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Abstract 

 
According to the mixture of distributions hypothesis (MDH), a serially correlated mixture of 

variables measuring the rate at which information arrives to the market explains the GARCH 

effects in stock returns. While reasonable amount of empirical evidence supports this hypothesis 

for developed, highly liquid stock markets in industrial countries, the current literature does not 

provide much findings for stock markets in countries that have recently experienced the transition 

from economic planning to capitalism. Hence, the purpose of this paper is to provide a first piece 

of evidence for one of the newly created stock market, the Russian stock market. Examination of 

the relationship between risk, returns, volatility and volume existing in the Russian stock market 

provides evidence in support of the MDH and suggests that even in emerging and turbulent 

markets risk and returns are jointly integrated to the flow of information arriving to the market. 

 

 

1.  Introduction 

 

Much of the recent interest in econometrics and empirical finance has centered on modeling the temporal 

variation in financial markets’ volatility. Particularly instrumental to these developments has been the autoregressive 

conditional heteroskedasticity (ARCH) model introduced by Engle (1982) and the extension by Bollerslev (1986) to 

its generalized version (GARCH). There is overwhelming evidence of temporal variation in conditional variability 

of asset returns in industrialized Western economies. Bollerslev, Chou and Kroner, (1992) survey the empirical 

evidence that shows that this class of models is able to capture many empirical regularities of asset returns, such as 

thick tails of unconditional distributions, volatility clustering, negative correlation between lagged returns and 

conditional variance, and positive relation between expected returns and their conditional volatility.  

 

One hypothesis that has been fairly successful in explaining the success of the GARCH class of models has 

been the mixture of distributions hypothesis (MDH) (Clark, 1973, Epps and Epps, 1976, Tauchen and Pitts, 1983, 

Lamoureux and Lastrapes, 1990). According to the MDH, a serially correlated mixing variable measuring the rate at 

which information arrives to the market explains the GARCH effects in asset returns. This linkage has been 

documented, among others, for the US stock market (Lamoureux and Lastrapes, 1990, Kim and Kon, 1994, Gallo 

and Pacini, 2000), the UK stock market (Omran and McKenzie, 2000), and the Australian stock market (Brailsford, 

1996). In general the bulk of the empirical studies have found support that the inclusion of trading volume in 

GARCH models for stock returns results in a decrease of volatility persistence or even causes it to become 

insignificant.  However, while there is a fair amount of empirical evidence on the relationship between returns, 

volume and volatility for well developed stock markets, the current literature does not provide, with the exception of 

Bohl and Henke’s (2002) analysis of a group of Polish stocks, much empirical findings on this issue for emerging 

markets, and in particular for markets in transition economies. 

 

The purpose of this paper is to provide some empirical evidence on the issue of the interrelationship 

between returns, risk, volume and volatility for one of the emerging stock markets in Eastern Europe, namely the 

Russian stock market. Russia has two major stock exchanges located in Moscow, the Moscow Central Stock 

Exchange (MCSE) and the Moscow International Stock Exchange (MISE), and a number of regional exchanges.  In 
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addition, in 1994 Russia established an “over the counter” trading system in the form of the Russian Trading System 

(RTS), which has become one of the largest and most important stock exchanges in Russia. Since September 1, 1995 

there has been a daily calculation of the RTS index, which is the official index of the Russian Trading System. The 

RTS index includes a listing of stocks of principally the largest and most liquid Russian companies, and is published 

on line at the RTS web server at www.rts.ru, where a detailed description of the methodology of the index 

calculation can be found. The RTS index is a dollar-denominated weighted index which, due to the methodology of 

calculation, is much more stable with respect to sharp fluctuations of a single stock price. The historical dynamics of 

the index reflects the general trends of the Russian stock market developments. From its inception in 1995 to the 

present, the index has experience two strong opposite movements: the rise in 1996-1997, connected with the general 

development of the Russian financial system and expectations for the quick revival of the market economy, and the 

fall in 1997-1998 caused by the Asian economic crisis in 1997, which reflected the generalized shift of investors 

from emerging markets, and the Russian financial crisis in 1998, caused by the default of the Russian State Treasury 

bonds (GKO), when the financial system of the country was practically paralyzed. After those tempestuous changes 

however, the market became more stable and toward the end of 1999 started steadily rising. The Russian stock 

market has been analyzed at length in recent years, but mainly from the viewpoint of market efficiency (Rockinger 

and Urga, 2000, Urga, Estrin and Lazarova, 2001, Urga and Rockinger, 2001, Hall and Urga, 2002). This paper 

contributes to this growing body of research on transition economies by providing some empirical evidence on the 

mechanisms at work in the Russian stock market that cause volatility clustering, and the interrelationships between 

returns, risk, volatility and volume. This analysis, in turn, allows us to answer the question of whether significant 

differences exist between the findings that have been documented for well-developed Western financial markets and 

the newly created markets of Eastern Europe, which are emerging as a result of the transition from economic 

planning to capitalism. 

 

The rest of the paper is organized as follows: Section 2 outlines the MDH hypothesis and presents the 

structure of the theoretical models. The specification of the alternative models used in the empirical analysis is 

outlined in Section 3. The empirical results are contained in Section 4. During the period under investigation, the 

Russian economy, and consequently the Russian stock market, has been subjected to a variety of economic and 

political shocks, such as the stock market crash of 1997, the Russian financial crisis of 1998, and the political 

odyssey culminating with the resignations of Yeltsin in 1999.  Consequently, we present empirical findings for both 

the entire period and four sub-periods corresponding to these fundamental events. Section 5 summarizes the main 

conclusions. 

 

 

2.  The Mixture of Distributions Hypothesis 

 

According to the mixture of distributions hypothesis (MDH), the innovation on returns t is a linear 

combination of intraday returns movements, i.e.: 

t = 


tn

1i

it (1) 

 

where it is the intraday return increment in day t due to information flows arriving into the market and nt is the 

number of information arrivals within a given day. Each it is assumed to be an independent identically distributed 

random variable with mean zero and variance 
2
, i.e. it is N (0, 

2 
). Since the number of intraday price increments 

is random, daily returns follow a mixture of normally distributed random variables with nt as the mixing variable. 

