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ABSTRACT 

 

Categorical analytics is an admixture of computational methods with the express purpose of 

facilitating the multifaceted process of unstructured decision making.  The complex subject is 

based on consensus theory and includes structured analytics, categories, entropy, and the 

combination of evidence.  The methodology is applicable to a wide range of business, economic, 

social, political, and strategic decisions.  The paper includes an election application to 

demonstrate the concepts.  
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INTRODUCTION 

 

 category is a means of structuring a problem domain so that relevant information may be assessed 

and unstructured decisions can be made.  The objective is to engage in a predictive modality in 

which one or more future events may be identified and analyzed. 

 

 Let Ci be one of the categories used to stratify the problem domain such that the collection 

  

 C = {C1, C2, … , Cn} 

 
represents a complete conceptualization of the dynamics under investigation and n is the number of categories. 

 

 Associated with each category is a set of probabilities representing an assessment of a future outcome 

based on its underlying categorical imperative.  Thus, a category is a mechanism for isolating a single view of the 

problem under consideration.  The ontological definition of a category, as a conceptual entity with no attributes in 

common with other categories, is adopted in this paper.  The mutually exclusive set of possibilities under 

investigation is known as the frame of discernment. 

 

 Consensus theory is covered first followed by a presentation of an approach to the structural analysis of 

categories.  Finally, an election application is used as a demonstrative example that gives some insight into how the 

methods can be applied to other problems.   

 

BASIC CONCEPTS 

 

 A frame of discernment (hereafter referred to as simply a frame) is a set of mutually exclusive and 

collectively exhaustive possibilities for the value of an element of a system within a particular problem domain 

(referred to as the domain).  Three obvious examples of frames are: 

 

 E = {McCain, Obama} 
 M = {Up, Unchanged, Down} 
 J = {Guilty, Deadlock, Innocent}   
 

A 
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In general, a frame is a means of representing the possibilities under consideration. 

 

 Clearly, the elements in a frame are in fact propositions that can be interpreted in the usual fashion as 

events or states.  Thus, if component si of system S over domain V were associated with the symbol “McCain,” then 

that state is equivalent to the proposition, “The true value of V for component si is McCain,” or in ordinary language, 

“si prefers or has voted for McCain.” 

 

 The set S of propositions Si, 

 

 S = {S1,S2,…,Sn} 

 

commonly represents the collection of states of a component of a system under analysis.  Clearly, at an agreed upon 

point in time, one proposition is true and the others are false.  If proposition Si is true, then we can assert that  

 

 Si = T and 

 Sj = F, where ij 

 

where T and F represent “true” and “false,” respectively. 

 

Uncertainty 

 

 Prior to an agreed point in time (), we obviously do not know the state of the system under analysis or its 

components with any degree of certainty.  The expectation that a part of the system will be in a particular state at 

time  p(Si) associated with each of the propositions in the frame S = {Si}, i=1,2,…,n, 

such that 

 

 0p(Si)1 

and 

          n 

  p(Si)1 

       i=1  

 

It follows that the function p can be extended to the lattice S of S such that 

 

                    k 

 p(k) =  p(Si)1 

                  i=1 

 

where k is an element of S.  This is simply the addition rule for mutually exclusive events. 

 

Information Theory 

 

 If the likelihood of an event is relatively remote and it happens to turn out to be true at an appointed time, 

we are surprised.  Similarly, if the chance of the same event is very likely and it comes out true, we are not overly 

surprised.  The extent of our surprise represents our “information gain” in the sense that if we knew that information, 

we wouldn’t be surprised.  This is an exceedingly profound principle, although it is simple in concept, and takes the 

notion of information from the subjective plane to an objective level. 

 

 At an appointed time our knowledge of a situation can change dramatically based on “new” information.  

