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ABSTRACT

On-site sampling procedures are frequently used in demand estimation applications. This results in
a sample that is both truncated and endogenously stratified, limiting the inferences that can be
drawn from the sample. Shaw (1985) develops a likelihood function that corrects for these problems
and uses a Monte Carlo simulation to verify that the likelihood fimction outperforms models that
ignore the problems. However, the simulation is less than ideal In this paper, I develop an
additional method for correcting for the problems associated with on-site samples and conduct a
more thorough simulation to examine the performance of the various estimation methods.

Introduction

the population from which the sample wag drawn. The method of drawing the sample plays an

important role in how the statistical inferences are reached as well as how reliable the inferences are.
Of course, the best possible scenario is fo use a sample that has the same properties as the population of interest, but
this can be a challenging and costly objective to achieve.

gc he objective of statistical inference is to use information drawn from a sample to infer properties about

Sampling is an important part of marketing research. Researchers are interested in a variety of questions such
as the selling potential of a new product, how satisfied customers are with an existing product, or what attributes
people would like to see in a potential new product. In the first case, the population of interest is likely to be the
general population. In the second case, the population of interest is likely to be the population of people who use the
product, while in the third case the population of interest is likely to be both the users of the product as well as non-
users who might purchase the product if some attribute of the product were changed.

In each of these cases, the ideal situation would be to draw a large random sample from the population of
interest and use that sample to generate inferences about the population, In reality, sampling can be quite cosily, and it
is often a challenge to actually draw from the population of interest, as is likely in the third case mentioned above.

Because of these high costs, researchers often use sampling strategies that are less than optimal. This process
is referred to as convenience sampling, For example, if the selling potential of an improved product is of interest, then
the relevant population inciudes both current users of the product as well as potential users who may decide to use the
product because of the improvemenis. Sampling from both users and potential users is likely to be both costly and
difficult to carry out in practice, A simpler procedure would be to simply sample from current users. The problem is
that the sample is now not representative of the population of interest and any inferences drawn from the sample must
be presented with the caveat that they may or may not be representative of the population. These types of convenience
samples are often referred to as on-site samples or intercept samples. The phrase ‘on-site’ is used in the recreation
demand literature because respondents are queried (intercepted) while they are on site engaging in recreation.
However, the issue is relevant to other demand applications,

-The use of on-site samples in demand estimation presents an interesting econometric problem for the
researcher, The issne has been investigated in the recreation demand literature where on-gite samples are used to
investigaie the demand for trips to a recteation site, but has obvious extensions to the area of marketing. For example,
marketing researchers may be interested in investigating what factors are important in determining the number of trips
taken to an amusement park in & season. A natural place to sample respondents is at the park itself. 1t would also apply
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to a situation where a product comes with a warranty registration card or other data gathering instrument. Purchasers
of the product can choose to fill the card out and retwn it. In this case, only purchasers of the product would be
sampled.

In cach of these cases, the data drawn through these sampling procedures can be vsed to draw inferences
about more general populations, but only if the problems associated with on-site samples are accounted for.
Specifically, on-site sampling procedures generate samples that are both truncated and endogenously stratified.

For example, suppose a large retail mall is interested in knowing what draws customers to the mall and what
changes they might make to draw more people. One possible method of answering this question would be to estimate
a mall-trip demand model. The population of interest includes people who currently visit the mall as well as people
who might visit the mall if certain changes were made. A cheap and convenient sampling process would be to position
interviewers at the entrance fo the mall and intercept people as they enter. The problem with this convenience sample
is that non-visitors are truncated from the sample. No information is gathered from people who take zero trips. An
additional problem is that the sample would be endogenously stratified. People who take a high number of trips to the
mall have a higher probability of being sampled than people who take a low number of trips to the mall. The term
endogenous stratification is used because the resulting sample is stratified by the endegenous variable, the number of
trips taken to the mall. OFf course, visitors are sampled randomly within each stratum. However, people who take two
trips are twice as likely to be sampled as people who take one trip (but no more likely to be sampled than other two-
trip takers). If these problems are not accounied for, then the parameter estimates of the demand model will be biased
and any inferences drawn using the sample data will not apply to the population of inferest.

