchers still must rely on approximation 
methods. One of well-known analytical approximation has been developed by MacMillan (1986) and Barone-Adesi 
and Whaley (1987). However, because their model is a quadratic approximation, there can be serious mispricing. 
More recently, Ju and Zhong (1999)

1
 modified the MBAW method. They report that their method performs better 

than MBAW for options with very short and very long maturities   reducing the pricing error for intermediate-
maturity options. There are, however, very few empirical studies with actual American put option data using the 
MQuad method. 

 
In this study, we conduct an accuracy test of the three models, BS, MBAW, and MQuad.  These models 

are tested by variance estimate (implied volatility and historical volatility), by moneyness, and by option maturity 
(less than one year and greater than or equal to one year) in pricing American put options. We also include American 
put prices that are obtained from put-call parity by assuming that European put-call parity holds and that investors 
are rational. For accuracy measures, the mean absolute percent error (MAPE) and the root mean squared error 
(RMSE) are used. Contrary to the Ju and Zhong, we use actual daily put-call options data. It is for three 
pharmaceutical companies, Merck (MRK), Pfizer (PFE), and Schering-Plough (SGP) traded on the Chicago Board 
of Trade Option Exchange (CBOE), from November 3, 2000 to December 6, 2005.  

 
The balance of the paper is organized as follows. In section II, we review MBAW and MQuad method in 

detail and the related literature and develop our testable issues. Section III describes the data and methodology. 
Empirical results are reported in section IV. The final section concludes the paper and presents some suggestions for 
future research. 

                                                 
1 Hereafter, we refer to the pricing model developed by MacMillan (1986) and Barone-Adesi and Whaley (1987) as MBAW and 
pricing model developed by Ju and Zhong (1999) as MQuad.  

W 
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II.     MODEL REVIEW 
 

Over the past few decades, pricing American options has been a topic of interest. The literature on option 
pricing valuation models is well documented in Broadie and Detemple’s (2004) survey paper.  Unfortunately, they 
do not include analytic approximation methods in American options.  In this section, we present the detail of 
MBAW model and MQuad model that we implement in this study and discuss the related literature.   
 
II.A.   MBAW Method 

 
Barone-Adesi and Whaley (1987) provide an accurate and relatively simple method for valuing American 

options by adopting a quadratic approximation approach originally developed by MacMillan (1986).   
Let  
 
S : Current Stock Price, 
X : Exercise (Strike) Price, 
r : Current risk-free interest rate, 
 : Security price volatility, 
T : Time to expiration, 
 : Current dividend yield (for dividend paying stocks). 
 
Assuming American option put price (European Put Price) (Premium Variable)EP P    , the premium 
variable  satisfies the Black-Sholes differential equation  
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Assuming the last term in (2) to be zero, then the equation (2) becomes 
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Because equation (3) is a second-order ordinary differential equation, the solutions can be found in terms of a power 
of S. The solution for an American put price is given as follows. 
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The critical stock price 
*S  is obtained by solving the equation  

* * * *

1( ) {1 [ ( )]} / .T
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The MBAW method loses accuracy due to the assumptions that ( ) ( , )K T S K    and 1(1 ) 0K M
K


 


. 

The second assumption makes sense because 1(1 ) 0K M
K


 


 as 0T   or .T   That is, MBAW 

approximation is relatively accurate for very short or very long maturities but there is possibility of serious 

mispricing for the intermediate cases.  

 
They conduct a simulation study comparing their model’s performance to other numerical approaches. 

Simulation results show that the values generated by the quadratic approximation method are virtually identical to 
those values predicted by other more sophisticated numerical approaches. Hence, their quadratic approximation 
method is considerably more computationally efficient than other numerical methods. Furthermore, their analytic 
approximation valuing American options can be easily applied to value other derivative securities. 