The difference in information before and after gives us the information content of the message giving us the 

outcome. 
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 Let x be the probability that some event E will occur, where 0≤x≤1.  Assume further that a message is 

received that E has occurred.  If x=0.99, you are not surprised and the message has little information content.  On the 

other hand, if the value of x were 0.01, you are very surprised and the message would indeed have high information 

content.  It would be reasonable to require that the information content h(x) of a message be a decreasing function of 

the probability x.  It is generally agreed to take the logarithm of the reciprocal of the probability x as the decreasing 

function, such that 

 

 h(x) = log(1/x) = -log x 

 

In general, the base of the logarithm is open but base 2 is common in information theory and information can be 

measured in bits. 

 

Example.  Assume there are 2
N 

possible events and all have the same chance of occurrence 2
-N

.  The amount of 

information contained in the message that states the particular event that occurred is: 

 

 h(2
-N

) = log(1/2
-N

) = N bits 

 

When the probability is not a power of two, then the information content will take on non-integer values. 

 

Entropy 

 

 Consider a complete system S = {S1,S2,…,Sn} with corresponding probabilities x1,x2,…,xn, such that 

         n  

  xi = 1 

       i=1 

 

where 0≤xi≤1 for i=1,2,…,n. 

 

 When we receive a message that Si has occurred, the information content of the message is h(xi)=-log(1/xi).  

Before the message is received, we do not know the event that will occur and the magnitude of the corresponding 

information content.  On the other hand, we can develop the average information content (i.e, the expected 

information content H(x)) as: 

 

                    n                n                          n  

 H(x) =  xih(xi) =  xilog(1/xi) = -xilog(xi)  
                  i=1             i=1                       i=1 

where  

 xilog(xi)=0 if xi=0 

 

 The expected information content of a probability distribution is a measure of its disorder.  In a distribution 

with n probabilities, the expected information approaches a maximum value as the n probabilities xi approach 1/n.  

The expected information as a measure of disorder is commonly known as entropy (Theil, 1967). 

 

EXAMPLE.  Consider the system S = {S1,S2} with probabilities  

  

 p(S) = {x1,x2} = {0.6,0.4} 

 

The entropy of S is computed as 
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                     2 

 H(S) =  p(xi)h(xi)  

                   i=1 

         = (0.6)log(1/0.6)+(0.4)log(1/0.4) 

         = 0.970951 

 

The entropy is high because the possibilities approach being equally likely. 

 

CONSENSUS THEORY 

 

 Consensus theory is a methodology for combining evidence based on Dempster-Shafer theory (Shafer 

[1976], Katzan [1992, 2006]) and the mathematical combination of evidence (Dempster [1967]).  Dempster-Shafer 

theory  has commanded a considerable amount of attention in the scientific and business communities, because it 

allows a knowledge source to assign a numerical measure to a proposition from a problem space, and provides a 

means for the measures accorded to independent knowledge sources to be combined.  Dempster-Shafer theory is 

attractive because conflicting, as well as confirmatory, evidence from multiple sources may be combined. 

 

 The basis of Dempster-Shafer theory is the frame of discernment (, introduced previously.  Accordingly, 

a knowledge source may assign a numerical measure to a distinct element of , which is equivalent to assigning a 

measure of belief to the corresponding proposition.  In most cases, the numerical measure will be a basic probability 

assignment.  A measure of belief may also be assigned to a subset of  or to  itself. 

 

Support Functions 

 

 Consider a frame of discernment  and its power set denoted by 2

.  For example, given the frame: 

 

  = {a, b, c} 

 

The power set is delineated as follows: 

 

 2


= {{a, b, c}, 

   {a, b}, {a, c}, {b, c}, 

   {a}, {b}, {c}} 

 

In Dempster-Shafer theory, a knowledge source apportions a unit of belief to an element of 2

.  This belief can be 

regarded as a mass committed to a proposition and represents a judgment as to the strength of the evidence 

supporting that proposition.  When viewed in this manner, evidence focuses on the set corresponding to a 

proposition; this set is called a focal set. 

 

 The support for a focal set is a function m that maps an element of 2

, denoted by A, onto the interval [0,1].  