This issue has been discussed mainly in the recreation demand literature. Although some authors have dealt
with the problems of trumeation and endogenous stratification individually, [Amemiya (1973), Manski and McFadden
(1982)], Shaw (1985} was the first to account for both problems simultaneously. He recognized that the use of on-site
data with likelihood functions designed for random population samples resulted in biased parameter estimates. He
estimated a demand model using a likelihood function designed to simultaneously correct for both truncation and
endogenous stratification. Shaw (1988) extended the model by developing a Poisson count data model to account for
the discrete nature of demand data. Englin and Shonkwiler {1995) extended Shaw’s Poisson count data model to the
case of the negative binomial, while Laitila (1999) extended it to account for both site choice and trip frequency using
on-sife samples.

In both his 1985 dissertation work and his 1988 paper, Shaw used Monte Carle (MC) simulations to evaluate
the performance of the likelihood function designed for use with on-site samples against varicus other estimation
procedures. The results of his sinmulations support his claim that the modification to the likelihood function results in
better parameter estimates. However, there are several aspects of his simulation that are less than ideal and may result
in a distorted picture of the effectiveness of his likelihood function.

Though Shaw’s likelihood function appears to be capable of correcting for the problems created by using on-
site samples, it can be a computationally difficult model io implement. In this paper, I develop an additional method of
correcting for the problems created by using on-site samples that has the benefit of being computationally very easy to
implement. I use a Monte Carlo simulation that is more general than that used by Shaw to test the performance of the
various models.

The paper will be organized as follows, In the next section I will discuss the likelihood finction developed by
Shaw for use with data that is both truncated and endogenously stratified. Shaw’s 1985 MC simulation will then be
diseussed. I will then describe a more general simulation procedure and compare the results to those obtained by
Shaw,

SHAW’S LIKELIHOOD FUNCTION

Shaw begins the development of a likelihood function that accounts for truncation and endogenous
stratification of om-site samples by specifying a demand model: The good analyzed in Shaw's model is trips to a

70



Journal of Business & Economics Research - August 2006 Volume 4, Number 8

recreation site, but the basic methodology is appropriate for any type of demand application, Respondent 7 is assumed
to maximize wtility, U, ( Vi Z,; ), where y, is the quantity of the good (recreation trips) and Z, represents all other

goods consumed by the respondent. Utility is maximized subject to the respondent’s budget constraint and a boundary
constraint that ¥, 2 0. Suppose that the solution takes the form

J’;:Xu8+“fa (1.1)

where X, represents independent variables such as the price of the good (the cost of travel) and income, f3
represents the parameter vector to be estimated, and u, ~ N' (G, ot ) This model generates observable trip quantities,

,;, that take the form y, =y, if y; >0 and y, =0 if y; <0,

‘When estimated with a population-wide random sample this is an example of a censored model and the Tobit
likelihood is appropriate. However, the likelihood function must be modified when an on-site sample is used. Shaw
notes that the on-site sample can be viewed as being a random sample from a population that is truncated and
endogenousty siratified. An important assumption he makes is that the probability of selecting an individuai in an on-
site sample is proportional to the number of visits the individual takes to the site.

The density function of an observation, );, given the independent variables, X, from this population can be
written. as

X,
h(3, | X, sampling rule) = =21 (7 1X)
_[yr'f(y,' |X,-)dy
o]

, (1.2)

where the sampling rule is defined as the presence of endogenous sfratification and truncation in the population, The
resulting log-likelihood function takes the form

L=-nln(c’V2n )+i1ny,. —%i(%} —iln[d,@ (d)+¢(d,)]. (1.3)

i=] i=1

where d; = X,B/0, ®(:) represents the standard normal cdf, and @{-) represents the standard normal pdf.

Maximization of this likelihood function with respect to the parameters of the model ( 8 and & ) provides estimates
of the parameters of the demand model described in (1.1).

