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Abstract 

 

This paper studies currency risk hedge when volatilities and correlations of forward currency 

contracts and underlying assets returns are all time-varying.  A multivariate GARCH model with 

time-varying correlations is adopted to fit the dynamic structure of the conditional volatilities and 

correlations. The conditional risk-minimizing hedge strategies are estimated for an international 

portfolio of the US, UK and Switzerland stocks, for the period of February of 1973 to March of 

2002. The empirical results show that the optimal dynamic hedging strategies can capture partially 

the currency fluctuations, and greatly reduce the currency risk and enhance the risk-adjusted 

returns of the portfolio with significant foreign currency exposures.  

 

 

1.  Introduction 

 

urrency risk has become an important component of a foreign investment, as globalization and integration of 

financial markets worldwide gained momentum over the past two decades. Currency risk is the volatility of 

the exchange rate of one currency for another i.e. that the currency in which an investment is made will 

decline in value, relative to the investor's currency. The differences between volatilities measured in foreign 

currency and those measured in U.S. dollars (for a investor in the U.S.) represent the contribution of currency risk to 

total portfolio risk.  Since the end of the Bretton Woods system in February 1973 when the exchange rates of all the 

industrial countries were set free to float independently, exchanges rates of developed countries have been highly 

volatile and correlations between exchange rates have also been changed dramatically over time. While a part of 

currency risks (idiosyncratic risks) get diversified away in an international portfolio invested in many currencies, 

systematic currency risks remain. Both theoretical and empirical evidence suggest that the most effective way of 

reducing systematic currency risks is hedging through future or forward contracts (Solnik, 1974, Black, 1990).  Eun 

and Resnick (1988) and Glen and Jorion (1993) also show that currency hedging improves the risk-return 

performance of international portfolio as well as reducing risks.  However, most of the academic research has 

considerable disagreement on the strategies that global investors should use to hedge currency risk. Specifically, there 

is little consensus on how much to hedge or optimal hedge ratios. 

 

 Extensive research in the literature has been focused on developing optimal hedging strategies. In early 

theoretical approach, Solnik (1974) develops an international asset pricing model (IAPM) and conclude that all 

investors should hold the same portfolio of risky assets, in which currency risks are optimally hedged through the 

inclusion of forward contracts. Black (1990) extends Solnik’s IAPM model and suggests that there exists a 

“universal” hedge ratio that is optimal to all investors. Anderson and Danthin (1981) derive a risk-minimizing hedge 

ratio using unconditional variance-covariance matrix  between cash and forward price changes. Briys and Solnik 

(1992), and Lioui and Poncet (2002) derives the optimal utility-maximizing demand of forward exchange contracts to 

hedge currency risk under a continuous-time framework. Major drawback for all these models is that the hedge ratios 

are derived based on a strong assumption that the volatilities of , as well as correlations between, changes in 

underlying assets and currency forward prices remain constant over time.  

 

 

____________________ 

Readers with comments or questions are encouraged to contact the author via email. 
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 Overwhelming empirical evidences show that the volatilities, as well as the correlations, of spot and forward 

exchange price change are time-varying. See Kroner and Sultan (1991), Sheedy (1998), among many others. Ignoring 

such time-varying variance-covariance structure in estimating currency hedging demand tends to over-estimate the 

number of futures contracts required to hedge the cash position and leads to a sub-optimal mix in the composition of 

the hedged portfolio (Gagnon et al, 1998).   In order to capture the dynamic structures of conditional second moments 

of underlying asset and exchange forward price changes, recent empirical work has been centered on developing time-

varying hedging ratios utilizing conditional heteroskedasticity modeling techniques. Typically, autoregressive 

conditional heteroskedasticity (ARCH) and its variants (Engle, 1982, Bolleslev, 1986) are typically employed to 

model the dynamic structures of the conditional second moments.  