Given a frame of discernment  and function m: 2

  [0,1], a support function is defined as follows: 

 

 m() = 0, where  is the null set  

 0  m(A)  1, and 

  

  m(A) = 1 

      A2

 

 

The support function m is called a basic probability assignment, which is assigned by the knowledge engineer or 

domain specialist. 
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 A support function is called a simple support function if it reflects, at most, one focal set not equal to .  A 

simple support function assigns a measure of belief to the focal set A, as follows: 

 

 m(A) 

 m()=1-m(A) 

 m(B), for all B2


BA 

 

The simple support function for a focal set A assigns a portion of the total belief exactly to A and not to its subsets or 

supersets.  The remainder of the belief is assigned to .  Because certainty function must add up to 1, m()=1-m(A). 

 

 It is possible that a body of knowledge or evidence supports more than one proposition, as in the following 

case.  If 

 

  = {a, b, c, d} 

 A = {a, b} 

 

and 

 

 B = {a, c, d} 

 

then the evidence supports two focal sets, which in the example, are A and B.  If m(A)=0.5 and m(B)=0.3, then 

m()=0.2.  A support function with more than one focal set is called a separable support function.  Separable 

support functions are normally generated when simple support functions are combined. 

 

 The notion of combining simple support functions is a practical approach to the assessment of evidence.  

An analyst obtains information from a knowledge source, and it leads to an immediate conclusion – not with 

certainty, but with a certain level of belief.  This is a normal straightforward means of handling human affairs and is 

precisely what people do.  Then when additional information comes in, the various pieces of evidence are combined 

to obtain a composite picture of the situation. 

 

Combination of Evidence 

 

 A method of combining evidence is known as Dempster’s rule of combination (Dempster [1967]).  

Evidence would normally be combined when it is obtained from two different observations, each over the same 

frame of discernment.  The combination rule computes a new support function reflecting the consensus of the 

combined evidence. 

 

 If m1 and m2 denote two support functions, then their combination is denoted by m1m2 and is called their 

orthogonal sum.  The combination m1m2 is computed from m1 and m2 by considering all products of the form 

m1(X)m2(Y), where X and Y range over the elements of ; m1(X)m2(Y) is the set intersection of X and Y combined 

with the product of the corresponding probabilities. 

 

 For example, consider the frame of discernment 

 

  = {healthy, test, sick} 

 

and focal sets A and B, based on two different observations over the same frame: 

 

 A = {test, sick} B = {healthy, tests} 

 m1(A) = 0.8 m2(B) = 0.6 

 m1() = 0.2 m2() = 0.4 
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The combination rule is depicted via the following tableau: 

 

 A      

                m1         {test,sick} {healthy,tests,sick} 

         m2   0.8  0.2 

_____________________________________________ 

         B  

{healthy,tests} {tests}            {healthy,tests} 

         0.6       0.48    0.12 

 

          
{healthy,test,sick}{tests,sick}     {healthy,test,sick} 

         0.4                      0.32                   0.08 

 

 

The entries are then combined as follows: 

 

 m1m2({tests}) = 0.48 

 m1m2({healthy,tests}) = 0.12 

 m1m2({tests,sick}) = 0.32 

 m1m2({healthy,tests,sick}) = 0.08 

 m1m2 = 0 for all other subsets of  

 

Thus, for AiBj=A and m1m2=m, the combination rule is defined mathematically as: 

 

  m(A) = m1(Ai)m2(Bj)(1-m1(Ai)m2(Bj)) 

  AiBj=A                   AiBj=Ø 

 

The denominator reflects a normalization process to insure that the pooled values sum to 1.  So, in this instance, the 

combination rule yields 

 

  AB = {{tests},0.48}, {{healthy,tests},0.12}, {{tests,sick},0.32}, {{healthy,tests,sick},0.08}} 

 

This result states that the combined evidence from knowledge sources A and B gives 0.48 as the likelihood of the 

proposition “tests” and 0.12 as the likelihood of proposition “healthy OR tests,” and so forth. 