SHAW’S MONTE CARLO SIMULATION

To test the performance of the likelihood function shown in equation (1.3}, Shaw designed a Monte Carlo
{(MC) simulation. Shaw sets up the simulation by assuming the following specification for the demand model

¥ = Bo+ Bixy + By + By +u =1, N (14)
Y=Y if yi >0
=0, otherwise
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- *® . . N .
where X, are travel costs, X,; are wages, X,; are incomes, ¥, are the desired number of trips to the recreation site,

¥, are the observable number of trips, N is the sample size, and #; ~ N (0, ol )

The demand model (1.4) is used to generate data sets for different levels of & ? and correlation between

wage, X,;, and income, X;;. The specification with o> =25 and corr (X, %y )= 0 is representative of the
results and will be discussed here. Shaw sets the parameters at the following values: S, =25, B, =-0.3,
B, =-0.1, and B, =0.0001. The assumed distributions for the independent variables are: x;, ~ U/(0,300),

x, ~U(0,30), and Xy~ U(0,100000). Random number generators are used to generate a population sample of

size NV =1,000 . This specification generates a data set with approximately 30% of the observations taking a positive
mumber of trips.

Shaw uses the following process io creaie the data set used in the estimation: First, the population data set,
called the “P data set,” is created by calculating y: for each observation. The P data set is then truncated by rounding

off each y; to the nearest integer and truncating at zero. This new truncated data set is called the “T data set.”
Endogenous stratification of the T data set is achieved by replicating each observation, #, ), times. For example,

observations for which y, = 2 each appear twice in the new tnmcated, endogenously stratified data set, called the
“T&S data set.” Table 1 shows the summary statistics for the P, T, and T&S data sets for Shaw’s basic specification
(c? =25, corr(x,,%,)=0).

Shaw compares several estimafions in the MC simulation. In order to provide a basis of comparison, he
conducts ordinary least squares (OLS) using the P data set. Since neither truncation nor endogenous stratification is
present in the P data set, OLS gencrates the best estimates possible. OLS is also conducted using the T&S data set to
show the effect of ignoring the problems of truncation and endogenous stratification. In addition, he tests his derived
likelihood function, equation (1.3), with a T&S data set.

Table 2 shows the results of Shaw’s MC simulation, which involved estimating each model a single time.
The results shown are for the case of G- = 25, corr (xz,xs) =0, but the results are consistent across the

specifications considered by Shaw. As expected, OLS with the P data set ouiperforms the other metheds, and the use
of OLS with a T&S data set results in biased parameter estimates. The performance of the Shaw likelihood is good,
producing parameter estimates that are very close to the true values. Table 3 shows the effect of increasing the error

variance, & 2 In general, increasing the error variance increases the standard errors of the parameter estimates and
makes it difficult to distinguish which model performs best,

The approach taken by Shaw in this MC simulation can be improved in a couple of respects, The first is in
the creation of the T&S data set. Though the method vsed by Shaw is capable of creating a data set that exhibits the
properties of truncation and endogenous stratification, the process of rounding the trip quantities seems somehow
unsatisfying. He acknowledges that rounding could create some biases in data generation, but states that he expects
the bias to be small and to cancel out.’ Though it is certainly possible that the bias could cancel out, it is also possible
that the process of endogenously stratifying the sample could exacerbaie any bias introduced by rounding,

Since the desire is to compare estimation methods using a continuous demand specification, a more
straightforward approach is to use quantities that have not been rounded. This presents no problem in either the
creation of the data set or the estimations, and eliminates the possibility that the rounding bas an effect on the outcome
of the simulation. Additionally, Shaw estimates each model a single time. The power of the Monte Carlo approach lies
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in the fact that the estimation can be performed a large number of times, Repeated estimation allows for a higher
degree of confidence in the results,

In the next section, I will discuss a MC simulation that uses a more general method of constructing the
truncated and endogenously stratified data set than that used by Shaw. This method of construction should eliminate
any artifact of the data set creation process in the MC comparison of estimation methods. An estimation method not
congidered by Shaw is also evaluated.