 

 Along this direction, Kroner and Claessens (1991) illustrate using GARCH techniques can improve hedging 

currency risk associated with external debt. Kroner and Sultan (1993) apply the constant-correlation bivariate 

GARCH model to currency hedge. While conditional variances of underlying assets and exchange forward prices 

change are changing over time, the conditional correlations for currency markets are assumed to be constant  in order 

for  the variance-covariance matrix to be positive definite, as proposed in Bolleslev (1990). This constant-correlation 

approach has been widely applied because of its computational simplicity.  But, financial data in exchange rates again 

show strong evidence that the assumption of constant correlation is violated for currency markets even after taking 

into account of volatility clustering (Sheedy, 1998, Tse and Tsui, 2002). To capture time-varying feature in 

conditional correlations between exchange rates, Tong (1996) and Gagnon et al (1998) adopt the BEKK multivariate 

GARCH (MGARCH) procedure of Engle and Kroner (1995). The BEKK algorithm permits time-variation in the 

conditional covariance while it ensures the condition of a positive-definite conditional variance-covariance matrix. 

However, as for currency markets, Sheedy found that “the BEKK specification is not effective in eliminating structure 

in correlation, despite the fact that it is designed to do so”. Bera et al (1997) also report that the BEKK model does 

not perform well in the estimation of optimal hedge ratios. Convergence problem with BEKK procedure (Lien et al 

2001) further limits the application of this approach. Most recently, Tse and Tsui (2002) extend the multivariate 

GARCH models to incorporate time-varying correlations as BEKK model does and yet retain the appealing feature of 

satisfying the positive-definite condition and keeping computational simplicity as found in constant-correlation model.  

In this paper, we adopt Tse and Tsui’s MGARCH specification to model time-varying conditional variance-covariance 

matrix in the estimation of optimal hedge ratios. 

 

 The objectives of this paper are two-folded. First, this paper develops a risk-minimizing model to estimate 

hedging ratios when volatilities and correlation of forward currency contracts and underlying assets are all time-

varying.  A VAR-MGARCH model is specified to estimate the conditional variance-covariance matrix. Secondly, the 

model and estimation procedure are applied to an international portfolio of the US, UK and Switzerland stocks, for 

the period of February of 1973 to March of 2002. Our empirical examples show that the optimal dynamic hedging 

strategies can capture partially the currency fluctuations. The optimal time-varying strategies greatly reduce the total 

risk and enhance the risk-adjusted returns on a portfolio with significant foreign currency exposures.  

 

 The rest of the paper proceeds as follows. Section 2 derives a conditional risk-minimizing model to estimate 

optimal hedge ratios for an international portfolio hedged with forward contracts. Section 3 specifies econometric 

model to estimate conditional variance-covariance matrix.  Data and summary statistics are described in Section 4. 

Section 5 documents the empirical estimation, Section 6 evaluates the hedging performance, and section 7 concludes 

the paper. 

 

2.  Risk-Minimizing Hedge Model 

 

 Consider an agent who has investment in domestic asset of unit 1,0 tv , and N foreign assets  of  unit 1, tkv   

( k=1 to N) at beginning of investment period t-1. The price for domestic asset is denoted as 1,0 tP and foreign assets 

as 1, tkP (k=1 to N) in foreign currency. Let spot rates for currency k be 1, tkE  expressed as the domestic currency per 

unit of the foreign currency, for k=1 to N.  We can simplify the notation by defining:  
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which simply represent foreign asset prices in domestic currency.  Without loss of generality, let domestic spot rate be 

1. Then the initial investment of the agent is equal to 
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

N

k

tktk Sv
0

1,1, and currency exposure for this un-hedged 

portfolio is 
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1

1,1, at beginning of investment period t-1. These unified notations permit any foreign 

investment instruments to be defined. In our empirical example in Section 4, foreign assets are assumed to be cash 

stock indices.  If foreign assets include cash currency holding itself, 1, tkP  can be simply set to 1 to keep the notations 

unchanged. 

 

In order to hedge the corresponding spot currency risks, the agent holds short positions of 1,  tk  ( k=1 to 

N) units in the underlying kth foreign currency forward.  The hedging ratio on currency k, 1, tkh , is defined as 

follows: 
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It is noted that 1, tkh =1 is full hedging, and 1, tkh =0 is no hedging. In a static model, this ratio stays constant over 

time. In our dynamic model, 1, tkh change over time due to the changes in variance-covariance between cash and 

forward rates over time.  

 

              The returns on underlying assets over the investment period is measured in a standard way: 
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then return on an unhedged portfolio is given by: 
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where 








 
N

k

tktk

tktk

tk

Sv

Sv
w

0

1,1,

1,1,

1,  is the weight of initial investment in asset k.  

