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ABSTRACT 

 

Aircraft valuation and the projection of its future price is an intricate process. This paper provides 

a comprehensive review of aircraft valuation. It presents a methodology that will more accurately 

measure return on investment, improve the efficiency of managing operating costs, and more 

effectively determine yield analysis.  The value of an aircraft depends on internal factors that are 

directly related to the aircraft’s documentation and specifications.  Some examples of these are 

age, aircraft size, seat capacity, fuel efficiency, and technical status.  In addition, the aircraft price 

depends on the external factors, such as market demand and its elasticity, fuel cost, and 

environmental regulations. The external factors are extremely important because they indicate 

where in the aviation industry cycle the aircraft is and this, in turn, has the greatest impact on 

aircraft value. The theoretical value calculated in this paper is highly responsive to the 

assumptions underlying the valuation model. 

 

Keywords:  Aircraft valuation, Asset valuation, Discount cash flow model, Boeing 737/767, Airbus 320/330 
 

 

INTRODUCTION 
 

ith deregulation of the airline industry, commercial airlines must adjust to the risks of volatile prices and 

cost components in the competitive marketplace. One of the major assets of airlines is the value of the 

aircraft that they are flying. Therefore, it is critically important to develop a methodology for estimating 

an aircraft’s value.  However, estimating an aircraft value is a complex process. Factors determining an aircraft’s 

value not only include the physical characteristics of the aircraft, such as size, age, seat capacity, fuel efficiency, and 

physical condition, but also include maintenance status and maintenance documentation; operating expenses and 

revenue; demand and its elasticity; inflation rates and interest rates; fuel cost; safety issues and regulation; and 

finally, environmental regulations. In addition, other exogenous factors, such as the event of September 11, 2001
1
 

and predatory competition by other airlines, can significantly alter the demand for certain types of aircraft and 

therefore change the estimated value.
2
  For instance, there is an increase in demand for old wide-body aircrafts when 

there is a capacity shortage or significant diminution in fuel costs. On the other hand, technological progress that 

reduces the operating costs of new aircraft, or environmental regulations that restrict older aircraft, or higher fuel 

prices, would have damping effects on value of old wide-body aircraft.
3 

In addition, since the value of an aircraft 

depends on its operating costs, older aircraft are retired when the break-even load-factor is too high to generate 

enough revenue to cover operating costs. These operating costs are mainly determined by fuel efficiency, range, seat 

capacity, maintenance expenditures, and airport fees. In general, higher operating costs result in lower aircraft value.  

Recent decades, however, have seen a marked lowering of operating costs through several factors that have 

contributed to an increase in energy efficiency; among these are aerodynamic improvements and improvements in 

engine thrust.  
 

Additionally, wear and tear of an aircraft is appraised on the basis of flight hours and on the number of 

cycles. This can vary significantly since the same type of aircraft can be operated on different routes with different 

                                                 
1 In the period immediately after 2001, values of the B737-300 fell to record lows with some even being scrapped. Aircraft Value 

News, April 20, 2008. 
2 Aloha Airlines filed for Chapter 11 bankruptcy protection on March 12, 2008. The airline said, it was unable to generate 

sufficient revenue due to what it called "predatory pricing" by Mesa Air Group Inc.'s go! airline 
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distances and varying number of landings per hour. Macro-economic factors are also extremely important because 

they indicate the aviation industry cycle, and this can have the greatest impact on aircraft values. All of these factors 

make aircraft valuation a complex and dynamic process 

 

In this paper, we use popular narrow-body and wide-body aircraft manufactured by both Boeing and Airbus 

and employ a modified Discounted Cash Flow (DCF) model that is based on financial theory. The theory assumes 

that the value of an investment can be estimated from the future cash flows that the investment is expected to 

generate. We conclude that the discounted cash flow model provides the best estimate of aircraft value. However, 

since many factors are considered in the DCF model, small variations in these factors can significantly affect the 

theoretical value of any aircraft.  

 

The paper provides a comprehensive review of aircraft valuation. It presents a methodology that will more 

accurately measure return on investment, improve the efficiency of managing operating costs, and more effectively 

determine yield analysis.  As such, it should provide the basis for an improved negotiating position for the purchase 

or lease of new or used aircraft.  Additionally, it also provides quantitative evidence to determine when an aircraft 

should be retired and replaced. 