Thus, according to equation (1), the daily return rt is generated by a subordinate stochastic process in which rt is 

dependent on it and the mixing variable nt is the directing process. Under the assumption that the number of 

information arrivals nt follows an autoregressive process, i.e.: 

 

nt = 0 + 1(L)nt-1 + ut (2) 

 

http://www.rts.ru/
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where 1(L) is a polynomial in the lag operator L and ut an error term. The conditional variance of the daily returns 

can be represented as: 

 

)n|E(rσ t

2

 t

2

t
n|

t
r   (3) 

 

Substituting the autoregressive process in equation (2) into equation (3) yields: 
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Equation (4) illustrates the fundamental feature of the MDH, i.e. that the autoregressive structure of the 

mixing variable nt is translated into the GARCH structure of the conditional variance of the returns. The more 

information flows (news) arrive into the market, the more traders will interpret the effects of such information flows 

differently, and the more they will have an incentive to trade as their expectations on future returns diverge. 

Following this argument, the GARCH behavior of the daily stock returns is generated by a serially correlated 

information flow process, where information arrivals can be proxied by the volume of trade (Lamoureux and 

Lastrapes, 1990), i.e.: 

 

vt = (nt) (5) 

 

which implies that the conditional variance h
t

2  of the daily returns takes the form: 

 

h
t

2  
= 0 + 1(L)

1t

    2


+ 1(L)h

1t

    2


 + γvt (6) 

 

where 1(L) and 1(L) are polynomials in the lag operator L, and vt is a measure of trading activity. Equation (6) 

models the variance of unexpected returns as a GARCH process with daily trading activity vt as a proxy for the 

number of information flows arrivals but does not differentiate on the type of information flows into the market. A 

further insight into the MDH can be obtained by assuming that qualitatively different types of information flows 

cause different innovations in returns. This suggests decomposing t into positive (good news) and negative (bad 

news) innovations in daily returns (Depken, 2001).  This leads to the alternative formulation: 

 

t  = 




tn

i 1


+

it + 




tn

i 1


-
it (7) 

 

where 

tn  is the number of positive information flows into the market and 



 tn  is the number of negative 

information flows into the market on a given day, and, correspondingly,  
+

it  and 
-
it are the intraday return 

increments due to good news and bad news on day t. Letting  

 

vt =  ( 


 tn , 


 tn ) =  1(


 tn ) + 2(


 tn ) (8) 

 

with 

tv  1(


 tn ) and 

tv  2(


 tn ) representing positive and negative changes in the trading volume due 

respectively, to positive and negative news, yields an alternative specification of the conditional variance of the 

returns: 

 

h
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3.  Model Specification 

 

In order to analyze the GARCH structure of the RTS index return and to test the MDH, we need to specify 

the mean and variance equations. Researchers have used different specifications for the mean equation, with and 

without in-mean effects. One of the most common mean equations of returns is the ARCH-M model of Engle, Lilien 

and Robins (1987) and its immediate generalization, the GARCH-M model, which has been frequently used in 

empirical studies of stock markets (Elysiani and Mansur, 1998, Black and Fraser, 1995) to model the intertemporal 

relation between risk and returns. The reported findings on the relationship between risk and returns, however, are 

somewhat conflicting. Glosten, Jagannathan and Runckle (1993), as well as Nelson (1991), for example, find a 

negative relationship between risk and returns, while Campbell and Hentschel (1992) conclude that the data are 

consistent with a positive relation between returns and conditional variance. In addition, in order to carry out our 

analysis we need to choose a form for the mean equation. Researchers have suggested different specifications. 

Hentschel (1995) modeled returns as a white noise process. Nelson (1991), as well as Corhay and Rad (1994), 

instead, used an AR(1) specification, while Ding, Engle and Granger (1993) used an MA(1) specification.  

Following Karanasos and Kim (2000), we adopt two specifications for the mean equation:  an AR(1) and an MA(1) 

specification with in-mean effects, resulting in two conditional mean equations of the returns: 

 

rt
  
= ф0 + ф1 rt-1 +  h

t

2
+ t , (10) 

 
rt = 0 +  1t-1 +  h

t

2
+ t , (11) 

 

In both equations (10) and (11), the conditional variance is allowed to influence the conditional mean, 

resulting in a time-varying risk premium, which is parameterized as h
t

2
, with measuring the relative degree of 

risk aversion.  The distribution of the stochastic error t conditional on the realized values of the set  

Ωt-1 = {t-1,…,t-q} is assumed approximately normal with mean zero and variance h
t

2
, i.e.,  t│Ωt-1 ~ N(01, h

t

2
).  For 

the variance equation, we examine three alternative specifications. The first is the standard Bollerslev’s 

GARCH(1,1) model: 

 

h
t

2
= + 

1-t

   2
+ 1h

1-t

   2
 (12) 

 

where , , and   > 0, and  +   < 1 to ensure stationarity of the return process and positivity of the conditional 

variance. The persistence of the conditional variance is measured by the value of  + . The volatility process 

becomes more persistent as  +  approaches one. The second specification augments equation (12) by the change 

in trading volume as an exogenous explanatory variable: 

 

h
t

2
= + 

1-t

    2
 +  1h

1-t

    2
 + γvt (13) 

 

The variance specification in equation (13) incorporates a direct test of the MDH. The test can be performed either 

by examining the statistical significance of γ, or conducting a likelihood ratio test of (12) against (13). Finally, the 

third specification decomposes vt into its positive and negative components, respectively: 

 

h
t

2  
= 0 + 1

1t

    2


 + 1h

1t

    2


+ γ1D1, t vt + γ2D2, t vt  (14) 

 

where D1, t and D2, t  are dummy variables designed to capture, respectively, the positive and negative components of 

vt ( D1, t = 1 when vt > 0 and 0 otherwise and, similarly, D2, t = 1 when vt < 0 and 0 otherwise). This parametric 

specification tests the hypothesis that positive and negative changes in trading volume affect asymmetrically the 

conditional variance of the returns. A test of symmetry of the effects of positive and negative volume can be 

conducted using a Wald test of equality of γ1 and γ2.  