 
Overdahl (1988) uses actual market options exercise data of Treasury bond futures contracts to test a model 

developed by Barone-Adesi and Whaley (1987). They found significant deviations between the model’s predictions 
and the data and concluded that the Barone-Adesi and Whaley's analytic approximation formula yields biased 
estimates at which an American option should be exercised for a critical stock price. 

 
Loudon (1990) performed an empirical test of the pricing of put options traded on the Australian Options 

Market. He compared the predictive ability of the American put valuation formulas using MBAW and Johnson 
(1983) and Blomeyer (1986) models to the BS European model. He confirms that there exist significant and 
systematic pricing errors in those American put option pricing models, although the American model prices, 
particularly MBAW estimation, are significantly closer to market prices than are the BS European model prices. 

 
II.B.   MQuad Method 

 
Ju and Zhong (1999) modified the assumptions of MBAW by including a correction term for the early 

exercise premium. If the early exercise premium of MBAW is denoted by 1( ) ( , )K T S K , then the correction 
term is added by 2( ) ( , )K T S K . Let 1 2   . Equation (2) then becomes 
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Equation (5) is then divided into two equations, 
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The solution to the equation (6) is 
*

1 ( / )A S S   ,
 
consistent with the MBAW solution in equation (4). The 

complete solution to the equation (5) depends on the solution of the remaining equation (7).

  

 

The MBAW method captures most of the early exercise premium by assuming that 2  is relatively small compared 

to 1 . Letting 2 1,   where   is small, then   satisfies the PDE  
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To solve (8), Ju and Zhong assume that 0
K




  

and (1 )
 

is a constant. Because 
*
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equation (8) can be written as  

2 *
2 *

12 *

( ) 1
(2 ) (1 ) (1 ) ( ) log( / ) ( ) 0.

( )

A K S
S S K M K S S K

S S A K S K

 
    

   
        

     

(9) 

Letting  *log SY
S

 , 
2( ) ( ) ,B K Y C K Y  

 
and by matching the coefficients in (9), the price of an 

American option is approximated by 

* ( )( ) ( )( / )
( , ) ( , )

1
E

KK T A K S S
P S T P S T




 


 if 

*S S  or ( , )P S T X S   if 
*,S S  

where  
*( ) ( ) ( , )EK T A K X S P S T    and 

*S solves the equation  

* * * *

1( , ) {1 [ ( )]} / ,T

EX S P S T e N d S S       and    
2

* *log log ,S Sb c
S S

   
  

  

where  

1

2

(1 ) ( )
,

2(2 1)

K M K
b

M








 

*

1

2 2

(1 ) ( , )1 1 ( )
,

2 1 ( ) 2 1

EK M P S T K
c

M KA K K K M



 

  
    

     

1

2 2 1
2

( ) ,
4

(1 )

M
K

M
K M

K

 

 

 and 

*
1 ( ) / 2* * * ( )* ( )

*1
2

( , ) [ ( )]
[ ( )].

2 2

d S r Tr T

EP S T S N d S eS e e
XN d S

K rr T

 



  
   


 

They demonstrate in the simulation that the MQuad method is computationally as efficient as MBAW and 
more efficient than other numerical approaches. Furthermore, it is more accurate than the equally efficient MBAW 
model. They claim that their approximation gives better results “for very short- and very long-maturity options, and 
substantially reduces the pricing errors for intermediate-maturity options”. These results however were obtained 
from their use of generated prices as the true option value from a binomial tree model with 10,000 time steps and 
pre-assigned parameter values.  

 
There are very few empirical studies with actual American put option data using the MQuad method. In our 

study, we employed Ju and Zhong’s model but we used actual daily data for pharmaceutical equity options and 
compared them to the model’s generated prices. Since pricing ability crucially depends on unobserved volatility , 
it is important to use as good an estimator of volatility as possible. Therefore, we use two different volatility 
measures; implied volatility and historical volatility.  
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III.    DATA AND METHODOLOGY 
 

This study uses daily data of three pharmaceutical companies; Merck (MRK), Pfizer (PFE), and Schering-
Plough (SGP) put-call options traded on the Chicago Board of Trade Option Exchange (CBOE) from November 3 of 
2000 to December 6 of 2005.