 

 As another example, consider the same frame of discernment 

 

  = {healthy, test, sick} 

 

and views C and D, based on two different observation over the frame: 

 

 C = {{healthy},0.6},{{tests},0.3},{{sick},0.1}} 

 D = {{healthy},0.4},{{tests},0.4},{{sick},0.2}} 

 

The combination rule is depicted via the following tableau: 
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                                        C 

                m1     {healthy}   {tests}    {sick} 

         m2                  0.6          0.3          0.1 

_______________________________________ 

  

        D  

      {healthy}    {healthy}    {Ø}       {Ø} 

         0.4                0.24        0.12       0.04 

       {tests}   {Ø}     {tests}     {Ø} 

         0.4                0.24        0.12       0.04 

       {sick}   {Ø}       {Ø}      {sick} 

         0.2                0.12        0.06       0.02 

  

The entries are then combined as follows: 

 

 m1m2({healthy}) = 0.24 

 m1m2({tests}) = 0.12 

 m1m2({sick}) = 0.02 

 m1m2({Ø}) = 0.62 

 

So, in this instance, the combination and normalization processes yield the result 

 

 CD = {{healthy},0.63},{{tests},0.32},{{sick},0.05}} 

 

after normalization by dividing the combined assessment by (1-0.62) or 0.38.  Because the problem is well-

structured, the representation can be simplified as 

 

  CD = {0.63,0.32,0.05} 

 

where the elements exist in a one-to-one correspondence with the frame {healthy, test, sick}.  

 

 For views A={A1,A2,…,An} and B={B1,B2,…,Bn}, the combination rule can be simplified as   

 

      AB={A1B1/k,A2B2/k,…,AnBn/k} [1] 

  n 

      where k =  AiBi 

  i=1 

We will refer to equation [1] as the simplification rule. 

 

STRUCTURAL ANALYTICS 
 

 A problem domain is composed of categories, each of which is defined by a set of alternate structures.  In a 

make-believe universe, for example, the category party could be defined as  

  

 party = {republican, democrat, independent} 
 

based on a structural assessment, such as demographics.  In this instance, the category party is one of many 

viewpoints of an underlying decision situation, which could be a vote in an election or on an important issue.  We 

are going to argue that in many unstructured decision-making problems, the probabilistic outcome can be based on 

structural, rather than, preferential elements.  What makes an unstructured decision so complex is that there are 

usually several categories “tugging at the decision maker.”  We are going to show how categorical assessments can 

be combined to form a composite assessment of a decision under consideration.  Through the technique of structural 
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analysis, we are going to assign probabilities to the elements of the frame of discernment from a given category, and 

then use consensus theory to combine the various probabilities.  For example, a vote based on party could go one 

way and a vote based on gender could go another way.  In reality, it would be a combination of the two views. 

 

 

Structural Elements 
 

 Each category Ci is comprised of a set of structural elements Si = {Si1, Si2, Si3, …, Simi}, where mi is the 

number of structural elements in category Ci.  Consider a fresh example universe defined as: 

 

 C = {C1, C2} = {color, size}, where 

 color = {white, red, green, blue}, and  

 size = {small, medium, large} 
 
where S1 and S2 are defined respectively as  

 

 S11 = white S21 = small  

 S12 = red S22 = medium 
 S13 = green S23 = large 
 S14 = blue and m2 = 3 

 and m1 = 4 

 

Each problem domain is represented by a set of categories, each of which is a special lens into the underlying 

problem.  Each category is defined as a set of structural components that define it.  The categorical demographics in 

an election, for example, could be party, gender, age, and so forth.  In the immediate example, the categories are 

color and size.  

 

Structural Probabilities 
 

 Each object selected at random form a universe of study possesses a probability of occurrence  

 mi 

 prob(Sij)  where   prob(Sij)  = 1 for category i and structural element j in category i. 

 j=1 

 

Accordingly, for category Ci  and its structure Si, the probability set would be expressed as : 

 

 Pi = {prob(Si1), prob(Si2), …, prob(Simi)} 

 

For example, the probability set for category #1 (color), could be 

 

 P1 = {0.2, 0.4, 0.3, 0.1} 

 

representing white, red, green, and blue respectively.  