A MORE GENERAL APPROACH TO THE MONTE CARLO SIMULATION

Consider another recreation demand model that takes the following form

¥ =8, 40, (x; + 8,2, 2, )+ 8y, +u, i =1, N (1.5)
Y=y if y;>0
=0 otherwise

where X;; are respondent i ’s out-of-pocket travel costs, X,; are wages, X;; are travel times, X,; are incomes, o) I
(j=0,...,3) are parameters to be estimated, ), are the desired number of trips to the recreation site, y, are the

observable number of trips, N is the sample size, and #, ~ N (U,G‘ 2). This specification of trip demand is similar
to that used by Shaw, but a slightly different approach is taken with regard to the specification of the price. The price
(i.e. travel cost in this example) is made up of explicit costs, Xj;, plus a term, 523621-)63,- , that represents the

respondent’s time cost. The parameter 52 represents the fraction of the respondent’s full wage rate, X,,, at which

they will be compensated for the time, X,;, spent traveling to and from the recreation site.

Though this is a slightly more complicated demand model than that used by Shaw, it is important to keep in
mind that they are both simply different specifications of demand functions. The conclusions generated apply to other
demand models irregardless of the particular application.

Parameters will be sel at the following values: 8, =1, 8, =-2.5, 8, =03, and 6,=0.8. The
distributions for the independent variables are: x, ~ U(10,115)}, x, ~U(0,30), and x, ~ U(0.4,9.6), and

x, ~ U(0,100000). T will also assume that corr(x,;, %, ) =0 and & ? =25, This model specification generates

a population data set with approximately 2% of the observations taking a positive number of trips, * Random number
generators were used to generate a population sample of size N =10,000.

Recall that Shaw generated the truncated data set by rounding each trip quantity to the nearest integer and
dropping all observations for which y: <0 . That truncated data set was then endogenously stratified by replicating

the observations in each stratum y: times, A more general method of creating the T&S data set is to avoid the
rounding step.

The population sample is truncated by eliminating all observations for which yl.* < 0, but all trip quantities
are left as rational numbers. The truncated data set is then endogenously stratified by randomly sampling observations
according to a sampling weight, sw,, defined as
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SW, =

¥
L (16)
ny

g

Respondents with a high number of trips will have a proportionally higher probability of being selected. This allows
for the creation of a T&S data set of any size, and avoids rounding of the trip quantities.

Table 4 shows the sumumary statistics of the data sets for the basic specification: © ? = 25,
corr (xz,x4) ={). Because of the smaller proportion of trip takers in the population for this simulation, it was

necessary to generate larger P data sets than were generated by Shaw.

The MC simulation proceeds as follows: (1) generate P data set, (2) truncate the P data set to created a T data
set, (3) create a T&S data set by randomly sampling 1000 observation from the T data set according to the sampling

weights, SW,, (4) estimate the parameters of the models, (5) go back 1o step (3), etc. A total of 1000 separate T&S

data sets are drawn from the T data set, and a new set of parameter estimates is generated for each iteration. Means
and mean squared etrors are reported for each model’s parameters.

Three separate estimation methods will be examined. The first is the use of the truncated normal likelihood
function, shown in equation (1.6), on the T&S data set. This serves to highlight the bias that would be introduced by
treating the on-site sample as if it were a random sample from the population. The second method is the use of the
likelihood function developed by Shaw, shown in equation (1.3). The final estimation method I will consider is the uss
of inverse sample weights in the likelihood function. This is a computationally simpler approach than that Shaw
likelihood function. The next section will describe how the inverse sample weights are derived.

INVERSE SAMPLE WEIGHTING

The intuition behind inverse sample weighting is that each observation should be given a weight in the
likelihood function that is inversely related to the probability that the observation appears in the endogenously
stratified sample. Observations that are over-represented in the sample are given a smaller weight than observations
that are under-represented.

A weighting mechanism with this characteristic is
Pt
w(t)= L

S(?)

where @ (L‘) represents the weight used for respondents taking ¢ trips per season, P(Z ) is the percentage of the

1.7)

population taking f trips per season, and & (r) is the percentage of the on-site sample taking £ trips per season.

Suppose that 5% of the population took three trips per year, but the fraction of respondents in the on-site sample who
took three trips per year was 20%. Inverse sample weighting would give each three-trip taker a weight of 0.25 in the
likelihood function, thus diminishing their representation in the on-site sample. The problem is that the population

fractions, P (L‘) , are not known.