2
 The data is filtered using the following criteria. To make one-day implied volatility 

available the first entry of each new put option is deleted. We also deleted observations if the put option prices and 
call options prices are less than $0.50 to offset transaction costs. Finally, the American put prices had to satisfy the 
following no arbitrage boundary condition: 

actual model actual .rTC S Xe P C S X       

 
After filtering we were left with 73,054 usable put-call pairs (26,693 observations for Merck, 28,478 

observations for Pfizer, and 19,883 for Schering-Plough). Table 1 summarizes how the number of observations 
evolves during the screening process.  

 
We then calculated the pricing errors of the MBAW, MQuad, BS models, and Put-call parity.  We 

calculated pricing errors using two estimates for volatility. Implied volatility over the past one day was recovered 
from the BS model and historical volatility was obtained with daily index returns for the previous 180 trading days. 
In-the-money, at-the-money, and out-of-the-money options are defined as options with the moneyness value (S/X) of 
less than 0.98, between 0.98 and 1.02, and greater than 1.02, respectively. The price of options used in this study is 
the average between bid and ask quotes. 

 
To evaluate the accuracy of each model, we employ two measures: mean absolute percentage error with 

respect to option price (MAPE), and root mean squared error (RMSE), given by the following: 

actual model

actual

1
100(%),

P P
MAPE

N P


 

 

2

actual model

1
( )RMSE P P

N
  , 

where actualP is the actual option price, modelP is the model-generate price and N is the number of observations.
3
 

 
IV.     EMPIRICAL RESULTS 

 
The results of the accuracy tests for BS, MBAW, MQuad, and Put-Call Parity of all usable option data for 

the three pharmaceutical companies combined are reported in Table 2 across two dimensions, moneyness and 
maturity. The results are obtained by comparing model predicted values to observed market values using mean 
absolute percentage error (MAPE) and root mean squared error (RSME). The boldfaced numbers in the table show 
the most accurate model for each category of implied volatility (IV) and historical volatility (HV). These results are 
included in Table 2. 

 
 
 
 
 
 
 
 
 

                                                 
2 All data are purchased from www.ivolatility.com. 
3 These computations are performed on Linux with a Xeon processor using Mathematica. 
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Table 1 

 

 Total MRK PFE SGP 

Retrieved observations 245,227 85,071 92,805 67,351 

After deleting lag 1 242,893 84,229 91,940 66,724 

After deleting put option price < $0.50 182,706 66,041 66,167 50,498 

After deleting call option price < $0.50 97,401 36,869 34,457 26,075 

After screening arbitrage condition: 

Final sample 

  maturity < 1 year 

  maturity < 1 year 

 

73,054 

39,670 

33,384 

 

24,693 

12,103 

12,590 

 

28,478 

15,979 

12,499 

 

19,883 

11,588 

8,295 

In-the-money 

  maturity < 1 year 

  maturity ≥ 1 year 

40,650 

20,075 

20,575 

15,291 

6,775 

8,516 

14,292 

7,282 

7,010 

11,067 

6,01 

5,049 

At-the-money 

  maturity < 1 year 

  maturity ≥ 1 year 

6,013 

4,312 

1,701 

2,094 

1,377 

717 

2,642 

1,923 

719 

1,277 

1,012 

265 

Out-of-the-money 

  maturity < 1 year 

  maturity ≥ 1 year 

26,391 

15,283 

11,108 

7,308 

3,951 

3,357 

11,544 

6,774 

4,770 

7,539 

4,558 

2,981 

 

 

First note that across the board for all four models, using implied volatility produced better accuracy than 
using historical volatility which is consistent with previous studies.  Consequently, we will focus our discussion to 
the results using implied volatility. 

 
Secondly, in all cases both the MBAW and MQuad models outperform the BS and Put-Call Parity models. 