 

A forward contract is an agreement to buy or sell foreign currency at a certain time in the future, but require no initial 

investment. Therefore, a standard way of defining rate of return is not applicable to forward contracts. However we 

can define a rate of return associated with forward contracts by measuring the difference between the return on 

portfolio with and without forward contracts.  
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The return on a portfolio hedged with currency forward contracts can be derived as follows: 
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where 

1,

1,,
,








tk
E

tk
F

tk
F

f
tk

r  is a “normalized” return on a long forward contract.  In this notation, initial cash 

currency exposure 1, tkE is used as the “base” instead of forward rate 1, tkF . This “normalized” return can be further 

decomposed as the follows: 
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where tD  and 1tD are forward discount or premium at time t and t-1 respectively.  So, 
f
tk

r
,

 is approximately equal 

to the sum of the change in forward discount/premium and return on spot exchange rate of underlying currency.  If we 

further assume that interest rate parity hold, forward discount/premium should be equal to the interest rate 

differentials of foreign and domestic countries. It is clear that both change in interest rate differentials and underlying 

spot exchange rate fluctuation will affect the 
f
tk

r
,

, and in turn the optimal hedge ratios.  

 

Let 
'
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'
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tt rrrrrrR  be the return vectors.  

 

The return on a hedged portfolio can be re-expressed in a standard matrix notation as follows: 

 

 tttp RXr '

1,  .                   (5) 

 

We first consider a utility-maximizing problem. Suppose that the agent is to select optimal weights on spot 

assets and hedging ratios on forward contracts to maximize his quadratic form utility:  
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where 1tI is the information available at time t. where the conditional variance-covariance matrix ttt I  1|  

can be partitioned as  
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where tss,  is a )1()1(  NN conditional variance-covariance matrix of cash rates of returns on both domestic 

and foreign assets, tff ,  is a NN   conditional variance -covariance matrix of the returns on currency forward 

contracts. tsf , is a NN  )1(  conditional variance-covariance matrix between the returns on cash assets and 

currency forward contracts.  

 

While this standard utility-maximization problem is easily derived, the conditional optimal solutions could 

be very instable due to the low predict power on conditional expected returns on currency forward contracts. In our 

empirical examples in section 4, all conditional mean parameters are insignificant. It suggests that forward rates may 

follow martingale processes, 0)|( 1, t

f

tk IrE . Alternatively, we focus on a risk-minimizing model. Our agent is 

assumed to minimize the risk of his total positions which is subject to exchange rate fluctuations: 
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It is noted that if the underlying asset prices and the forward rates are all following martingale processes optimal 

solutions to utility-maximization and risk-minimizing are equivalent, as indicated in Gagnon (1998).  

 

In both Models (6) and (7), we assume that hedging decision is part of investment decision. We have total 

N+1 weights for spot assets and N hedging ratios for forward contracts to be determined by system. It is clear that in 

our optimization process, forward contracts are treated equally as other asset class instruments. To investigate pure 

hedging effects, we assume investment decision has been made prior to hedging decision. Given the weights on 

underlying assets 1, tkw , the agent chooses optimal hedging ratios to minimize the risk. We also consider short 

selling restrictions the agent faces when they make hedging decision. The optimal short positions on forward currency 

derived on above models based on estimated conditional variance-covariance matrix could be extremely large. The 

hedge ratios could be well over unity. Therefore, forward currency is restricted to selling short no more than the 

exposure of the underlying currency, i.e., 1, tkh  1, for k=1 to N.  Therefore, we form our agent risk-minimizing 

problem as follows: 
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This optimization problem with inequality constraints can be solved by Kuhn-Tucker method. While numerical 

solution is easily implemented, analytical solution is referred to any standard operation research literature for brevity 

of the paper.  

 

3.  Econometric Specification 

 

Having established our hedging optimization models in last section we are now in the position to specify our 

econometric model in order to estimate conditional second moments. Our econometric model for return series 
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t is specified as the process of MGARCH with time-varying correlations introduced by Tse and Tsui (2002). 
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Conditional variance term follows a univariate GARCH(p,q) model given by the equation: 
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Conditional correlation matrix t  is generated from the recursion: 
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where it  is the ith element of the standardized residual vector ttt uD 1 . As t  is a positive definite with unit 

diagonal elements, t  will also become a well-defined correlation matrix. With assumption of conditional normality, 

),0(~| 1 ttttt DDNIu  , the conditional maximum likelihood estimation procedure can be employed to estimate 

all parameters. This time-varying correlation MGARCH model specification (Tse and Tsui, 2002) incorporates time-

varying correlations and yet retains the appealing feature of satisfying the positive-definite condition and keeping 

computational simplicity as found in constant-correlation MGARCH model.   