 

LITERATURE REVIEW 

 

 The question of valuing commercial aircraft has not been explored in any great depth by researchers in 

academia. Gibson and Morrell (2003) explored the actual practice regarding aircraft financial evaluation. They 

propose the Net Present Value (NPV) approach (with close attention to the choice of discount rates to flesh out 

investment/financing interactions), the use of Monte Carlo analysis to quantify risk up front, and Real Options 

Analysis (ROA) to better understand the value of flexibility to aircraft operators. They suggest that a better approach 

to value uncertainty is to use a moderate cost of capital, either using market measures, or, utilizing broad, long-term 

regional benchmarks
3
. They then surveyed the use of sophisticated asset valuation strategies by airlines to evaluate 

the benefits of their risky investments in aircraft. An advanced method of risk-adjusted return is utilized and 

substantial interaction is considered.  This included cash (rather than accounting) based returns. The method adjusts 

returns for the time value of money, and demonstrates the increase in value for the investors and interest payments 

for the lender. This research provided a significant contribution to aircraft financial evaluation, particularly in the 

areas of risk and cost of shareholder equity estimation. Substantial interactions were identified between the 

investment analysis and the way the projects were financed. These authors concluded that while they find substantial 

use of the more sophisticated techniques in aircraft financial evaluation, airlines do not appear to consistently use the 

most advanced techniques in the market. In addition, they claim that, among cash-based measures, the use of NPV 

to estimate the value of an aircraft is now about the same as the Internal Rate of Return (IRR).  This has probably 

come about by advances in the knowledge of the techniques to estimate the cost of capital. 

 

 In another look at an asset valuation model, an options-based analysis of the large aircraft market is 

surveyed by Clarke, Miller and Protz (2003). These authors argue that in order to determine the strategic value of 

infrastructures, it is necessary to calculate the value of the options that it brings. The methodology described here 

combines financial and real options theory and it uses a Monte Carlo simulation in a system dynamics framework to 

determine this value. This methodology overcomes some of the weaknesses associated with standard real options 

analysis, such as the selection of the underlying asset and the inclusion of market dynamics. It can be used to 

evaluate a wide array of investments under uncertainty. Some examples are expenditures in research & development 

(R&D) for a new aircraft model by an aircraft manufacturer and improvements in the air traffic control (ATC) 

infrastructure for the National Airspace System (NAS). 

  

 In another field, Breidenbach, Mueller and Schulte (2006), compare property and market betas for both 

private real estate (using the NCREIF Index) and public real estate (using the NAREIT Index), so that investors can 

have a more accurate risk premium beta or benchmark for their decisions. Their goal in this study was to develop a 

model based on the capital asset pricing model (CAPM) that will allow investors to derive their required rate of 

return for individual property types in specific markets. The required rate of return is an important component in 

                                                 
3 such as those identified in Dimson, Marsh and Staunton (2002). 
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achieving risk adjusted returns.
4
  More specifically, this paper concentrates on the development of meaningful beta 

proxies for the application to the CAPM, examining current approaches used in the industry to calculate market risk 

premiums, as well as suggesting improvements.   

  

 In the final survey, an exact Bayes test of asset pricing models with application to international markets is 

researched by Avramov and Chao (2006). The paper develops and implements an exact finite-sample test of asset 

pricing models with time-varying risk premiums using posterior probabilities. This procedure is applied to 

international equity markets by testing and comparing the International Capital Asset Pricing Model (ICAPM) and 

conditional ICAPM versions of Fama and French (1998). Specifically, this approach allows one to simultaneously 

compare the performance of multiple asset-pricing specifications, both nested and non-nested, and optimally 

combine those models into one general weighted model that could be useful for making investment decisions under 

uncertainty. Conclusions about this asset valuation articles are difficult to draw since the researchers have used 

various pricing models to test subject matter in diverse areas. 

 

 Vasigh and Erfani (2004) identified internal factors, such as the aircraft specification and age, and external 

factors, such as the state of the economy and inflation rate, that affect the theoretical value of an aircraft. Operating 

costs and revenues have a major impact on the theoretical value. They argue that the expected theoretical value of an 

aircraft is, to a great extent, dependent on the expected net cash flows that can be generated from the use of the 

aircraft. Future generation of net cash flow depends on factors affecting revenue and costs and how those factors are 

expected to change. However, the value of an aircraft is also determined by the relationship between supply and 

demand. Although there is one single market, similar aircraft may be traded at significantly different prices. 

