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ABSTRACT 

 

The advantage of Monte Carlo simulations is attributed to the flexibility of their implementation. In 

spite of their prevalence in finance, we address their efficiency and accuracy in option pricing from 

the perspective of variance reduction and price convergence. We demonstrate that increasing the 

number of paths in simulations will increase computational efficiency. Moreover, using a t-test, we 

examine the significance of price convergence, measured as the difference between sample means of 

option prices. Overall, our illustrative results show that the Monte Carlo simulation prices are not 

statistically different from the Black-Scholes type closed-form solution prices.  

 

 

INTRODUCTION 

 

onte Carlo simulations (MCS) have recently been an important technique for option pricing in 

finance. MCS avoid complicated mathematics and have a straightforward implementation 

conceptually and practically. For example, to price a European down-and-out call barrier option
1
 by 

MCS, just treat it as a normal option unless the underlying asset price reaches the pre-determined level, as opposed to 

setting boundary conditions and solve a partial differential equation. In practice, MCS are procedures of sampling 

random outcomes for a particular process. However, while many academics and practitioners acknowledge the merits 

of MCS, some studies discuss their weaknesses in option pricing. Clewlow and Strickland (1998) and Hull (2000) 

point out that MCS generate high variances that lead to computational inefficiency. This problem can not be 

overlooked because such inefficiency may produce a biased estimator of the option price. In this paper, our focus is on 

the efficiency and accuracy of MCS in option pricing. We demonstrate that the estimated standard errors of MCS 

option prices can be reduced by increasing the number of paths in the simulations. Additionally, we use a t-test to 

examine whether MCS prices converge to Black-Scholes type of closed-form solution prices. The empirical evidence 

does not suggest any significant difference between those prices. Moreover, the results show that these two types of 

prices converge as the number of paths in simulations increases. The layout of this paper is as follows: section 2 

provides a quick literature review. Section 3 examines variance reduction and price convergence of MCS. Section 4 

provides the conclusions.  

 

LITERATURE REVIEW 

 

 Originated from studies in physics, MCS have been very successfully applied in finance
2
. Hull and White 

(1987) use MCS to price options with stochastic volatilities. Schwartz and Torous (1989) apply MCS to the valuation 

of mortgaged-backed securities. Boyle et al. (1997) use MCS to price American options. On the other hand, the 

disadvantages of MCS are also discussed in some studies. Clewlow and Strickland (1998) and Hull (2000) argue that 

MCS are computationally inefficient due to the generated high variances.  

 

THE EFFICIENCY AND ACCURACY OF MONTE CARLO SIMULATIONS 

 

Variance Reduction 

 

 The efficiency of MCS increases with the number of paths used in the simulations. Since MCS are sampling 

random variables, option prices are random as well. The estimated standard error (ESE) is calculated as the sample 

                                                 
1
 A barrier option is a contingent claim whose payoff depends on whether the underlying asset has reached a certain pre-determined level for a 

specific path. 
2
 See Jackel (2002) for a thorough summary of the applications of MCS in finance. 

M 
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standard deviation of MCS option prices (SD) divided by the square-root of the number of paths (m): 

 

 

(1)                                        / mSDESE   

 

 

From equation (1), ESE will decrease with an increase in the number of paths. Theoretically, if sample 

standard deviation of MCS option prices (SD) is unchanged, when we increase m from 100 to 400, the ESE should be 

reduced by 50%. We demonstrate this negative relationship by using an example. The results are listed in Table 1. 

 

 
Table 1: Estimated Standard Errors of a European Put Option Price in Monte Carlo Simulations 

 

The estimated standard error (ESE) is given by: )( paths ofnumber /)(deviation  standard sample mSDESE    

The input parameters are as follows: current stock price s=10, exercise price x=10, time to maturity t=0.5 year, risk-free rate r=0.1, 

stock return volatility =0.4, and m=number of paths. 