 

Each  prob(Sij) represents the “probability of occurrence” in the universe of study of the structural elements of 

category i. 
 
Analytic Alternatives 
 

 In this form of analysis, each category Ci has an associated probability set Pi.  Each structural element has a 

corresponding probability prob(Sij) in Pi.  That probability represents the likelihood that an object selected at random 

from category Ci would be Sij.  Another interpretation is that a value in Pi gives the proportion of the corresponding 

structural element in Ci.  The following tableau gives a couple of examples: 
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Category Structural Element Probability 

party republican 0.4 

party democrat 0.5 

party independent 0.1 

gender male 0.4 

gender female 0.6 
   

The structural probabilities, alternately regarded as structural proportions, give a means of describing the 

environment in which a decision is to take place.  In an election, the environment would be the electoral 

demographics. 

 

Preference Set 

 

 Each structural element is assigned a preference set over the frame of discernment from a knowledge 

source, such as a poll, survey, or historical document.  The probabilities in the preference set are the decision 

variables.  For example, we might know that republican prefers candidate M with probability 0.7 and candidate O 

with probability 0.3.  The set {0.7, 0.3} is known as the preference set. 

 

 Thus, for each structural element Sij for all categories, there exists a preference set 

 

 ps(Sij) = {pij(Ө1), pij(Ө2), …, pij(Өt)}, where t is the cardinality of the frame of discernment,  

and 

 

 Ө = {Ө1,  Ө2, …, Өt} 

 

   t 

 Clearly,   pij(Өt) = 1 for all i and j. 

 k=1 

 

Composite Probabilities 
 

 Composite categorical probabilities for each element in the frame of discernment are computed by 

combining the structural probabilities and corresponding preference set as follows: 

 

 P(Өit) =  ∑ ((prob(Sij) · ps(Sij)) [2] 

  j=1 

 

where  the index i runs through the categories and the index t runs through the alternatives in the frame of 

discernment. 

 

Categorical Probabilities 

 

 The composite probabilities represent a summation of the preference for each element of the frame of 

discernment for each category.  The result is a set of independent categorical assessments of the problem domain 

from different viewpoints represented as probabilities, as follows: 
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 Ci = {P(Өi1), P(Өi2), …, P(Өit)} 

 

where t is the cardinality of the frame of discernment, as defined previously.   

 

 Using the simplification rule [1], we derive a combined assessment of categories Ci and Cj of the form  

 Ci  Cj 

 

So that if   

 

 C1 = {0.54, 0.46} 

 

and  

 

 C2  = {0.58, 0.42} 

 

Then 

 

 K = Ci  Cj = {0.62, 0.38} 

 

The evidence is complementary and that fact is demonstrated in the combined assessment. 

 

Entropy 
 

 In applications with a greater cardinality, entropy can be used as a measure of the “degree of 

disorganization” among the alternatives, since it is often difficult to make an assessment from a large collection of 

values.  The entropy of  C1 is 0.995378 and the entropy of  C2 is 0.981454, and the entropy of K is 0.958042, 

representing a lesser degree of disorganization for the above examples.   
  

 

ELEMENTARY APPLICATIONS 

 

 Two applications of the preceding concepts are considered: a voting system and the elicitation of expert 

opinion. 

 

Simple Voting System 

 

 Consider a system in which a decision maker is required to vote on a well-structured issue, such as the 

selection of a candidate.  Let the candidates be Roberts, Richards, and Williams.  Assume further that the voter is 

influenced by three groups to cast a vote to their best interests.  In a real sense, the voter is being pulled in three 

directions.  Let the influential groups be Party, Cause, and Lobby, delineated as follows:  

 

 Party =  {{{Roberts},0.6}, {{Richards},0.3}, {{Williams},0.1}} 

 Cause =  {{{Roberts},0.4}, {{Richards},0.2}, {{Williams},0.4}} 

 Lobby = {{{Roberts},0.4}, {{Richards},0.5}, {{Williams},0.1}} 

 

The information should be interpreted from a probabilistic view.  For example, based on party affiliation, the voter 

will choose Roberts with a 0.6 probability, Richards with a 0.3 probability, and Williams with a 0.1 probability. 