This unsurprising result is due to the latter two models were developed for pricing European options whereas the 
MBAW and MQuad models are more flexible and are designed for pricing the early exercise allowed in American 
options. With these results in mind we further limit our discussion to comparing the MBAW and MQuad pricing 
performance. 

 
Referring to the full sample results in Table 2, we compare pricing errors in the context of maturity and 

moneyness. Ju and Zhong (1999) show in their simulations that the MQuad model substantially outperforms the 
MBAW model for short- and long- maturity options. To test this, the full sample is separated into two categories; 
one with option maturity less than one year ( 1T  ) and the other with option maturity greater than or equal to one 
year ( 1T  ).

4
   

 
Contrary to Ju and Zhong’s simulation results we find that our empirical results suggest that option 

maturity may have an effect on the relative performances between the MBAW and MQuad models. For all 
maturities, either 1T  , 1T   or combined (All Maturity), the MBAW model generally outperforms the MQuad 
model. For All Maturity and 1T   the pricing errors between these two models are visibly different with the 
MBAW model having lower pricing errors in three out of four cases depending on moneyness. In the former case for 
All Maturity regardless of moneyness (ALL) MBAW pricing error using MAPE is 6.3736% compared to MQuad’s 
6.5543%, a difference of 0.18%. In the latter case 1T   the pricing errors are 7.8228% versus 8.2149% (in 
MAPE), a 0.39% difference. The only case in which the MQuad model outperforms the MBAW model is for the in-
the-money option case across all maturity categories. The only maturity category where the MBAW model does not 
clearly dominate the MQuad model is for 1T  . In this case MBAW dominates again in three of the four cases 
regarding moneyness but the differences in pricing errors in two cases are very small and in the other two cases the 
relative performance of the two models is approximately the same. We notice that the gap in pricing errors between 
MBAW and MQuad becomes larger from short- to long-maturity with the differences in MAPE between the two 
being 0.0028%  for 1T  , 0.3921%  for 1T  . According to Ju and Zhong, the improvement of MQuad 
over MBAW is enormous for longer maturities. Their forecasting errors were more than five times lower than those 

                                                 
4 A one year demarcation is purely arbitrary as noted in our conclusions. 
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of MBAW. Our results for these three pharmaceutical companies contradict their findings. 
 

The discrepancy between their results and our result may be due to the fact that Ju and Zhong use only 
twenty seven options and benchmarks the simulated prices from binomial tree model with 10,000 time steps as the 
true value, whereas, we use an actual pharmaceutical company option data which consists of 73,054 options. In 
addition to the choice of data set, Ju and Zhong use pre-assigned volatility  0.2, 0.3, and 0.4 whereas we use the 
implied volatility (and historical volatility with the same results) retrieved from actual market data. In order to solve  

the differential equation (8), Ju and Zhong assume that 0
K




  
and (1 )  

is a constant. Unlike the 

assumption 1(1 ) 0K M
K


 


 in equation (2), Ju and Zhong’s assumption is not justified in term of 

option forecasting, which could contribute bigger pricing errors.  

 
Furthermore, regardless of maturity we find that the MBAW model yields less pricing error than the 

MQuad model for at-the-money and out-of-money options, while the MQuad model marginally outperforms the 
MBAW model for in-the-money options. The differences in pricing errors tend to be larger under the circumstance 
where the MBAW model dominates. That is to say that for at and out-of-money cases the difference in performance 
tends to be larger than when the MQuad model dominates for the in-the-money case. The only exception as 
previously noted is the ambiguous case for maturities less than one year, 1T  . 

 
Unsurprisingly, both the MBAW and MQuad models perform the best for in-the-money options and the 

worst for out-of-the-money options. This is due to market values for American put options reflect a time value when 
the option is out-of–the-money, but market values for in-the-money put options consists of an intrinsic value. Hence 
out-of-the-money options are subject to more pricing errors than in-the-money options. This result is consistent with 
Blomeyer and Johnson (1988).  