 

Often company valuations are calculated using the dividend discount model. Expected future net cash flows 

in the form of dividends are discounted to estimate the value of the company. Foerster and Sapp (2005) conclude 

that the dividend discount model explains the value of equity for a large mature dividend paying company. This 

model can be extended to aircraft valuation. The profits generated by an aircraft over time can be considered as net 

cash flows which can be discounted to estimate the theoretical value of an aircraft. 

 

AIRCRAFT SELECTION AND DATA  

 

The results in this paper are based on a sample of quarterly data. The necessary data was collected using the 

front end application from Back Aviation Solutions. We accessed the Form 41 as well as the Fleet data base. 

Relevant expense and revenue data for the four aircraft were collected for the time period starting with the first 

quarter of 1995 to the fourth quarter of 2005. The information was obtained for two different aircraft; Boeing and 

Airbus. We have also selected two different poplar models (narrow body and wide-body) for each manufacturer. 

Data sets were obtained for all the quarters for the A320-200, as of the first quarter of 2000 for the B737-700LR, as 

of the second quarter 2000 for the A330 and as of the third quarter 2000 for the B767-400. Unfortunately, Back 

Aviation Solutions gave no breakdown of the financial information for the A330 aircraft model. Also, the fleet size 

for both wide-body aircraft types selected is rather small, distributed among a few airlines only. 

 

Note that the equations presented below have a number of terms that cancel out when the equations are 

multiplied out.  The reason for this is the fact that we disaggregated the revenue and expense data as much as 

possible. This disaggregation gave us the ability to separate specific components of the data so that we could 

calculate the sensitivity of the overall theoretical value of the aircraft to changes in specific components of revenues 

and costs. The following main factors were defined: Passenger and cargo revenues, direct expenses (e.g. personnel, 

fuel), maintenance, depreciation and amortization, general administrative cost and other transport related expenses. 

For a complete example of a data set please refer to Table 11 in the Appendix.  Some of the figures had to be 

calculated as they were not directly available (total gallons consumed), not segregated by aircraft type (servicing, 

sales and general expense) or were dependent on others (e.g. total block hours). Table 3 in the Appendix provides 

more detail on these calculations: 

 

                                                 
4 The capital asset pricing model of William Sharpe (1964) and John Lintner (1965) marks the start of asset pricing theory 

(resulting in a Nobel Prize for Sharpe in 1990). 
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a.  Boeing Aircraft 

 

 Boeing received the first order for a 737-100 (737 program) in 1965. In 1991 Boeing started the 737X 

program (next generation)
5
 on which the current versions of 737s are based on. According to Air Transport 

Intelligence’s web site
6
 297 airlines operate 737s and 4,061 aircraft versions are in service. The three top airlines 

operating 737 aircraft are Southwest Airlines (451), Continental Airlines (258) and Ryanair (105). The Boeing 737-

700 model was launched in 1993. Currently there are about 705 aircraft of this model in service. 

 

 The wide-body aircraft 767 from Boeing is in service with 98 airlines. According to Air Transport 

Intelligence, the current total of aircraft in service is 825. The three top operators are Delta Air Lines (107), 

American Airlines (75) and All Nippon Airways (56). The model selected is the 767-400ER which was launched in 

2000. 

 

b.  Airbus Aircraft 

  

 Airbus started its A320 program in 1984 with the A320-100. A newer version the A320-200 was 

introduced in 1988.
7
 Based on information retrieved from Air Transport Intelligence, 138 airlines operate a fleet of 

1,476 Airbus A320 models. The three top airlines operating A320s are JetBlue Airways (88), US Airways (75) and 

Northwest Airlines (73). 

   

 To compare the Boeing 767 with a model from Airbus, the A330 was selected. This model is the only 

wide-body from Airbus that is operated by an US airline. The A330 was launched in 1993 (A330-200) followed by 

the A330-300 around 1998. According to Air Transport Intelligence’s web site, 57 airlines currently operate a total 

fleet of 394 Airbus A330 model. The three top operators are Emirates (29), Cathay Pacific (26) and Northwest 

Airlines (20). 

 

 Table 2 in the Appendix summarizes some characteristics of all aircraft models selected. The current 

operators of each aircraft model are given for the United States only because only financial data of US carriers was 

obtainable (through Back Aviation Solution’s Form 41 application).  For a complete list of codes for the US carriers 

please refer to table 10 in the appendix. 