 

 Clearly, the frame of discernment is {Roberts, Richards, Williams} and since the problem is well-

structured, the basic probability assignments may be summarized as follows: 

  

 Party  =  {0.6, 0.3, 0.1} 

 Cause = {0.4, 0.2, 0.4} 

 Lobby =  {0.4, 0.5, 0.1} 
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Table 1 summarizes the application of Dempster’s rule of combination to this problem.  First, Party is combined 

with Cause, and then the result is combined with Lobby to obtain a composite picture of the result when the support 

functions are fused.  In general, the evidence is complementary and this fact is reflected in the entropy that is 

reduced from the initial party affiliation of 1.29 to 0.965. 
 

Support Function Probability Assignment Entropy 

 

 Party {0.6, 0.3, 0.1} 1.29 

 Cause {0.4, 0.2, 0.4} 1.52 

 Lobby {0.4, 0.5, 0.1} 1.36 

 Party×Cause (=K) {0.706, 0.176, 0.118} 1.16 

 K×Lobby {0.739, 0.230, 0.031} 0.965 

 

Table 1.  Application of the Simplification Rule to the Voting System 

 

 

Elicitation of Expert Opinion 

 

 Typically, experts do not agree, especially when system failure is concerned.  Typical examples might be 

the crash of an expensive fighter aircraft or the collapse of a building.  Consider a situation wherein the frame of 

discernment is {A,B,C} reflecting that the failure could be caused by Component A, Component B, or Component 

C.  Expert #1 believes the failure is due to Component A with probability 0.75, Component B with probability 0.15, 

or Component C with probability 0.10.  Expert #2 believes the failure is due to Component A with probability 0.30, 

Component B with probability 0.20, or Component C with probability 0.50.  The support function are: 

 

 Expert #1 = {{{A},0.75}, {{B},0.15}, {{C},0.10}} 

 Expert #2 = {{{A},0.30}, {{B},0.20}, {{C},0.50}} 

 

The problem is well-structured, so the probability assignments are summarized as follows: 

 

 Expert #1 = {0.75, 0.15, 0.10} 

 Expert #2 = {0.30, 0.20, 0.50} 

 

Table 2 summarizes the application of the simplification rule to this problem.  The opinion of the experts is 

summarized and reflects the differing opinions. 

 
 

Support Function Probability Assignment Entropy 

 

 Expert #1 (=X) {0.75, 0.15, 0.10} 1.05 

 Expert #2 (=Y) {0.30, 0.20, 0.50} 1.49 

 X×Y {0.634, 0.084, 0.282} 1.23 

 

Table 2.  Elicitation of Expert Opinion 

 

 

The strong opinion of Expert #1 in favor of Component A, reflected in the low entropy, has a major influence on the 

consensus. 

 

ELECTION APPLICATION 
 

 One of the most familiar unstructured decision applications is the prior assessment of the outcome of an 

election.  The major determinants of how people will vote can be combined into eight well-known categories: party, 

gender, education, religion, attitude, age, region (of the country), and race.  The structural elements for each of the 
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categories are given in Sheet 1, along with the respective structural probabilities.  The columns are titled 

“Demographics.”  For category Party, the structural element Rep has a probability (or proportion), for example,  of 

0.4.  Associated with each structural element is a preference set for that element over the frame of discernment, 

which is {R,D}.  In this case, a person in Party/Rep, would vote for R with probability 0.7 and for D with 

probability 0.3. 

 Categorical probabilities are calculated as a set of composite probabilities using equation [2], as shown in 

Sheet 2, which gives spreadsheet functions that compute the respective probabilistic elements in the category 

probability set.  Sheet 1 gives the computed probabilities for this example in the “Categorical Probabilities” section. 