 
The pricing errors for each company are reported in Tables 3, 4 and 5. The results are very similar to those 

in Table 2. Table 3 provides pricing errors for All Maturities, Table 4 for maturities less than one year and Table 5 for 
maturities equal to or greater than a year. With regards to model performance using the two volatility measures the 
results parallel Table 2 with a couple of minor exceptions. In Table 4 there are two cases in which MQuad performs 
better for individual firms where MBAW had performed better for the three firms combined. However, the 
differences or the gap in pricing errors are essentially miniscule. In Table 5 we see the one case in which MBAW 
rivals MQuad for an in-the-money case, but again the differences between the two is so small as to be meaningless. 

 
Based upon its closed mathematical solution, MQuad may be a more elegant alternative to the Black-

Scholes partial differential equation than MBAW, however, because the both MBAW and MQuad models implicitly 
assume that the Black-Scholes model correctly prices European values of American put options, pricing biases 
reported for both models inherently contain pricing errors resulting from the Black-Scholes model's misspecification 
of stock price dynamics. The results from our empirical study suggested that both MBAW and MQuad American put 
valuation models do not fully generate the actual option price and do not overcome the difficulty that lies under 
Black-Scholes partial differential equation. However, our results suggest that the MBAW model is relatively more 
efficient in most cases than the MQuad model, and both of these models perform better than the BS, and Put-Call 
Parity models for American put options for three major pharmaceutical companies.  
 
V.      CONCLUSION AND FUTURE WORK 

 
This paper evaluates the forecasting accuracy of the MBAW, MQuad, BS, and Put-Call Parity in pricing 

American put options using three pharmaceutical companies from November 3, 2000 to December 6, 2006. Unlike 
previous studies (Macmillan, 1986; Barone-Adesi and Whaley, 1987; Ju and Zhong, 1999), we use the actual option 
data instead of binomial trees simulated data to evaluate and compare performances by option maturities (short- and 
long-term), moneyness (in-the-money, at-the-money, and out-of-the-money), and volatility estimates (implied 
volatility and historical volatility). MBAW and MQuad predict put option prices more accurately than BS and Put-
Call Parity. 
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The MBAW model outperforms for all options combined, for at-the-money options, and for out-of-the-

money options. The MQuad model marginally performs best for in-the-money options, in particular for maturities of 
less than one year.  These results are consistent irrespective of option maturities, volatility estimates and when 
disaggregated by firm.  These findings refute Ju and Zhong’s (1999) results at least for the pharmaceutical industry 
over this time period.  The use of actual option prices over model-generated prices as the true value is evident and 
beneficial in measuring forecasting errors. Based on the evidence presented in this paper, we believe that the use of 
actual data as the true option value is a significant improvement over past studies, and can lead to very different 
results.   

 
Admittedly our results are narrow in scope examining only one industry leading to several questions for 

future research.  These include both the scope of the analysis, i.e., whether the relative performance of different 
options models holds for a broader range of industries, and methodological issues.  With the latter, several 
questions need to be addressed.  The possible sensitivity of the relative performance between the MBAW and 
MQuad models regarding option maturity sets the stage for further analysis.  In essence, how does changing the 
timeframe affect results? Secondly, the relative performance across moneyness requires further examination.  What 
are the factors that lead to more accurate results for the MQuad model for in-the-money options?  Lastly, it may be 
useful to compare our results to Zhu’s (2006) Taylor series expansion model in determining forecasting accuracy of 
American put option prices.  
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Table 2 

MAPE and RMSE of American Put Option Models on All Three Companies 

 