 

4.  Data Description 

 

 In our empirical analysis we considered three markets, the United States as domestic market, and the 

United Kingdom and Switzerland as foreign markets. All data are monthly observations from February of 1973 

through May of 2002, covering the entire period of the post Bretton Woods system in that the exchange rates of all the 

industrial countries are free to float independently. Unlike many previous work in literature in that they use daily data, 

we use monthly data to conduct hedging strategies. This seems closer to hedging practice where rebalancing hedging 

positions rarely take place in daily bases. Monthly spot and one-month forward exchange rates, Great Britain Sterling 

(GBP) forward and Swiss Franc (SWF) forward, were obtained from the OECD-MEI database. All exchange rates are 

expressed as the U.S. dollar (domestic currency) per unit of the foreign currencies.  

  

 To examine pure hedging effect, the underlying asset weights for unhedged portfolio has been ad hoc 

determined prior to hedging decision. In our empirical examples, the portfolios considered compose of the United 

States stocks as domestic assets, and United Kingdom and Switzerland stocks as foreign assets. We construct three 

equity portfolios, (1) the US and the UK stock (denoted as US-UK portfolio), (2), the US and Switzerland stocks (US-

SW), and (3) the US, the UK and Switzerland stocks (US-UK-SW).  Constant-mix strategies are adopted to form the 

unhedged portfolios. Without loss of generality, we assume that the compositions are 50% each in US and UK  stocks 

in US-UK portfolio, 50% each in US and Switzerland  stocks in US-SW portfolio, and 50% in US stock and  25% 

each in the UK and Switzerland stocks in US-UK-SW portfolio. Correspondingly, three hedging strategies are 

estimated: (1) hedging by short selling GBP forward in US-UK portfolio, (2) hedging by short selling SWF forward in 

US-SW portfolio,  (3) Hedging by short selling both GBP and SWF forward in US-UK-SW portfolio. 

 

 Morgan Stanley Capital International (MSCI) country indices are used as the proxies to represent the stock 

returns of each country’s equity market.  MSCI country indices are all measured in local currency. We transfer the 

return data in local currency into returns in US dollar by following transformation: 
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or alternatively, 
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continuous compounding framework.   

 

 Table 1 reports summary statistics. The first two rows of the table show the unconditional sample means 

and standard deviations of all data series. All series show strong excess kurtosis, while skewness seems not strong 

except MSCI-UK index. Unconditional correlations are reported in Table 2. The low correlations between MSCI-US 

cash index and GBP forward/SWF forward indicates GBP forward/SWF forward can have strong diversification 

effects on portfolio as well as the hedging effects on portfolio’s currency exposures. The high correlation between 

GBP forward and SWF forward implies a possible benefits using multivariate GARCH model instead of univariate 

and bivariate GARCH models.  

 

 
Table 1 

Summary Statistics 
The returns on MSCI-US, MSCI-UK, and MSCI_SW are all in US dollar, which are derived from returns in local currency and spot exchange 

rates. E.g. return 1,/)1,,()1,/,(*)(,)(,  tGBPEtGBPEtGBPEtGBPEtGBPEGBP
s

tkrUSD
s

tkr . The returns on USD/GBP forward 

and USD/SWF forward are calculated as the “normalized” return described in section 2. E.g., 
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       MSCI-US MSCI-UK($) MSCI-SW($) GBP-forward SWF-forward 

Mean 0.01040 0.01175 0.01115 -0.00113 0.00240 

Standard Deviation 0.04538 0.06952 0.05542 0.03083 0.03635 

Kurtosis 2.02796 11.75931 1.53655 1.73901 0.60925 

Skewness -0.28963 1.45450 -0.03184 0.01754 -0.02469 

 

 
Table 2 

Unconditional Correlations 
    The returns on MSCI-US, MSCI-UK, and MSCI_SW are all in US dollar, which are derived from returns in local currency and spot exchange 

rates. E.g. return 1,/)1,,()1,/,(*)(,)(,  tGBPEtGBPEtGBPEtGBPEtGBPEGBP
s

tkrUSD
s

tkr . The returns on USD/GBP forward 

and USD/SWF forward are calculated as the “normalized” return described in section 2. E.g., 
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tGBPFtGBPFf
tGBPr . 