By assuming, as does Shaw, that the fraction of total trips made up of individuals in the on-site sample taking
! trips per season, 5 (t), ig the same as their fraction of total trips in the population, the inverse sample weights can

be derived from the information contained in the sample, and are given by

w(r)%,
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where

_ 1
|:i : (t)} |
= 1t
Derivation of this result is shown in Appendix A.

These three estimation methods were compared in the MC simulation. Table 5 presents the results of the
simulation. Mean squared errors are shown for each parameter estimate. In general, the Shaw likelihood function
performs well, outperforming, as expected, the model that ignores endogenous stratification as well as the inverse
sample weighting model. The parameter estimates generated using the Shaw likelihood function a very similar to the
true values. Additionally, the parameter estimates are more precise, as indicated by the smaller mean squared errors.

Unexpectedly, the inverse sample weighting model does not ssem to outperform the model that completely
ignores endogenous sample weighting, The inverse sample weighting model and the model that completely ignores
endogenous stratification generate similar parameter estimates, with the inverse sample weighting model getting
closer to the true parameter values in a minority of cases.

Table 6 shows the results of 8 Monte Carlo simulation with a higher error variance, o =625} Similar to
the results found by Shaw, increasing the error variance resulted in a poorer perfermance for all models. However, the
Shaw likelihood function continues to outperform the other models at the higher level of error variance. Again, the
model that ignores endogenous stratification and the inverse sample weighting models generate very similar results.

CONCLUSIONS

The results of Shaw’s 1985 MC simulation as well as the results for the simulations discussed here indicate
that the Shaw likelihood function is capable of correcting the problems created by using data that is both truncated and
endogencusly stratified. This is an important conclusion for researchers conducting demand research because financial
and time considerations often dictate that cheaper on-site sampling procedures be used. By using the Shaw likelihood
fimction o generate the demand parameter estimates, the researcher can use the on-site sample to infer properties of
the more general population and draw much stronger conclusion from the data. Unfortunately, the computationally
simpler inverse sample weighting method does not appear {0 be able to significantly correct for the problems created
by using on-gite samples.
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Table 1: Statistics of data sets for Shaw’s basic specification: 0~ = 25, corr (xz, x3) =0

Data Set Variable Number of Observations Mean Min Max Standard Deviation
y 1,000 -15.59 -74.00 38.00 26.51
X 1,000 147.62 0.55 298.87 85.94
P
X, 1,000 15.03 0.03 29.99 8.78
X3 1,000 51007.50 12243 99982.20 29459.90
y* =y 324 1575 1.00 38.00 9.04
X, 324 49,99 0.55 116.38 30.36
T
Xy 324 14,11 0.03 29.95 8.63
X, 324 53694.10 308.77 99982.20 28282.80
¥y = 5,102 20.92 1.00 38.00 7.88
X 5,102 36.02 0.55 116.38 2587
T&S
X, 5,102 13.60 0.03 29.95 8.82
X, 5,102 56551.70 308.77 99982.20 28576.00
Table 2: Monte Carlo results for Shaw’s basic specification: C}'2 =25, corr (xz, Xy ) =0
Parameter True value OLS of P data OLS of T&S data Shaw Likelihood T&S data
ﬁ 25 2530 26.38 25.60
0 {0.489) (0.186) 0.211
ﬁ 04 -0.30 -0.24 0.27
1 ’ {0.002) {0.003) (0.003)
ﬁ ol -0.11 -0.11 -0.11
2 ) (0.018) {0.007) (6.008)
ﬁ 0.6001 0.0001 0.00008 0.00009
3 ) (0.000005) (£.000002) (0.000003}
2 24.63
o 25 24.662 21.486 (0.500)

? Standard errors are shown in parentheses

Table 3: Monte Carlo results for Shaw’s basie specification: O'2 =400, corr (x2 5y ) =0

Parameter True value OLS of P data OLS of T&S data Shaw Likelithood T&S data

; s 2622 4159 32.59

0 (1.96) (0.48) ©.77)
F: Py 2030 0,14 -0.24

1 : (0.007) (0.004) (0.01)
B ol 013 0.18 027

2 ' ©.07) (0.02) (0.03)
B L0001 0.0001 3.60602 3.00004

3 : {0.00002) (0.000006) (0.00001)
o2 400 396.01 208.87 3{;‘%3?