 All Maturity Maturity < 1 year Maturity ≥ 1 year 

ALL ITM ATM OTM ALL ITM ATM OTM ALL ITM ATM OTM 

# Observations  73,054 40,650 6,013 26,391 39,670 20,075 4,312 15,283 33,384 20,575 1,701 11,108 

Put Call Parity MAPE 

RMSE 

23.504 

0.3863 

13.11 

0.1566 

17.776 

0.2248 

40.82 

0.6.31 

15.37 

0.2214 

8.4486 

0.0976 

12.306 

0.1475 

25.326 

0.3295 

33.171 

0.518 

17.659 

0.1979 

31.643 

0.3514 

62.137 

0.8455 

BS, IV MAPE 

RMSE 

10.033 

0.1195 

9.6635 

0.1131 

9.1087 

0.1131 

10.813 

0.1301 

6.5672 

0.0793 

5.9253 

0.0685 

6.4775 

0.0792 

7.4358 

0.0916 

14.152 

0.1543 

13.311 

0.1439 

15.779 

0.1711 

15.46 

0.1694 

MBAW, IV MAPE 

RMSE 

6.3736 

0.0825 

5.1009 

0.0651 

7.0164 

0.0884 

8.1875 

0.1025 

5.154 

0.0669 

4.1406 

0.052 

5.4907 

0.0691 

6.3902 

0.0819 

7.8228 

0.0978 

6.0378 

0.0758 

10.884 

0.1245 

10.66 

0.1255 

MQuad, IV MAPE 

RMSE 

6.5543 

0.0853 

4.9856 

0.0644 

7.1449 

0.09 

8.8359 

0.1091 

5.1568 

0.0674 

3.9704 

0.0506 

5.4949 

0.0692 

6.6197 

0.0841 

8.2149 

0.1026 

5.9761 

0.0755 

11.328 

0.1283 

11.885 

0.1362 

BS, HV MAPE 

RMSE 

16.87 

0.254 

9.3278 

0.1264 

16.81 

0.2348 

28.5 

0.376 

15.761 

0.2557 

7.5384 

0.1132 

15.598 

0.2288 

26.608 

0.3717 

18.187 

0.2519 

11.074 

0.1381 

19.882 

0.2494 

31.104 

0.3819 

MBAW, HV MAPE 

RMSE 

14.873 

0.243 

6.8239 

0.1075 

16.014 

0.2288 

27.01 

0.3657 

15.283 

0.2541 

7.0179 

0.1115 

15.491 

0.2291 

26.08 

0.3694 

14.386 

0.2291 

6.6345 

0.1034 

17.339 

0.2282 

28.29 

0.3605 

MQuad, HV MAPE 

RMSE 

15 

0.2448 

6.7852 

0.107 

16.037 

0.2289 

27.418 

0.3691 

15.341 

0.2547 

7.0032 

0.1114 

15.488 

0.229 

26.252 

0.3705 

14.595 

0.2324 

6.5725 

0.1026 

17.429 

0.2286 

29.021 

0.3671 
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Table 3 

MAPE and RMSE of American Put Option Models on each company 