 

In summary, the two specifications of the mean equation combined with the three specifications of the 

variance equation yield the following six models: 1) AR(1)-GARCH(1,1) in mean (equations (10) and (12));  
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2) MA(1)-GARCH(1,1) in mean (equations (11) and (12)); 3) AR(1)-GARCH(1,1) in mean with volume (equations 

(10) and (13)); 4)  MA(1)-GARCH(1,1) in mean with volume (equations (11) and (13)); 5)AR(1)-GARCH(1,1) in 

mean with decomposed volume (equations (10) and (14)); 6) MA(1)-GARCH(1,1) in mean with decomposed 

volume (equations (11) and (14)). The variance specification in equation  (12) is a special case of equation (13), with 

the coefficient on the change in trading volume γ constrained to zero. In turn, the variance specification in equation 

in (13) is a special case of equation (14), which relaxes the restriction γ1 = γ2. Thus, the AR(1)-GARCH(1,1)-M and 

MA(1)-GARCH(1,1)-M represent the (restricted) benchmark models, against which the remaining (unrestricted) 

models can be used to test both the validity of the MDH and the hypothesis of asymmetrical effects.  

 

 

4.  Empirical Results 

 

For the purpose of empirical analysis, the daily return on the RTS index is defined as  

rt = 100*ln(RTSt / RTSt-1), where RSTt denotes the value of the Russian Trading System index at the close of day t. 

Similarly, the daily change in trading volume is defined as vt = 100*ln(volt / volt-1) where volt  indicates the total 

trading volume (denominated in billions of dollars) at the close of day t. Summary statistics for the RTS returns are 

reported in Table 1 for both the full sample period (September 1, 1995 to December 31, 2002) and four sub-periods, 

since the Chow breaking point test on the AR(1) and MA(1) specifications of the returns equation rejected the 

hypothesis of parameter stability over the full sample. For the AR(1) specification the LR test produced a χ
2
 value of 

25.78, while the corresponding value for the MA(1) specification was 34.0. These values are well above the critical 

value of the χ
2
 distribution with 6 degrees of freedom.  The first sub-period spans the interval from September 

1,1995 until the Russian stock market crash on October 28, 1997. The next sub-period starts on October 29, 1997 

and ends on August 19, 1998, one week before the Russian financial crisis of August 27, 1998. The third sub-period 

includes the Russian financial crisis and its aftermath, from the various economic reform “packages” to the dramatic 

erosion of political power of the Yeltsin presidency, and runs from August 20, 1998 until December 30, 1999. 

Finally, the last period starts on December 31, 1999, the day the Putin presidency began, following the Yeltsin 

resignation, and ends on December 31, 2002.  

 

Inspection of Table 1 reveals that the RTS returns behave in a complex manner. The mean of the RTS 

returns ranges from -0.8085 percent in the second sub-period (after the stock market crash) to +0.2808 percent in the 

first sub-period (before the crash), even though over the entire period is not significantly different from zero. 

Similarly, the standard deviation of the RTS returns varies from 4.4509 per cent in the second sub-period to 2.5734 

per cent in the forth sub-period (the Putin presidency).  As Table 1 clearly indicates, the distribution of the RTS 

returns is skewed and leptokurtic. Skewness, however, is not significantly different from zero in the second and third 

sub-periods, based on the standard error computed as (6/N)
1/2 

where N is the number of observations.  In the first and 

third sub-periods, instead, the coefficient is significantly different from zero and negative. This finding is similar to 

what has been found in well-established markets, such the U.S. and the Japanese stock market, where returns display 

negative skewness (Ding and Granger, 1996). Excess kurtosis, on the other hand, is significantly different from zero 

in the full sample as well as in the four sub-periods, based on the standard error calculated as (24/N)
1/2

, suggesting 

that the distributions of the RTS returns have thicker tails than the normal distribution irrespective of the chosen 

period. The Jarque-Bera test upholds the non-normality of the returns in both the full sample and each of the four 

sub-periods. This comes as no surprise, as it is a common finding in empirical work that the distribution of most 

financial returns is non-normal. Although not reported, the Lilliefors (D), Cramer-von Mises (W2), Watson (U2), 

and Anderson-Darling (A2) tests further confirm the (unconditional) non-normality of the RTS returns. The Ljung-

Box Q-statistics indicate that the RTS returns are highly serially correlated over the full sample period. However, 

when the sub-periods are individually considered, a different picture emerges. In particular, the RTS returns show a 

high degree of serial correlation only in the first and third sub-periods, thus confirming Urga and Rockinger’s (2001) 

findings of parametric instability of the autoregressive component of the returns. The highest positive 

autocorrelation is observed in the first and third sub-periods, with a first-order autocorrelation coefficient of 0.213 

and 0.228, respectively. This indicates that about 5 per cent of the RTS daily returns variation is predictable using 

only the preceding day’s returns. This is contrary to most theoretical models of market efficiency, which generally 
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require returns to be serially uncorrelated, and may be the observed effect of non-synchronous trading, time-varying 

risk premia, or profit taking (Boudoukh et al., 1994). The second-order autocorrelation coefficient is not statistically 

significant, based on Bartlett’s standard error, in any of the sub-periods and in the full sample. Although not 

reported, there are no signs of any consistent higher-order return autocorrelation. The Ljung-Box Q-statistics for the 

squared returns indicate that higher order moment temporal dependencies are present, even at high lags, which is a 

sign of ARCH effects (Bollerslev, Chou and Kroner, 1992). The existence of serial correlation in vt is essential for 

any test of the MDH, since the MDH implies that serial correlation in vt causes conditional heteroskedasticity in rt, 

and the Ljung-Box Q-statistics in Table 2 indicate that vt is highly correlated both in the full sample and the four 

sub-samples. In addition, the Ljung-Box Q-statistics for vt squared suggest the presence of ARCH effects also in vt  

with the exception of the second sub-period. Finally, Tables 1 and 2 present the results of the augmented Dickey-