 

THEORETICAL VALUATION MODEL 
  

In this section, we develop our theoretical aircraft valuation model. Financial theory indicates that the value 

of an investment is estimated from the future cash flow that such an investment is expected to generate. A 

commonly used approach is the discounted cash flow (DCF) model. The generic model requires a present value 

calculation of projected future cash flows (e.g. dividends and earnings). In order to apply the DCF model, future 

cash flows have to be projected. For aircraft valuation, revenues (cash inflows) generated by passengers and 

cargo/freight transport have to be estimated. These estimates can be complex and require several assumptions. To 

calculate the revenue per aircraft type, the total revenue passenger mile (RPM) was calculated and added to the 

revenue ton mile (RTM) (multiplied by the cargo yield). For narrow body aircraft the yield is lower because the 

freight has to be hand loaded due to the fact that no containers can be loaded mechanically. The wide-body aircraft 

can be loaded with cargo containers using lifts to load them onto the aircraft. Therefore, the cost is lower which 

results in a higher yield. Based on the cargo yield analysis per aircraft model the average industry cargo yield was 

used for the narrow body models. For wide-body aircraft models the cargo yield was estimated by weighting the 

overall cargo yield for airlines that operate the respective aircraft model. 

 

All of the data are available per aircraft-fleet only. In order to determine the revenue and expense for 

individual aircraft the figures were divided by the average number of aircraft in service. This number is also 

                                                 
5 New generation include, 737-600, 737-700, 737-800 and 737-900 airplane models. 
6 All fleet information as obtained from www.rati.com on May 16, 2006 
7 The A-320 family comprises four aircraft that share the same cockpit, have the same cabin cross-section and fly with the same 

operating procedures. 
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available through Back Aviation Solutions’ Form 41 application. In the case of theoretical aircraft valuation the cash 

inflow generated can be defined as: 
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Where: 
 

TR = total revenue 

β = block hours
8
 

RPM= Revenue passenger mile
9
 

RTM= Revenue ton mile
10

 

RRPM = revenue per revenue passenger mile (passenger yield)
11

 

RRTM = revenue per revenue ton mile (cargo yield)
12

 
 

In addition to estimating the cash inflows, cash outflows must also be estimated. These include operating 

expenses as well as non-cash expenses, such as amortization and depreciation.  Operating expenses for an aircraft 

include fuel cost, flight personnel expenses, maintenance cost, indirect costs and flight equipment capital costs as 

well as expenses for marketing, sales, and general administration. Many of these factors depend on how many seats 

are offered for travel in the market (available seat miles) as well as on how long the aircraft is used on a daily basis 

(block hours). Based on these cost factors, the estimated cash outflow may be defined as: 
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Where: 
 

TC = total costs 

Admin= administration costs, such as servicing, sales, and general cots 

ASM = available seat miles
13

 

θ = fuel cost per gallon 

γ = gallons of fuel consumed 

λ = flight personnel costs 

μ = cost of maintenance (labor and materials) 

ι = indirect costs 

ω = capital cost per aircraft day 

k = cost of capital (required rate of return / risk of the estimated cash flow) 

t = year 

n = expected aircraft life 

ι = indirect costs 

ω = capital cost per aircraft day 

 

 

                                                 
8 Typically includes taxi time plus airborne time. 
9 One fare-paying passenger carried one mile. 
10 One ton carried one mile. 
11 A measure of unit revenue, calculated as the gross revenue generated per RPM. 
12 RRTM is a measurement of revenue earned on the movement of a ton of freight over one mile, 
13 One seat transported one mile. 
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The resulting net cash flow (inflows minus outflows) is the profit generated by an individual airline 

utilizing that specific aircraft for 1 year. Each of these periodic net cash flows represents value received by the buyer 

of the aircraft. However, a net cash flow received further in the future has less value to the buyer today. Therefore, 

the future net cash flow needs to be discounted to determine today’s value of that specific cash flow. The sum of all 

these discounted future net cash flows represents the value of the asset and the maximum amount the buyer should 

be willing to pay for it. This study utilizes the DCF model and defines the theoretical aircraft valuation by the 

following equation: 
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METHODOLOGY 
 