 MRK PFE SGP 

ALL ITM ATM OTM ALL ITM ATM OTM ALL ITM ATM OTM 

# Observations  24,693 15,291 2,094 7,308 28,478 14,292 2,642 11,544 19,883 11,067 1,277 7,539 

Put Call Parity MAPE 

RMSE 

30.912 

0.5145 

17.009 

0.1982 

25.163 

0.3046 

61.651 

0.8863 

22.685 

0.3437 

11.676 

0.136 

15.443 

0.1854 

37.973 

0.5104 

15.478 

0.2246 

9.5771 

0.1091 

10.492 

0.1211 

24.986 

0.3362 

BS, IV MAPE 

RMSE 

12.947 

0.1491 

12.304 

0.1395 

12.447 

0.1484 

14.429 

0.1675 

9.2007 

0.1087 

8.6542 

0.1003 

8.0598 

0.965 

10.138 

0.1206 

7.6069 

0.0894 

7.3145 

0.0844 

5.8038 

0.0694 

8.3415 

0.0991 

MBAW, IV MAPE 

RMSE 

8.3587 

0.10479 

6.8473 

0.0847 

9.9457 

0.1195 

11.067 

0.1342 

5.9476 

0.0744 

4.3721 

0.0532 

6.1271 

0.0727 

7.857 

0.0947 

4.5184 

0.0584 

3.6291 

0.0449 

4.0531 

0.0492 

5.9027 

0.0750 

MQuad, IV MAPE 

RMSE 

8.549 

0.1074 

6.733 

0.0839 

10.109 

0.1215 

11.902 

0.1415 

6.1209 

0.0777 

4.2413 

0.0523 

6.2365 

0.0741 

8.4214 

0.1012 

4.6976 

0.0611 

3.5324 

0.0444 

4.164 

0.0504 

6.4985 

0.0808 

BS, HV MAPE 

RMSE 

19.123 

0.3006 

11.078 

0.1511 

21.877 

0.3132 

35.165 

0.4789 

17.048 

0.2448 

8.9829 

0.1185 

14.714 

0.1868 

27.566 

0.3499 

13.817 

0.1974 

7.3546 

0.095 

12.836 

0.163 

23.47 

0.2916 

MBAW, HV MAPE 

RMSE 

16.524 

0.2936 

7.9096 

0.1352 

20.893 

0.3116 

33.297 

0.4745 

15.505 

0.2316 

7.0794 

0.0976 

14.172 

0.1772 

26.242 

0.3367 

11.916 

0.182 

4.9938 

0.0701 

11.823 

0.1495 

22.093 

0.2763 

MQuad, HV MAPE 

RMSE 

16.647 

0.2944 

7.8534 

0.1345 

20.933 

0.3114 

33.817 

0.4766 

15.653 

0.234 

7.0735 

0.0974 

14.178 

0.1775 

26.613 

0.3408 

12.02 

0.1845 

4.9372 

0.0697 

11.855 

0.1501 

22.445 

0.2807 

 
Table 4 

MAPE and RMSE of American Put Option Models on each company (Maturity < 1 year) 