Fuller (ADF) and Phillips-Perron (PP) tests for a unit root in rt and vt. The augmented Dickey-Fuller regressions 

contain a constant term and their augmentations are determined according to the Schwarz-Bayes information 

criterion. Testing for the existence of unit root in vt is particularly important, since the tests of the effects of vt on h
t

2  

are invalid in case vt contains a unit root. As these tables clearly indicate, both the ADF and PP tests reject (at 

conventional levels) the unit root hypothesis, thus providing evidence in favor of stationarity for both r t and vt. 

 

The results of the estimation of the benchmark models are presented in Tables 3 and 4. Parameter estimates 

are quasi-maximum likelihood estimates obtained by means of the Marquardt algorithm. The heteroskedasticity 

consistent standard errors in parenthesis are computed using the methods described by Bollerslev and Woolridge 

(1992). Clearly, the conditional mean equation estimated over the entire period shows signs of misspecification 

regardless of its parametric specification. The Ljung-Box Q statistics indicate that both the AR(1) and MA(1) 

models have significant autocorrelation in the standardized residuals.  There are probably several sources that 

account for this misspecification, one of which is likely to be related to the parametric instability of the model, as 

shown by Urga and Rockinger (2001). This conjecture is confirmed by the parameter estimates in each of the four 

sub-periods.  As with the autocorrelations, the AR parameter ф1 is statistically significant in the first and third sub-

periods, but is not significant in the second and fourth sub-periods. Similarly, the MA parameter 1 is significant 

only in the first and third sub-periods, and its value is very close to the AR parameter. Thus, there is evidence of 

significant predictability in the returns in the first and third sub-periods, but there is no evidence of predictability in 

the second and fourth sub-periods.  

 

In each of the sub-periods, the coefficients of α1 and β1 are significant at the 0.01 level, and the persistence 

of the conditional variance, as measured by the sum of α1 and β1, is very high, ranging from 0.86 in the third sub-

period to 0.99 in the first one, implying that a shock to the conditional variance persists almost indefinitely. 

Alternatively, the “half-life” of a shock, that is, the time that the conditional variance takes to revert halfway to its 

unconditional value, ranges approximately from 5 days in the third sub-period to 70 days in the first sub-period. In 

addition, in each of the four sub-periods, irrespective of the mean equation specification, the Ljung –Box Q-statistics 

indicate that the standardized residuals and squared standardized residuals are uncorrelated.  The Jarque-Bera 

normality test statistics of the standardized residuals for both models are far beyond the critical value of a normal 

distribution, as assumed by both models. This is not surprising since there are other factors affecting the volatility. It 

is also not a substantial problem since, conditionally, normality permits excess kurtosis in the data. A problem, 

however, is present with the parameter estimate of the time-varying risk premium.  According to portfolio theory, 

the parameter δ should be positive and statistically significant. Yet, all estimated models indicate a statistically 

insignificant (at conventional levels) relationship between risk and return, which is another possible sign of 

misspecification. Alternatively, another plausible explanation for the insignificance of the estimates of δ is the high 

level of noisiness of the realized returns.  If this is the case, the inclusion of a variable, such as vt, in addition to the 

conditional volatility, which is correlated with r t , may lead to an improvement in the efficiency of estimation of the 

parameter δ. 

 

Tables 5 and 6 report the relevant parameter estimates and related statistics for the models AR(1)-

GARCH(1,1)-M and MA(1)-GARCH(1,1)-M with the change in volume as the additional regressor in the variance 

equation. As the tables clearly indicate, this specification is successful in explaining the persistence in conditional 
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variance. The parameter γ is positive and significant at the 0.01 level in both the AR(1) and MA(1) specification of 

the conditional mean, and for both the full sample period and the four sub-periods.  Two important differences, 

however, are apparent between the results of the full sample and those of the four sub-periods. The first is that the 

results for the four sub-periods show no evidence of serial correlation in the residuals. The second is that the 

persistence in conditional volatility remains very high in the full sample. A completely different picture, instead, 

emerges in the four sub-periods. In the case of the AR(1) specification, the addition of vt has the effect of sharply 

decreasing the estimates of α1 and β1 with the result that the persistence in conditional volatility shows a declining 

pattern, going from 0.79 in the first sub-period to 0.61 in the last one.  This has the effect of reducing the “half-life” 

of a shock to approximately 1 to 3 days. Similar results are obtained using the MA(1) specification of the mean 

equation. These findings provide clear evidence in favor of the MDH. A similar conclusion is obtained from the 

Akaike information criterion (AIC) and the Schwarz-Bayes information criterion (SIC), as well as from the log-

likelihood function, all of which indicate that the GARCH(1,1) in mean with volume is superior to the GARCH(1,1) 

in mean only. The persistence effects, however, do not vanish. One plausible explanation for this is that the intraday 

increments are not independent identically distributed but serially correlated, as one would probably expect as a 

result of some degree of sluggishness inherent to any newly established markets. This implies that measures of 

lagged changes in trading volume, in addition to the current change, may have an impact on volatility. This 

hypothesis, however, will not be explored in this paper.  

 

Interestingly, regardless of the mean equation specification, the parameter estimates for γ increase 

significantly after the stock market crash, approximately from 0.02 to 0.10, as does risk aversion, because the 

parameter estimate for δ also significantly increases, while the predictability of the returns significantly diminishes. 