 

 Case A (m=100) Case B (m=400) Case C (m=2500) 

Sample standard deviation of Monte Carlo simulation option 

prices (SD) 
1.2874 1.2642 1.2407 

Estimated standard error of Monte Carlo simulation option prices 

(ESE) 
0.1287 0.0632 0.0248 

Theoretical standard error reduction* 1 0.5 0.2 

Practical estimated standard error reduction** 1 0.4910 0.1926 

* Theoretical standard error reduction is the square root of m in base case divided by the square root of m in the referring case. For 

example, in case B, the theoretical standard error reduction is 5.0400/100    

** Practical estimated standard error reduction is the estimated standard error (ESE) in each case divided by the estimated standard 

error of the base case. For example, in case C, the practical standard error reduction is 0.0248/0.1287 = 0.1926. 

 

 

 Table 1 shows the values of ESE for a hypothetical European put option for different paths. The theoretical 

standard error reduction in each case is defined as the square root of m in base case divided by the square root of m in 

the corresponding case. In addition, for comparison purposes, we calculate the practical estimated standard error 

reduction, defined as the ESE of a case divided by the SD of the base case. Table 1 clearly shows how the errors of 

option prices can be reduced as the number of paths increases. For example, ESE can be effectively reduced from 

12.87% in case A (with 100 paths) to only 2.48% in case C (with 2500 paths).  In addition, the theoretical standard 

error reduction (20% for case C) is very close to the practical estimated standard error reduction (19.26%). The 

difference is due to the fact that the SD is not the same in cases A and C. 

 

Price Convergence 

 

 Price convergence is measured as the magnitude of the differences in sample means of two groups: 

MCS and Black-Scholes type of closed-form solution prices. If these prices converge, the means of prices should be 

approximately the same. For illustration purposes, we choose path dependent options, specifically a down and out call 

option as our pricing target. We will limit our example to the European style to be consistent with the assumption of 

Black-Scholes type of closed-form solution.    

 

 In a Black-Scholes framework, the stock price follows a geometric Brownian motion. That is: 
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(2)                                                        tttt dWSdtrSdS 
 

tWσrtS tt  at time process Wiener a is  and y, volatilit theis  rate, freerisk   theis  , at time pricestock   theis  where  

 

 

Using Wilmott (1998) approach, the value of a down and out European call option is given by: 

 

(3)                         ),(*)(),(),(
2

)1( t
S

X
C

X

S
tSCtSV k

 

where ,/2 2rk  ),( tSV is the value of down and out European call option with underlying asset price S and time 

t, ),( tSC is the value of vanilla European call option with underlying asset price S and time t, X is the barrier price, 

and ),/( 2 tSXC is the value of vanilla European call option with underlying asset price SX /2  and time t. 

 

 

 The European down and out call option is a path dependent option. In this sense, we need to check if the 

stock hits the threshold, a pre-set barrier price. If it does, the option ceases and has zero value. If not, the option 

survives and the final value of the underlying asset can be determined. Once we know the final value of the underlying 

asset, the payoff and the price of the barrier option can be calculated. By repeating the same procedure with various 

realizations, we can generate different samples which allow us to compare the relation between price convergence and 

the number of paths. 

 

 Figure 1 compares the MCS option prices with the Black-Scholes type of closed-form solution prices in three 

different cases with 100, 400, and 2500 paths. It also presents the intrinsic values – excess of stock price over exercise 

price or zero. Because down and out barrier option has zero value unless the underlying stock exceeds the barrier price, 

i.e. 8 in this example, we estimate the option value only when stock prices surpass the barrier. To examine the price 

convergence between MCS and Black-Scholes type prices, we apply a t-test to compare the means. We assume an 

exercise price of $10, a time to maturity of six months, a barrier price of $8, a risk-free rate of 10%, and a volatility of 

40%. We use forty observations of MCS prices with respect to stock prices – by changing the underlying asset price 

from $8 by $.2 until it reaches $16.
3
    

 

 As shown in figure 1, it is easy to see that the MCS prices tend to converge to the Black-Scholes type of 

closed-form solution prices as the number of paths increases. To confirm this behavior, we test the following 

hypothesis: 

 

H0:  mean of MCS prices = mean of closed-form solution (Black-Scholes type) prices 

H1:  mean of MCS prices ≠  mean of closed-form solution (Black-Scholes type) prices 

 