 MRK PFE SGP 

ALL ITM ATM OTM ALL ITM ATM OTM ALL ITM ATM OTM 

# Observations  12,013 6,775 1,377 3,951 15,979 7,282 1,923 6,774 11,588 6,018 1,012 4,558 

Put Call Parity MAPE 

RMSE 

20.553 

0.2997 

10.882 

0.1244 

16.5 

0.195 

38.549 

0.4852 

14.793 

0.1996 

7.7773 

0.0878 

11.271 

0.1295 

23.334 

0.2844 

10.752 

0.1381 

6.5215 

0.071 

8.5662 

0.0954 

16.824 

0.1995 

BS, IV MAPE 

RMSE 

8.5257 

0.1002 

7.6608 

0.0865 

8.61 

0.1035 

9.9794 

0.1191 

6.1106 

0.073 

5.4298 

0.0619 

5.9511 

0.0701 

6.8877 

0.084 

5.1514 

0.0608 

4.5711 

0.0508 

4.5763 

0.053 

6.0453 

0.0733 

MBAW, IV MAPE 

RMSE 

6.777 

0.0852 

5.5365 

0.0677 

7.4659 

0.0917 

8.6641 

0.107 

4.7997 

0.061 

3.6943 

0.0452 

5.0034 

0.0603 

5.9301 

0.0746 

3.9475 

0.0509 

3.1093 

0.0373 

3.7291 

0.0449 

5.1028 

0.0655 

MQuad, IV MAPE 

RMSE 

6.7785 

0.0857 

5.3504 

0.0662 

7.4776 

0.0918 

8.9837 

0.1098 

4.8061 

0.0616 

3.5206 

0.0437 

5.0002 

0.0602 

6.1329 

0.0767 

3.9464 

0.0512 

2.9609 

0.0361 

3.7374 

0.045 

5.2941 

0.0671 

BS, HV MAPE 

RMSE 

19.662 

0.3447 

9.12 

0.1474 

21.01 

0.3235 

37.362 

0.5387 

15.401 

0.2243 

7.4417 

0.102 

13.661 

0.1744 

24.451 

0.3144 

12.151 

0.1743 

5.875 

0.0754 

11.914 

0.1511 

20.491 

0.2544 

MBAW, HV MAPE 

RMSE 

18.941 

0.3459 

8.1644 

0.1471 

20.815 

0.3263 

36.768 

0.5406 

15.261 

0.2213 

7.5116 

0.101 

13.782 

0.1736 

24.011 

0.3098 

11.491 

0.1692 

5.1298 

0.069 

11.496 

0.1465 

19.89 

0.2484 

MQuad, HV MAPE 

RMSE 

18.992 

0.346 

8.1273 

0.147 

20.828 

0.3262 

36.983 

0.5409 

15.341 

0.2223 

7.5444 

0.1011 

13.765 

0.1735 

24.169 

0.3115 

11.528 

0.17 

5.0829 

0.0686 

11.497 

0.1465 

20.045 

0.2501 

 

 



Journal of Business & Economics Research – February 2008 Volume 6, Number 2 

51  

Table 5 

MAPE and RMSE of American Put Option Models on each company (Maturity ≥ 1 year) 

 MRK PFE SGP 

ALL ITM ATM OTM ALL ITM ATM OTM ALL ITM ATM OTM 

# Observations  12,590 8,516 717 3,357 12,499 7,010 719 4,770 8,295 5,094 265 2,981 

Put Call Parity MAPE 

RMSE 

40.871 

0.6578 

21.883 

0.2412 

41.8 

0.445 

88.841 

1.197 

32.775 

0.4671 

15.725 

0.1724 

26.599 

0.2855 

58.762 

0.7181 

22.08 

0.307 

13.219 

0.1417 

17.844 

0.1895 

37.466 

0.4744 

BS, IV MAPE 

RMSE 

17.197 

0.1842 

16.003 

0.1702 

19.817 

0.2091 

19.667 

0.2107 

13.151 

0.1417 

12.004 

0.1286 

13.7 

0.1451 

14.755 

0.1587 

11.037 

0.1183 

10.584 

0.112 

10.491 

0.1118 

11.852 

0.1289 

MBAW, IV MAPE 

RMSE 

9.8798 

0.1207 

7.8901 

0.0961 

14.708 

0.16 

13.894 

0.1604 

7.4151 

0.0887 

5.0762 

0.0604 

9.1325 

0.0984 

10.594 

0.1174 

5.3159 

0.0676 

4.2487 

0.0525 

5.2906 

0.0631 

7.1258 

0.0876 

MQuad, IV MAPE 

RMSE 

10.251 

0.1248 

7.8328 

0.0958 

15.162 

0.1641 

15.337 

0.1715 

7.8017 

0.0943 

4.99 

0.0599 

9.5432 

0.1023 

11.671 

0.1283 

5.747 

0.0728 

4.2136 

0.0527 

5.7933 

0.0674 

8.3402 

0.0982 

BS, HV MAPE 

RMSE 

18.575 

0.2509 

12.636 

0.154 

23.544 

0.2923 

32.578 

0.3972 

19.153 

0.2687 

10.584 

0.1335 

17.53 

0.2164 

31.99 

0.3949 

16.144 

0.2258 

9.1181 

0.1141 

16.355 

0.2021 

28.024 

0.3409 

MBAW, HV MAPE 

RMSE 

14.2 

0.2324 

7.7069 

0.1248 

21.043 

0.2815 

29.211 

0.3823 

15.817 

0.2442 

6.6303 

0.0939 

15.217 

0.1863 

29.409 

0.3715 

12.509 

0.1985 

4.8316 

0.0713 

13.071 

0.1605 

25.463 

0.3142 

MQuad, HV MAPE 

RMSE 

14.392 

0.2342 

7.6354 

0.1236 

21.137 

0.2807 

30.091 

0.3875 

16.053 

0.2483 

6.5843 

0.0934 

15.282 

0.1878 

30.084 

0.3787 

12.707 

0.2029 

4.7634 

0.0709 

13.225 

0.163 

26.116 

0.322 
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