This indicates a greater investors’ alertness to risk and information flows to the market as well as an increased 

market efficiency after the stock market crash. It thus appears that as a result of stock market catastrophe of October 

28, 1997, investors have learned to better process the flows of information arriving to the market and better assess its 

risk content. Also, the relationship between returns and time-varying risk premium turns out to be significant. Risk, 

as predicted by portfolio theory, has a positive impact on returns. This clearly arises from the significance of the 

information content of trading volume, which affects returns through volatility: increases in volatility increase risk 

which in turn increases returns. It is thus clear that trading volume has both a direct effect on volatility and an 

indirect effect on returns, confirming the hypothesis that information flows arriving in the market, and proxied by 

the trading volume, affect both risk and returns. Consequently, it appears that it is new information arrival to the 

market, rather than uncertainty, which determines risk.   

 

The declining pattern of conditional volatility becomes more pronounced when the assumption γ1 = γ2 is 

relaxed. The relevant parameter estimates and related statistics are presented in Tables 7 and 8. Both γ1 and γ2 are 

positive and significant at the 0.01 level. A Wald test for symmetry of the effects of positive and negative changes in 

volume rejects the variance specification proposed by Lamoureux and Lastrapes (1990) in the last two sub-periods, 

where the decomposition of volume captures more of the persistence of variability apparent in the data than does 

volume alone. In the two sub-periods where the Wald test rejects the symmetry hypothesis, the results indicate that, 

contrary to the findings for developed, highly liquid stock markets in Western industrial countries, positive changes 

in volume have a greater impact on volatility than negative changes. In addition, the decomposition of the trading 

volume alters the size but not the statistical significance of δ, and does not affect the predictability pattern of the 

returns, which remains as significant in the first and third sub-periods as it was when volume was not decomposed. 

 

 

Conclusions 

 

This research has tested the validity of the MDH for the Russian stock market using a GARCH(1,1)-M 

representation of  the RTS returns. The findings lend support to the MDH, since volume is significantly positive in 

the variance equation, and the sum of the GARCH coefficients decline substantially. Volume, taken as a proxy for 

the information flows arrival to the market, is found to affect directly the relationship between information flows 

and volatility, and indirectly the relationship between volatility and returns. The incorporation of volume in the 
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variance equation gives rise to a positive and significant the risk-return relationship, as theorized by portfolio theory, 

and helps to explain the presence of GARCH effects in the RTS returns, as theorized by the mixture of distribution 

hypothesis. In addition, the decomposition of the change in trading volume into its positive and negative 

components further contributes to the impounding of the GARCH effects, as predicted by the modified version of 

the mixture of distribution hypothesis, without altering the risk-return relationship. Thus, the results of the analysis 

highlight that even in an emerging and turbulent market like the Russian stock market, risk and return are jointly 

integrated to the flow of information arrival.   
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Table 1:  Unconditional Distributional Statistics for rt 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Normality tests      

Mean 0.0697 0.2808 -0.8085 0.1479 0.1161 

Std deviation 3.2386 3.0569 4.4509 3.8599 2.5734 

Skewness -0.3114 -0.2730 0.0852 -0.5399 -0.0482 

Kurtosis 7.4180 10.2112 4.3073 6.3385 5.8752 

Jarque-Bera 1522.0090 1174.5680 14.4837 176.4604 259.3128 

  p value 0.0000 0.0000 0.0007 0.0000 0.0000 

Autocorrelation tests      

Q12[rt] 73.7450 32.6340 17.4920 22.8340 11.3110 

  p value 0.0000 0.0010 0.1320 0.0290 0.5020 

Q24[rt] 98.1900 42.9140 32.8560 33.5520 30.2720 

  p value 0.0000 0.0100 0.1070 0.0930 0.1760 

Q36[rt] 114.0000 58.1590 47.0530 48.3800 40.9950 

  p value 0.0000 0.0110 0.1030 0.0810 0.2610 

Q12[rt]
2 429.2100 126.2200 23.1780 34.7080 105.5100 

  p value 0.0000 0.0000 0.0260 0.0010 0.0000 

Q24[rt]
2 559.8500 158.5800 37.4170 46.7400 130.6100 

  p value 0.0000 0.0000 0.0400 0.0040 0.0000 

Q36[rt]
2 690.0300 168.6700 46.7020 62.4130 146.6300 

  p value 0.0000 0.0000 0.1090 0.0040 0.0000 

Unit root tests      

ADF -36.2733 -16.5708 -12.5535 -14.7475 -26.4428 

Phillips-Perron -36.4118 -17.7801 -12.5886 -14.7142 -26.4408 
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Table 2:  Unconditional Distributional Statistics for vt 

      

 9/1/95 to  9/1/95 to  10/29/97 to  8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Normality tests      

Mean -0.0227 0.7421 -1.4545 -0.1124 -0.1491 

Std deviation 54.5148 60.5087 45.2028 55.7187 51.7136 

Skewness 0.1899 0.3574 0.2228 0.1132 0.0129 

Kurtosis 5.0102 6.7182 3.6083 3.5401 3.3522 

Jarque-Bera 320.0044 321.9679 4.7381 4.9169 3.9071 

  p value 0.0000 0.0000 0.0936 0.0856 0.1418 

Autocorrelation tests      

Q12[vt] 203.7700 53.0060 22.9810 41.3410 122.5900 

  p value 0.0000 0.0000 0.0280 0.0000 0.0000 

Q24[vt] 227.7600 79.0750 50.7370 53.5690 154.7300 

  p value 0.0000 0.0000 0.0010 0.0000 0.0000 

Q36[vt] 241.7300 88.4040 62.9350 57.1340 172.1900 

  p value 0.0000 0.0000 0.0040 0.0140 0.0000 

Q12[vt]
2 135.8000 53.0070 9.9977 17.5890 35.8450 

  p value 0.0000 0.0000 0.6160 0.1290 0.0000 

Q24[vt]
2 178.9800 64.1900 24.1310 37.6290 67.2970 

  p value 0.0000 0.0000 0.4540 0.0380 0.0000 

Q36[vt]
2 223.3900 76.9510 29.3110 62.4580 94.2390 

  p value 0.0000 0.0000 0.7770 0.0040 0.0000 

Unit root tests      

ADF -22.0314 -13.3691 -14.0280 -13.3797 -15.1791 

Phillips-Perron -143.8561 -77.5546 -25.8575 -34.5834 -73.8947 
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Table 3:  AR(1)-GARCH(1,1) in mean only 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Mean equation      