 

 Finally, the consensus probabilities are computed using the simplification rule (equation [1]) in the 

“Consensus” section of Sheet 2.  The results of the actual calculations are given in the “Consensus” section of Sheet 

1.  The probabilities are combined from top down, starting with the Party category and ending with Race. 

 

 The results are more sensitive to demographics then they are to the preferences, as evidenced through 

experimentation with the spreadsheet recalc facility.  

 

SUMMARY 
 

 An admixture of methods has been given to structure a problem domain into categories and compute 

categorical probabilities from structure elements and preference sets.  The categorical probabilities are then 

combined using Dempster’s rule of combination to obtain a composite assessment of the decision landscape.  A 

demonstrative election application is given. 
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0.618483412 0.381516588 Gender 0.58 0.42 Gender Male 0.4 0.7 0.3

Female 0.6 0.5 0.5

0.58 0.42 College 0.46 0.54 College None 0.4 0.2 0.8

Attended 0.2 0.5 0.5

Grad 0.4 0.7 0.3

0.560386473 0.439613527 Religion 0.48 0.52 Religion Cath 0.3 0.2 0.8

Prot 0.3 0.6 0.4

Evan 0.2 0.6 0.4

Jewish 0.1 0.7 0.3

Other 0.1 0.5 0.5

0.618666667 0.381333333 Attitude 0.56 0.44 Attitude Conserv 0.3 0.8 0.2

Liberal 0.3 0.4 0.6

Neither 0.4 0.5 0.5

0.560386473 0.439613527 Age 0.44 0.56 Age <=25 0.4 0.2 0.8

26-55 0.4 0.5 0.5

>=56 0.2 0.8 0.2

0.599425837 0.400574163 Region 0.54 0.46 Region N 0.3 0.4 0.6

S 0.2 0.4 0.6

M 0.2 0.8 0.2

W 0.3 0.6 0.4

0.646512413 0.353487587 Race 0.55 0.45 Race B/C 0.1 0.2 0.8

Cauc 0.8 0.6 0.4

other 0.1 0.5 0.5

CONSENSUS (R/D) Categorical Probabilities (R/D) Demographics Preferences (R/D)

 
 
Sheet 1.  Spreadsheet for the Election Application showing Demographics, Preferences, Categorical Probabilities, and the Consensus for the Election Application. 
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B C D E F G

=F2 =G2 Party =K2*M2+K3*M3+K4*M4 =K2*N2+K3*N3+K4*N4

 

=(B2*F5)/(B2*F5+C2*G5) =(C2*G5)/(B2*F5+C2*G5) Gender =K5*M5+K6*M6 =K5*N5+K6*N6

=(B5*F7)/(B5*F7+C5*G7) =(C5*G7)/(B5*F7+C5*G7) College =K7*M7+K8*M8+K9*M9 =K7*N7+K8*N8+K9*N9

=(B7*F10)/(B7*F10+C7*G10) =(C7*G10)/(B7*F10+C7*G10) Religion =K10*M10+K11*M11+K12*M12+K13*M13+K14*M14 =K10*N10+K11*N11+K12*N12+K13*N13+K14*N14

=(B10*F15)/(B10*F15+C10*G15) =(C10*G15)/(B10*F15+C10*G15) Attitude =K15*M15+K16*M16+K17*M17 =K15*N15+K16*N16+K17*N17

=(B15*F18)/(B15*F18+C15*G18) =(C15*G18)/(B15*F18+C15*G18) Age =K18*M18+K19*M19+K20*M20 =K18*N18+K19*N19+K20*N20

=(B18*F21)/(B18*F21+C18*G21) =(C18*G21)/(B18*F21+C18*G21) Region =K21*M21+K22*M22+K23*M23+K24*M24 =K21*N21+K22*N22+K23*N23+K24*N24

=(B21*F25)/(B21*F25+C21*G25) =(C21*G25)/(B21*F25+C21*G25) Race =K25*M25+K26*M26+K27*M27 =K25*N25+K26*N26+K27*N27

CONSENSUS (R/D) Categorical Probabilities (R/D)

   
 

Sheet 2. Spreadsheet for the Election Application Giving Functions for the Calculations in Sheet 1. 