 

  MSCI-US MSCI-UK($) MSCI-SW($) GBP-forward SWF-forward 

MSCI-US 1.00000 0.52936 0.50701 0.00904 (0.05537) 

MSCI-UK($) 0.52936 1.00000 0.57230 0.41319 0.19892 

MSCI-SW($) 0.50701 0.57230 1.00000 0.34067 0.47207 

GBP-forward 0.00904 0.41319 0.34067 1.00000 0.61305 

SWF-forward (0.05537) 0.19892 0.47207 0.61305 1.00000 

 

 

 

 

5.  Model Estimation  
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Estimation results of conditional mean and variance-covariance parameters in the VAR-MGARCH model 

specified in Section 3 are reported in Table 3. We report here only statistically significant estimates. First, we look at 

conditional mean parameters. It shows that none of AR coefficients in SWF forward is significant, and only intercept 

of GBP forward is significant. It suggests that both GBP forward and SWF forward may evolve as either a martingale 

process or martingale with drift.  While the MSCI-US return has no statistically significant time-varying terms, the  

MSCI-UK and MSCI-SW appear to be AR(2) processes. For the conditional second moments, all GARCH(1,1) 

coefficients are significant at 95% confidence level, as reported in Table 3.  

 

 
Table 3 

Estimation Results Of Conditional Mean And Variance-Covariance Parameters In VAR-MGARCH Models 

Conditional Gaussian maximum likelihood estimation procedure is used to estimate VAR-GARCH model: tuitr
s

i
itr 




1
 , where 

0)( tuE , ItuVar
2

)(  , and ttItuVar  )1|( , with tDttDt  . Conditional variance term follows an univariate GARCH(p,q) 

model given by the equation ,
2
,

1

2
,

1

2
mti

q

m
imcmti

p

m
imbiait 





    i=1,2,…2N+1, and conditional correlation matrix t  is generated 

from the recursion 1211)211(  ttt   (Tse and Tsui, 2002). The standard errors are included in parentheses.  

 

 
 MSCI-US MSCI-UK MSCI-SW GBP Forward SWF Forward 

 
  

0.01046 0.01173 0.00807 -0.00156   

 (0.00228) (0.00231) (0.00224) (0.00071)  

1  
 -0.04196    

  (0.0233)    

2  
 0.11742 0.08221    

  (0.0479) (0.0415)   

a 0.00011 0.00013 0.00018 0.00002 0.00014 

 (0.00006) (0.00004) (0.00009) (0.00001) (0.00007) 

b 0.06022 0.09989 0.12851 0.06640 0.09428 

 (0.02760) (0.02281) (0.04961) (0.02493) (0.04412) 

c 0.88771 0.89783 0.80245 0.90992 0.80010 

 (0.06112) (0.02301) (0.06853) (0.03750) (0.10673) 

 US-UK-GBP US-SW-SWF US-UK-SW-GBP-SWF     

1  
0.93762 0.94710 0.97366   

 (0.00781) (0.00903) (0.01597)   

2  
0.03550 0.02556 0.01356   

 (0.00585) (0.00731) (0.00313)     

 

  

 

 The conditional volatility of USD/GBP forward, and conditional correlation between USD/GBP forward and 

USD/SWF forward estimated from MGARCH model from Table 3 are reported in Figures 1 and 2. The results show 

clearly that both volatility and correlation are changing over time. Similar time-varying properties for conditional 

correlations between USD/GBP forward and MSCI-UK cash index, and between USD/GBP forward and MSCI-SW 
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cash index are also obtained, as reported in Figures 4. The conditional correlation between USD/GBP forward and 

MSCI-US cash index also changes over time as shown in Figure 3, even though they seems uncorrelated 

unconditionally as reported in Table 2.  