ф0 0.1043  0.1638  -0.4317 -0.0469 0.0410  

 (0.0742) (0.1230) (0.3767) (0.2970) (0.1372) 

ф1 0.1646  0.2596  0.0884  0.2202  0.0667  

 (0.0267) (0.0569) (0.0750) (0.0591) (0.0385) 

δ 0.0021  -0.0037 0.0069  0.0125  0.0229  

 (0.0088) (0.0216) (0.0209) (0.0227) (0.0252) 

Variance equation      

ω 0.4508  0.5213  0.9450  2.2292  0.1995  

 (0.1287) (0.3389) (0.5972) (1.0379) (0.0923) 

α1 0.2259  0.3145  0.2622  0.2867  0.1109  

 (0.0411) (0.1124) (0.1131) (0.0736) (0.0309) 

β1 0.7479  0.6721  0.7307  0.5795  0.8563  

 (0.0404) (0.1210) (0.0924) (0.1068) (0.0351) 

α1 + β1 0.9737  0.9866  0.9929  0.8662  0.9673  

 (0.0197) (0.0589) (0.0478) (0.0934) (0.0172) 

Statistics      

Log-likelihood -4475.6090 -1248.6800 -567.1548 -922.1733 -1718.1820 

AIC 4.8899  4.6728  5.7315  5.3964  4.5856  

SIC 4.9080  4.7207  5.8305  5.4633  4.6225  

Q12[εt/ht] 29.1420 18.9920 13.6570 6.8074 10.6410 

  p value 0.0040 0.0890 0.3230 0.8700 0.5600 

Q24[εt/ht] 38.9250 24.1310 26.7620 20.9390 23.1320 

  p value 0.0280 0.4540 0.3160 0.6420 0.5120 

Q36[εt/ht] 50.1150 37.2060 44.6970 32.5570 32.8920 

  p value 0.0590 0.4130 0.1520 0.6330 0.6170 

Q12[εt/ht]
2 11.3430 5.9786 8.2954 7.1220 2.5821 

  p value 0.5000 0.9170 0.7620 0.8490 0.9980 

Q24[εt/ht]
2 18.9830 16.4890 13.4320 18.0450 8.5532 

  p value 0.7530 0.8700 0.9580 0.8010 0.9980 

Q36[εt/ht]
2 24.2130 22.1680 24.6400 22.2340 12.3240 

  p value 0.9330 0.9660 0.9240 0.9650 1.0000 

Jarque-Bera 205.7381 115.4738 11.4972 22.3652 146.0171 

  p value 0.0000 0.0000 0.0032 0.0000 0.0000 
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Table 4:  MA(1)-GARCH(1,1) in mean only 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Mean equation      

θ0 0.1251 0.2030 -0.5192 0.0039 0.0523 

 (0.0785) (0.1454) (0.4046) (0.3018) (0.1394) 

θ1 0.1536 0.2885 0.1177 0.1880 0.0624 

 (0.0262) (0.0567) (0.0743) (0.0559) (0.0384) 

δ 0.0025 -0.0020 0.0113 0.0105 0.0234 

 (0.0092) (0.0268) (0.0224) (0.0224) (0.0256) 

Variance equation      

ω 0.5654 0.5303 1.0854 2.1949 0.2009 

 (0.1306) (0.3503) (0.6576) (1.0642) (0.0928) 

α1 0.2282 0.3095 0.2643 0.2922 0.1113 

 (0.0416) (0.1122) (0.1147) (0.0749) (0.0310) 

β1 0.7457 0.6739 0.7210 0.5793 0.8558 

 (0.0410) (0.1238) (0.0967) (0.1117) (0.0352) 

α1 + β1 0.9739 0.9834 0.9853 0.8715 0.9671 

 (0.0200) (0.0598) (0.0477) (0.0947) (0.0173) 

Statistics      

Log-likelihood -4477.1100 -1247.4060 -566.6967 -923.2238 -1718.3920 

AIC 4.8916 4.6682 5.7270 5.4025 4.5861 

SIC 4.9096 4.7161 5.8259 5.4695 4.6230 

Q12[εt/ht] 37.5530 19.4020 13.8310 9.3690 10.9780 

  p value 0.0000 0.0540 0.2420 0.5880 0.4450 

Q24[εt/ht] 47.2570 24.5080 26.6110 23.6950 23.4260 

  p value 0.0020 0.3760 0.2730 0.4210 0.4360 

Q36[εt/ht] 58.5050 37.4160 44.2470 35.9050 33.2680 

  p value 0.0080 0.3590 0.1360 0.4260 0.5520 

Q12[εt/ht]
2 12.5500 6.4251 8.7571 8.0496 2.5495 

  p value 0.4830 0.8440 0.6440 0.7090 0.9950 

Q24[εt/ht]
2 19.0620 16.3900 13.6230 19.3550 8.4765 

  p value 0.6980 0.8380 0.9370 0.6800 0.9970 

Q36[εt/ht]
2 24.1040 22.1220 24.2520 23.3430 12.1960 

  p value 0.9170 0.9550 0.9140 0.9340 1.0000 

Jarque-Bera 211.5154 118.8898 12.5999 22.2046 148.8526 

  p value 0.0000 0.0000 0.0018 0.0000 0.0000 

 

  ii γγ
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Table 5:  AR(1)-GARCH(1,1) in mean with volume 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Mean equation      

ф0 -0.0382 -0.0341 -1.3055 -1.3002 -0.4323 

 (0.0542) (0.0877) (0.4040) (0.3382) (0.1950) 

ф1 0.1298 0.2051 0.0981 0.1845 0.0545 

 (0.0256) (0.0527) (0.0642) (0.0657) (0.0381) 