 The two-tail null hypothesis test is rejected if the t-statistic is larger than the corresponding critical value, 

1.96, under a 95% confidence interval. Table 2 summarizes the results. First we notice that the sample standard 

deviation of MCS option prices (SD) decreases with the increase in the number of paths. This is consistent with the 

results in Table 1. Second, we find that all the t-statistics are less than the critical value 1.96. This result suggests that 

we can not find statistically significant evidence to reject the null hypothesis. Only at 10% level of significance (i.e. 

critical value 1.645) can the null hypothesis be rejected in the case of 100 paths. In practice, since the number of paths 

is usually larger than 100, it is reasonable to conclude that the MCS prices are not significantly different from the 

Black-Scholes type prices. Furthermore, we find the p-values increasing with the numbers of paths in simulations. The 

large p-value implies that the likelihood of failing to reject the false hypothesis (Type II error) is low.  This indicates  

                                                 
3
 According to Griffiths et al. (1993), for applying a t-test, a sample size of thirty observations is considered large enough to satisfy the normal 

distribution assumption.  
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Figure 1: The Relationship Between Monte Carlo Simulation Option Prices and Black-Scholes Type Prices 

 

This figure depicts the intrinsic value, the Monte Carlo simulation option prices (denoted by MC) and the Black-Scholes type 

closed-form option prices (denoted by closed-form solution) of a European down and out call option with 100, 400, and 2500 paths. 

The input parameters are: barrier price (x) =8, time to maturity (t) =0.5, exercise price (e) =10, risk-free rate (r) =0.1, volatility 

(sigma) =0.4. 

 

Diagram A (Number of paths =100) 

 
Diagram B (Number of paths =400) 

 
Diagram C (Number of paths =2500) 
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that the confidence level of our conclusion on not rejecting the null hypothesis increases with the p-value. In other 

words, the more simulations are executed, the more accurate the null hypothesis is, and the more evidence on the 

convergence of MCS prices to Black-Scholes type prices.     

 

 
Table 2: Two-tail t Test for Price Convergence (sample size = 40) 

 

This table shows any significant difference between Monte Carlo simulation prices and Black-Scholes type prices. The pricing 

target is a European down and out call option. The input parameters are: barrier price (x) =8, time to maturity (t) =0.5, exercise 

price (e) =10, risk-free rate (r) =0.1, volatility (sigma) =0.4. Case 1, 2 and 3 are characterized by various numbers of paths in 

simulation, m. Each case has forty-paired observations. The null hypothesis for the two-tail test is:  

 

H0:  mean of MCS prices = mean of closed-form solution (Black-Scholes type) prices 

H1:  mean of MCS prices ≠  mean of closed-form solution (Black-Scholes type) prices 

  

 Case 1 (m=100) Case 2 (m=400) Case 3 (m=2500) 

Sample standard deviation of Monte Carlo simulation 

option prices (SD) 
1.9478 1.9218 0.1947 

Mean of the difference between MCS and BS type prices 0.0870 -0.0177 0.0057 

Variance of the difference between MCS and BS type prices 0.0942 0.0269 0.0054 

Number of samples 40 40 40 

t-statistic/p-value* 1.79/0.0806 -0.68/0.5002 0.49/0.6284 

Hypothesis testing** 
cannot reject 

 null hypothesis 

cannot reject  

null hypothesis 

cannot reject  

null hypothesis 

* Under the null hypothesis, the t-statistic is estimated as follows: 

samplesofNumberpricestypeBSandMCSbetweendifferencetheofVariance

pricestypeBSandMCSbetweendifferencetheofMean
t

  /         

          
  

** Based on a two-tail 95% confidence interval.  

 

 

CONCLUSIONS 

 

In this paper, we address the issues of efficiency and accuracy of Monte Carlo simulations in option pricing 

from the perspectives of variance reduction and price convergence. We demonstrate that increasing the number of 

paths in simulations will increase computational efficiency. Moreover, using t-test, we examine the tendency of price 

convergence, measured as the difference between sample means of option prices. Our results did not find significant 

evidence to reject the null hypothesis that the Monte Carlo simulation prices and the Black-Scholes type prices have 

the same mean. 
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