* Standard errors are shown in parentheses
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Table 4: Statistics of data sets for new Monte Carlo simulation

Data Set Variable Number of Observations Mean Min Max Standard Deviation
y* 10,000 -186.31 -487.70 57.13 98.58
X 10,000 67.56 10,03 125.00 32,89
P X, 10,000 14.87 0.002 30.00 8.65
Xy 10,000 5.20 0.40 10.00 2.78
Xy 10,000 45716.41 1.72 99952.06 28770.02
Y=y 163 14.50 0.04 44.41 11.19
X 163 16.10 10.01 2045 4.56
T X, 163 8.25 0.02 29.57 7.66
Xy 163 3,30 0.44 9.95 2,63
X, 163 80600.00 40039.27 99943.45 14353.11
V' =y 1000 23.15 1.02 44.41 10.52
X 1000 14.82 10.08 29.45 3.67
T&S Xy 1000 7.47 0.02 29,52 7.83
X5 1000 3.46 0.44 9.94 27
X, 1000 84248.00 40036,27 60943 45 12660.93
Table 5: Monte Carlo results for basic specification: (72 =25, corr (x2 , x3) =0
Parameter | True value | Shaw likelihood T&S data | Ignoring endopgenous stratification Inverse sample weighting
5 1 233 6.35 5.20
0 (34D (29.72) (18.08)
-2.40 -2.09 -2.03
2 23 (0.01) ©.17) (0.22)
) 0.3 0.29 0.29 0.29
2 ' (0.0002) (0.0002) £0.00007)
0.76 0.66 0.64
5, 0.8 (0.002) (0.02) (0.02)
o 5 5.07 4.78 473
(0.02) (0.06) (0.08)

* Mean squared errors are shown in parentheses
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Table 6: Monte Carlo results for basic specification: 0'2 =625, corr (JC2 s x3) =0

Paramster True value Shaw likelihood T&S data Ignoring endogenous stratification Inverse sample weighting
5 ’s 26.33 4716 35.87
0 (15.99) (49537) (119.80)
-0.91 .55 2045
5 -0.90 (0.003) (0.12) (0.20)
0.29 0.31 0.30
5, 0.30 (0.0008) (0.0008) (0.0004)
0.80 0.50 0.43
2 080 (0.002) (0.09) (©0.14)
24.42 19.73 1837
“ 25 (377.62) @17.15) (178.97)

® Mean squared errors are shown in parentheses.

ENDNOTES

! Shaw states, “The rounding-off of the J; to the nearest integer may create some biases in data generation. However, we

expect the bias to be small and negligible after the differences cancel each other out.” (Shaw 1988, p. 220}
! The parameter values were chosen in order o provide a higher proportion of zeros in the population sample than the design
used by Shaw, It was felt that the higher proportion of non-visitors was closer to reality for a vast majority of recreation

sites.

! Some parameter values had to be changed in the simulation in order to roughly maintain the proportion of non-visitors in

the population sample.

APPENDIX A

Assume that the fraction of total trips made up of individuals in the on-site sample taking { trips per season,

S (L‘ ) , is the same as their fraction of total trips in the population. This implies that

5=l
;SN(S)

(1.8)
(P(t)

> sP(s)

s=1

where IV (f ) indicates the number of individuals in the population taking f trips per season, { represents the maximum

T
number of trips taken per season by anyone in the population, and P (z‘) =N (I )/ZN (S) denotes the percentage of
s=I

the population taking ¢ frips per season. Let
T

0=3"1P(t) (19)
=l

denote the average number of trips in the population. Then (1.8) implies that
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_05(2)
=

P(1)

But since

1=ZT:P(t)

=1

=BZT:S(t)

=
1

£7

[

=1

8 can be caleulated using information from the on-site sample, and we have that:

P(t) = @[ijﬁ(ﬂ}_ = GS_(I) .

P £
Inverse sample weighting would then be given by:

3

(t

=

o

w(t)=
4
x

|

Cn

p——

79

(1.10)




Journal of Business & Eeononiics Research - August 2006 Volume 4, Number 8

NOTES

80