δ 0.0213 0.0360 0.0564 0.1144 0.0875 

 (0.0073) (0.0162) (0.0245) (0.0356) (0.0382) 

Variance equation      

ω 0.6643 2.0113 5.2114 4.2609 2.0608 

 (0.1271) (0.4406) (1.0024) (1.0975) (0.5689) 

α1 0.3133 0.4365 0.3300 0.1350 0.2096 

 (0.0426) (0.0652) (0.0736) (0.0597) (0.0556) 

β1 0.6392 0.3595 0.4087 0.5247 0.4053 

 (0.0400) (0.1162) (0.0897) (0.1280) (0.1430) 

γ 0.0144 0.0200 0.1016 0.0675 0.0275 

 (0.0017) (0.0016) (0.0190) (0.0075) (0.0023) 

α1 + β1 0.9524 0.7960 0.7387 0.6597 0.6153 

 (0.0240) (0.0955) (0.0817) (0.0813) (0.1164) 

Statistics      

Log-likelihood -4412.7390 -1232.5650 -556.4901 -903.5032 -1698.3490 

AIC 4.8224 4.6166 5.6349 5.2936 4.5355 

SIC 4.8435 4.6725 5.7503 5.3718 4.5785 

Q12[εt/ht] 37.8370 15.7420 17.5930 9.2668 8.3106 

  p value 0.0000 0.2030 0.1290 0.6800 0.7600 

Q24[εt/ht] 48.3630 23.1600 30.6640 18.0450 24.1580 

  p value 0.0020 0.4660 0.1640 0.8010 0.4530 

Q36[εt/ht] 60.5550 41.9340 47.0680 30.1400 34.3970 

  p value 0.0060 0.2290 0.1030 0.7430 0.5450 

Q12[εt/ht]
2 13.5860 19.2580 12.7950 9.7490 15.3760 

  p value 0.3280 0.0820 0.3840 0.6380 0.2220 

Q24[εt/ht]
2 21.5480 27.5970 18.6000 37.6600 26.4110 

  p value 0.6060 0.2770 0.7730 0.0380 0.3330 

Q36[εt/ht]
2 27.9400 36.0010 27.7510 41.0540 32.3330 

  p value 0.8290 0.4690 0.8360 0.2590 0.6440 

Jarque-Bera 182.5831 252.2015 7.4913 89.6675 234.9320 

  p value 0.0000  0.0000  0.0236  0.0000  0.0000  
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Table 6.  MA(1)-GARCH(1,1) in mean with volume 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Mean equation      

θ0 -0.0242 0.0491 -1.3510 -1.0474 -0.3648 

 (0.0577) (0.0830) (0.4280) (0.2616) (0.1731) 

θ1 0.1236 0.2683 0.1210 0.1631 0.0689 

 (0.0253) (0.0526) (0.0668) (0.0559) (0.0369) 

δ 0.0233 0.0408 0.0599 0.0957 0.0729 

 (0.0074) (0.0179) (0.0259) (0.0302) (0.0342) 

Variance equation      

ω 0.6874 2.1437 4.9319 4.3501 1.9367 

 (0.1302) (0.4193) (0.9970) (1.1606) (0.5207) 

α1 0.3214 0.4478 0.3160 0.1537 0.1554 

 (0.0431) (0.0629) (0.0717) (0.0684) (0.0430) 

β1 0.6299 0.3370 0.4326 0.5062 0.5134 

 (0.0401) (0.1103) (0.0907) (0.1409) (0.1165) 

γ 0.0147 0.0206 0.0987 0.0663 0.0306 

 (0.0017) (0.0017) (0.0195) (0.0076) (0.0019) 

α1 + β1 0.9513 0.7848 0.7486 0.6599 0.6689 

 (0.0251) (0.0930) (0.0800) (0.0906) (0.0951) 

Statistics      

Log-likelihood -4413.2920 -1230.2720 -555.9874 -904.0456 -1695.5920 

AIC 4.8230 4.6081 5.6299 5.2968 4.5282 

SIC 4.8441 4.6640 5.7453 5.3749 4.5712 

Q12[εt/ht] 43.1840 11.3240 17.6070 12.4210 9.2616 

  p value 0.0000 0.4170 0.0910 0.3330 0.5980 

Q24[εt/ht] 53.6280 19.4040 30.0710 22.1490 25.3250 

  p value 0.0000 0.6780 0.1470 0.5110 0.3340 

Q36[εt/ht] 65.6830 37.0110 45.9590 33.9960 35.1150 

  p value 0.0001 0.3760 0.1020 0.5160 0.4630 

Q12[εt/ht]
2 14.2560 25.7270 13.4830 10.9400 16.8450 

  p value 0.2190 0.0070 0.2630 0.4480 0.2060 

Q24[εt/ht]
2 22.1010 35.4960 18.7630 37.4710 26.0500 

  p value 0.5140 0.0460 0.7150 0.0290 0.2980 

Q36[εt/ht]
2 28.2450 43.9040 27.7300 40.4890 32.1590 

  p value 0.7840 0.1440 0.8040 0.2410 0.6060 

Jarque-Bera 184.8198 270.3201 6.6769 81.9370 288.2924 

  p value 0.0000 0.0000 0.0355 0.0000 0.0000 

 

  ii γγ
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Table 7.  AR(1)-GARCH(1,1) in mean with decomposed volume 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Mean equation      

ф0 -0.2054 -0.0631 -1.1327 -0.8020 -0.2963 

 (0.0352) (0.0778) (0.3531) (0.0996) (0.1458) 

ф1 0.1261 0.1972 0.0869 0.1609 0.0414 

 (0.0269) (0.0524) (0.0644) (0.0557) (0.0384) 

δ 0.0372 0.0356 0.0509 0.0743 0.0688 

 (0.0072) (0.0155) (0.0216) (0.0205) (0.0280) 