 

 
Figure 1 

Conditional Volatility Of USD/GBP Forward 
Conditional volatilities of the returns on USD/GBP forward are estimated using MGARCH model described in Section 3. All parameters estimated 

are displayed in Table 2. The returns on USD/GBP forward are calculated as the “normalized” return described in section 2. E.g., 
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Figure 2 

Conditional Correlation Between USD/GBP Forward And USD/SWF Forward 
Conditional correlations between the returns on USD/GBP forward and USD/SWF forward are estimated using MGARCH model described in 

Section 3. All parameters estimated are displayed in Table 2. The returns on USD/GBP forward and USD/SWF forward are calculated as the 

“normalized” return described in section 2. E.g., 
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Figure 3 

Conditional Correlation Between USD/GBP Forward And MSCI-UK Cash Index (In UD Dollar) 



Journal Of Business And Economics Research                                                                          Volume 1,  Number 4 

  86 

Conditional correlations between the returns on USD/GBP forward and MSCI-US cash index are estimated using MGARCH model described in 

Section 3. All parameters estimated are displayed in Table 2. The returns on MSCI-US cash index are calculated as 
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,
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tUSr , 

and the returns on USD/GBP forward are calculated as the “normalized” return, i.e., 
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Figure 4 

Conditional Correlation Between USD/GBP Forward And MSCI-US Cash Index 
Conditional correlations between the returns on USD/GBP forward and MSCI-US cash index are estimated using MGARCH model described in 

Section 3. All parameters estimated are displayed in Table 2. The returns on MSCI-US cash index are calculated as 
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and the returns on USD/GBP forward are calculated as the “normalized” return, i.e., 
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6.  Hedge Ratios And Hedging Performance 

 

 The optimal time-varying hedging ratios in three equity portfolios are estimated based on risk-minimizing 

model (8) in Section 2. We assume that the compositions are 50% each in US and UK  stocks in US-UK portfolio, 

50% each in US and Switzerland  stocks in US-SW portfolio, and 50% in US stock and  25% each in the UK and 

Switzerland stocks in US-UK-SW portfolio. The results are reported in Table 3. In US-UK portfolio, average optimal 

hedge ratio for GBP forward contracts is 0.75 and standard deviation of 0.22. Hedging is recommended all the time 

over the period 1973-2002.  

 

 In Figure 5, dynamic optimal hedging ratios for GBP forward in US-UK portfolio is illustrated. It appears 

that neither always-full-hedge nor never-hedge is optimal, and a portfolio with significant Sterling exposure should be 

hedged all the time. If ignoring speculative investment in GBP forward, hedge ratios are non-negative. Therefore, an 

effective dynamic hedging strategy is to fully hedgy when foreign currency is depreciating, and no hedgy or reducing 

hedging position when currency is appreciating. The effectiveness of our optimal hedge strategy is illustrated in 

Figure 6. Our optimal hedging strategy has successfully captured partial GBP rate fluctuations. In middle of 70s, GBP 

experiences years long depreciation, the hedgy ratios are increasing gradually to almost full hedging level. Hedging 

stays high during the period 1980-85 when GBP further depreciates. From 1987-90, GBP appreciates a bit, the hedgy 

ratio is moving down and stays low for this period. Starting year 2000, GBP depreciates continuously, the hedgy ratio 

again increases to reduce the risk from the GBP depreciation. The results are not particularly surprising. A GARCH-

type model has reasonable power to predict future conditional variance and covariance that show strong clustering 

effects, as documented widely in the literature. We also observe that the conditional volatilities of exchange rate 

significant increase as that currency experiences sharp depreciations. This dynamic structure is estimated using 

multivariate GARCH model and incorporated through the risk-minimizing model into the hedging strategy.  

 

Slightly different features are observed in SWF forward hedging in US-SW equity portfolio. The average 

hedge ratio for SWF forward decreases to 0.52, with standard deviation of 0.35, as shown in Table 3. While a 

portfolio with exposure to Swiss Franc needs to be hedged 85% of the time, the dynamic hedge strategy suggests that 

15% of the time should be unhedged or even long SWF forward contract (we denoted as “reverse hedge”) to capture 

the gain from SWF appreciations during the sample period. This seems to be consistent with the fact that nominal 

Swiss Franc appreciates 86%, while GBP depreciates 43% during the period of 1973-2002.  In our US-UK-SW equity 

portfolio, hedging positions on both GBP forward and SWF forward are reduced comparing with that in US-UK and 

US-SW portfolios. This occurs as a result of diversification effects. The total currency risk is lower by investing both 

UK and SW stocks than that investing in either UK or SW stocks only, as shown in Table 4. Therefore, the forward 

contracts are less demanded for hedging the currency risk.  