Variance equation      

ω 0.9163 1.9314 3.1329 2.5514 2.3952 

 (0.1807) (0.5923) (1.2186) (0.3963) (0.6942) 

α1 0.3532 0.4402 0.3467 0.1740 0.2349 

 (0.0434) (0.0776) (0.0714) (0.0559) (0.0587) 

β1 0.4801 0.3786 0.4270 0.4900 0.2703 

 (0.0406) (0.1199) (0.0808) (0.0620) (0.1387) 

γ1 0.0528 0.0235 0.1751 0.1414 0.0619 

 (0.0069) (0.0121) (0.0463) (0.0342) (0.0147) 

γ2 0.0159 0.0203 0.0755 0.0546 0.0261 

 (0.0013) (0.0020) (0.0244) (0.0071) (0.0029) 

α1 + β1 0.8333 0.8188 0.7736 0.6640 0.5053 

 (0.0361) (0.0899) (0.0766) (0.0504) (0.1287) 

γ1 – γ2  0.0369 0.0032 0.0996 0.0868 0.0358 

 (0.0076) (0.0133) (0.0585) (0.0362) (0.0163) 

Statistics      

Log-likelihood -4398.0660 -1231.6610 -556.0643 -893.3106 -1702.4070 

AIC 4.8075 4.6170 5.6406 5.2402 4.5490 

SIC 4.8316 4.6808 5.7726 5.3295 4.5981 

Q12[εt/ht] 38.5810 16.2810 18.4990 10.8480 7.8484 

  p value 0.0000 0.1790 0.1010 0.5420 0.7970 

Q24[εt/ht] 50.7540 24.5020 30.0630 19.6960 24.4020 

  p value 0.0010 0.4330 0.1830 0.7140 0.4390 

Q36[εt/ht] 65.4330 42.6980 46.6760 29.3960 34.0080 

  p value 0.0020 0.2050 0.1100 0.7740 0.5640 

Q12[εt/ht]
2 33.6240 18.4370 14.1940 9.9599 20.5940 

  p value 0.0010 0.1030 0.2880 0.6190 0.0570 

Q24[εt/ht]
2 49.6170 26.5470 19.9010 39.0820 29.2750 

  p value 0.0020 0.3260 0.7020 0.0270 0.2100 

Q36[εt/ht]
2 65.5690 34.9000 29.1580 42.5680 36.0010 

  p value 0.0020 0.5210 0.7830 0.2090 0.4690 

Jarque-Bera 365.0391 241.2828 8.7589 64.8564 390.8465 

  p value 0.0000  0.0000  0.0125  0.0000  0.0000  

 



Journal Of Business & Economics Research  Volume 1, Number 11 

 58 

 

Table 8:  MA(1)-GARCH(1,1) in mean with decomposed volume 

      

 9/1/95 to 9/1/95 to 10/29/97 to 8/20/98 to 12/31/99 to 

 12/31/02 10/28/97 8/19/98 12/30/99 12/31/02 

Mean equation      

θ0 -0.2172 -0.0667 -1.1681 -0.7775 -0.3138 

 (0.0322) (0.2009) (0.3744) (0.0773) (0.2046) 

θ1 0.1105 0.2974 0.1118 0.1372 0.0275 

 (0.0246) (0.0536) (0.0667) (0.0464) (0.0388) 

δ 0.0443 0.0374 0.0540 0.0713 0.0748 

 (0.0070) (0.0263) (0.0226) (0.0188) (0.0356) 

Variance equation      

ω 0.4294 1.6328 2.9999 2.7313 2.2197 

 (0.1232) (0.2599) (1.2472) (0.4790) (0.6411) 

α1 0.3464 0.4302 0.3346 0.2088 0.2365 

 (0.0452) (0.0589) (0.0699) (0.0628) (0.0597) 

β1 0.5142 0.3650 0.4450 0.4230 0.2875 

 (0.0356) (0.0649) (0.0821) (0.0792) (0.1314) 

γ1 0.0538 0.0357 0.1687 0.1567 0.0617 

 (0.0064) (0.0100) (0.0462) (0.0365) (0.0142) 

γ2 0.0115 0.0176 0.0739 0.0504 0.0252 

 (0.0015) (0.0020) (0.0255) (0.0087) (0.0030) 

α1 + β1 0.8606 0.7953 0.7796 0.6317 0.5241 

 (0.0323) (0.0559) (0.0744) (0.0689) (0.1214) 

γ1 – γ2  0.0423 0.0181 0.0948 0.1063 0.0365 

 (0.0070) (0.0095) (0.0589) (0.0390) (0.0159) 

Statistics      

Log-likelihood -4386.5080 -1221.2310 -555.5921 -894.3767 -1702.7260 

AIC 4.7949 4.5781 5.6359 5.2464 4.5498 

SIC 4.8189 4.6420 5.7679 5.3357 4.5990 

Q12[εt/ht] 48.5300 8.3085 18.2830 14.5590 7.4027 

  p value 0.0000 0.6850 0.0750 0.2040 0.7660 

Q24[εt/ht] 59.8730 16.8300 29.3600 23.6590 24.2000 

  p value 0.0000 0.8180 0.1690 0.4230 0.3930 

Q36[εt/ht] 74.5030 33.9980 45.5260 32.3810 33.9670 

  p value 0.0000 0.5160 0.1100 0.5950 0.5180 

Q12[εt/ht]
2 27.0990 26.1290 14.5110 11.9890 17.8240 

  p value 0.0040 0.0060 0.2060 0.3640 0.0860 

Q24[εt/ht]
2 38.3320 34.7290 19.8350 39.7920 26.2980 

  p value 0.0230 0.0550 0.6520 0.0160 0.2870 

Q36[εt/ht]
2 53.0540 42.9350 28.5770 43.0100 32.3940 

  p value 0.0260 0.1680 0.7700 0.1660 0.5950 

Jarque-Bera 330.3281 267.7297 7.8055 63.9780 390.5394 

  p value 0.0000 0.0000 0.0202 0.0000 0.0000 

 