 

 
Table 3 

Hedge Ratios 
The optimal hedgy ratios for GBP forward and SWF forward in three equity portfolios are estimated based on risk-minimizing model (8) in Section 

2. The three portfolio compositions are 50%-50% in US-UK portfolio, 50%-50% in US-SW portfolio, and 50%-25%-25% in US-UK-SW 

portfolio. Average ratios are arithmetic average of hedge ratios.  Hedged percentage is the ratio of number of the month in that the hedge ratio is 

positive to total sample months. Unhedged percentage is the ratio of total number of unhedged month to total sample months. Reverse hedged 

percentage is the ratio of total number of negative-hedge-ratio month to total sample months. 

 
  GBP forward SWF forward GBP forward SWF forward 

  In US-UK portfolio In US-SW portfolio In US-UK-SW portfolio 

Average 0.75 0.52 0.63 0.29 

Standard deviation 0.22 0.35 0.31 0.25 

Hedged  100% 85% 83% 69% 

Unhedged 0% 9% 12% 16% 

Reverse Hedged 0% 6% 5% 15% 

 

 

Figure 5 



Journal Of Business And Economics Research                                                                          Volume 1,  Number 4 

  88 

Time-Varying Hedging Ratios 
The optimal hedgy ratios for GBP forward in US-UK equity portfolios are estimated based on risk-minimizing model (8) in Section 2. The portfolio 

compositions are 50% each in MSCI-US and MSCI-UK indices. 

 

               

                  
Figure 6 

Hedging Ratios Vs. GBP Rates 
The optimal hedgy ratios for GBP forward in US-UK equity portfolios are estimated based on risk-minimizing model (8) in Section 2. The portfolio 

compositions are 50% each in MSCI-US and MSCI-UK indices. GBP rates denote the spot GBP/USD exchange rates.  
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 We now proceed to investigate the performances of our dynamic hedging strategies. In Table 4, we report the 

performances of our dynamic hedging strategy as well as three alternative static counterparts. Unhedged strategy is 

referred to 01, tkh  strategy. Under this strategy, one never short or long forward contracts to cover currency risk. 

Fully hedged strategy is referred to 11, tkh  strategy, and Universal hedge is referred to Black’s (1990) “universal” 

hedging strategy. We adopt Black’s empirical estimation, 7.01, tkh  in this analysis. Currency risk is the 

incremental risk due to the currency exposure by investing foreign assets, MSCI-UK and MSCI-SW stock indices in 

our case. It is measured by the difference of portfolio risks with and without exchange rate fluctuations. By 

construction, currency risk is only around 5% of the total portfolio risk in our examples. In order to examine the 

effectiveness of risk hedging strategies, we define the Risk Reduction as the percentage of incremental risk reduction 

due to the forward contracts to the total currency risk. We first look at the risk reduction effects. It shows that overall 

all strategies reduce significantly the currency risks.  In both US-SW and US-UK-SW portfolios, universal-hedge 

strategy performs better than full-hedge strategy, while full-hedge does slightly better than universal-hedge in US-UK 

portfolio. On the other hand, our dynamic hedge appears to dominate all its static counterparts.  In all three portfolio 

examples, the dynamic strategy can eliminate more than 90% of currency risk. Approximately, all currency risk in 

US-SW portfolio can be hedged away using SWF forward contracts.  

 

 
Table 4 

Performance Of Hedged Portfolios 

Four strategies are: 1) Unhedged strategy, 01, tkh , 2) Universal hedge, 7.01, tkh , (3) Fully hedged strategy, 11, tkh  strategy, and 

(4) Dynamic hedge is referred to the time-varying optimal hedge estimated based on risk-minimizing model (8) in Section 2. The three portfolio 

compositions are 50%-50% in US-UK portfolio, 50%-50% in US-SW portfolio, and 50%-25%-25% in US-UK-SW portfolio. Currency risk is the 

incremental risk due to the currency exposure by investing foreign assets, MSCI-UK and MSCI-SW stock indices in our case. It is measured by the 

difference of portfolio risks with and without exchange rate fluctuations. The Risk Reduction as the percentage of incremental risk reduction due to 

the forward contracts to the total currency risk. The US risk-free rate, 6.56% during the period of 1973-2002, is used to calculated Shape ratios.  

       
  Mean return Standard deviation Currency risk Risk reduction Sharpe ratio 

      

 US-UK equity portfolio 

Unhedged 1.194% 5.067% 0.252% 0.0% 0.128 

Universal hedged 1.229% 4.874% 0.060% 76.4% 0.140 

Fully hedged 1.243% 4.865% 0.050% 80.1% 0.143 

Dynamic hedged 1.255% 4.832% 0.017% 93.2% 0.147 

      

 US-SW equity portfolio 

Unhedged 1.152% 4.365% 0.141% 0% 0.139 

Universal hedged 1.075% 4.239% 0.015% 89.2% 0.125 

Fully hedged 1.057% 4.272% 0.048% 65.8% 0.120 

Dynamic hedged 1.133% 4.226% 0.002% 98.4% 0.139 

      

 US-UK-SW equity portfolio 

Unhedged 1.173% 4.489% 0.158% 0% 0.139 

Universal hedged 1.147% 4.354% 0.024% 85% 0.138 

Fully hedged 1.135% 4.375% 0.045% 72% 0.135 

Dynamic hedged 1.159% 4.338% 0.007% 95% 0.141 
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 While currency risks are substantially reduced using hedge strategies, one concern is that returns on hedged 

portfolios may also decrease. In both portfolios with Swiss Franc currency exposure, all hedged portfolios have lower 

returns than the unhedged portfolios. This is partially due to the fact that nominal Swiss Franc appreciates 86% over 

the sample period, 1973-2002. The return on the portfolio hedged with short forward contracts is certainly lowered by 

short selling SWF forward contracts on average. However, it seems to be fair to examine the efficiency of risk 

reduction hedging based on the Sharpe ratios that measure the risk-return tradeoffs of the portfolios. We define an 

efficient hedging strategy based on the comparison of the Sharpe ratios of a portfolio with and without adding 

hedging positions on. Hedging is considered to be efficient if it increases or at least does not decrease the Sharpe ratio 

of a portfolio. Overall, there is no consistent evidence that universal-hedge and full-hedge are efficient. Both 

universal-hedge and full-hedge are efficient in US-UK portfolio, but not efficient in both portfolios with investing in 

SW stocks when the Sharpe ratios are substantially lower than the unhedged portfolios. On the other hand, the 

evidence on the efficiency of the dynamic strategy is more consistent. It is efficient in all three portfolios. In US-UK 

portfolio, it enhances the risk adjusted returns, from 0.128 to 0.147, which is a substantial increase considering that 

the total currency risk contributes only less than 5% of return variations, by construction, of the unhedged US-UK 

portfolio. The dynamic hedging strategy overperforms its static counterparts in terms of efficiency.  One concern 

usually associated with time-varying investment strategy is the potential high transaction cost. However, in the 

currency hedging, transaction cost for currency forward contracts is very minimal, about 0.005% of face value of  

forward contracts,  and above all, only monthly rebalancing is needed in our examples based on monthly data series. 

 

 Overall, our empirical examples show that the dynamic hedging strategy overperforms its static counterparts, 

adding an optimal combination of forward contracts based on a risk-minimizing model reduces more than 90% of 

currency risk and enhances the risk-return tradeoffs in all three equity portfolios.  

 

7.  Conclusion 

 

This paper examines time-varying currency hedging strategies using currency forward contracts. While 

currency risk hedging is extensively studied in the literature, this paper establishes a simple conditional risk-

minimizing procedure based on MGARCH model with time-varying correlations. The MGARCH model specification 

(Tse and Tsui, 2002) adopted in this paper incorporates time-varying correlations and yet retains the appealing feature 

of satisfying the positive-definite condition and keeping computational simplicity as found in constant-correlation 

MGARCH model.  Our empirical examples show that the optimal dynamic hedging strategies can capture partially 

the currency fluctuations, and overperforms its static counterparts. The optimal dynamic strategies greatly reduce the 

currency risk and enhance the risk-adjusted returns on the portfolio with significant foreign currency exposures.   
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