As pointed out in the previous section the theoretical value of an aircraft depends on the potential future net 

cash flows. Calculating the periodic future cash inflows and outflow requires certain assumptions and estimates. The 

forecasting of the periodic aircraft revenues and expenses depends on factors such as the state of the economy, 

currency exchange rate, inflation and the age of the aircraft.
14

 With the increase in maintenance (due to aging 

aircraft) operational expenses will increase accordingly. Operating expenses will also increase when market fuel 

prices increase.
15

 In addition, if the aircraft is operated longer hours per day, fuel consumption will increase 

resulting in higher fuel costs. The changes in fuel cost are also dependent on the fuel efficiency of the aircraft. A 

continuous improvement in fuel efficiency reduces the gallons consumed per block hour. On the other hand, more 

ticket sales (thus increasing the load factor) or higher ticket prices increase revenues. Tables 4 and 5 summarize the 

assumptions and estimates of changes in certain factors for each aircraft model. The first column in Tables 4 and 5 

represents the cumulative overall growth rate for the 30 year period.  This rate is an extrapolation of the previous 

five-year growth rate for the factor in question.  So that, for example, the daily utilization rate in hours can be 

expected to grow about a 10th of 1% for the 30 year period and gallons per block hour can be expected to decrease 

by about a half of 1% over the same time period and so forth. 

 

 An aging aircraft generally requires more maintenance. Therefore, the rate at which the maintenance costs 

increase should usually be higher than the rate at which general costs increase. In order to get an estimate of the 

maintenance cost, data for major US airlines operating the respective aircraft types were collected and analyzed. 

Factors retrieved (all for the calendar year 2005) are total maintenance expense, number of aircraft and the average 

individual fleet age. Based on these values, a base maintenance figure as well as the annual increase per aircraft is 

predicted. Afterward, the annual change rate is estimated. 

 

 Another factor that has to be estimated is the rate at which the periodic net cash flows are discounted to 

derive their value today. This rate reflects the current market rate of return adjusted by the risk of the investment. 

Commonly, the required rate of return is estimated as a function of the firm’s weighted average cost of capital 

(WACC).
16

 The WACC reflects both the current market rates of return as well as the risk specific to the company. 

The formula defining the weighted average cost of capital is: 

 

k = eedd kwT)(1kwWACC   (4) 

 

 

                                                 
14 In 2007, Airbus reporting a loss of over a Billion Euro due to the weakness of the dollar is said to be under pressure to secure 

higher prices for new aircraft.  
15 April 18, 2008, the price of crude oil reached $114.53 per barrel on the New York Mercantile Exchange and setting another 

record.   

WACC is calculated by multiplying the cost of each capital component by its proportional weighting and then summing. 
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Where: 

 

wd = proportion (weight) of debt financing 

kd = cost of debt 

ke = cost of equity 

we = proportion (weight) of equity financing 

T = corporate tax rate 

 

Applying the WACC method is effective for determining the necessary rate of return at which to discount 

the expected net cash flows (Lloyd and Davis, 2007). However, to obtain a valid net present value (and subsequently 

a correct theoretical asset value), the investment or asset discounted under the WACC method must have a risk 

similar to the average risk of the firm’s existing investments. This is probably more true for the airline industry than 

most others because the principal existing investment is the aircraft fleet. 

 

APPLICATION OF THE MODEL AND SIMULATION 

 

Applying Equation 3 defined earlier, the theoretical value of an aircraft can be estimated. In a net present 

value framework, the longer the period of time over which an annuity occurs, the greater the sensitivity of the 

present value of that annuity to uncertainty in the variation in 

revenue, cost, and interest rate.  

 

 In general, there are two ways that the results from the empirical present value exercise described above 

can be applied and evaluated. We can observe the actual price of an aircraft in the market and see how close the 

calculated theoretical value comes to this price, or we can calculate the sensitivity of the theoretical valuation of the 

asset to changes in the price of the input factors (revenue or costs). The first method is essentially a benchmarking 

procedure that provides an estimated theoretical value (under the assumptions of the model) to compare with a list 

price for the aircraft. This is a type of absolute valuation based on the assumed future revenues and costs of the 

aircraft and is an application of the benchmarking potential of the technique. That is, if the assumptions are 

reasonably accurate, it provides a base value for the asset for sale or a theoretical economic (as opposed to 

accounting) value of the asset for business decision-making. By providing such an economic value, this can 

materially aid in managerial financial decisions that involve the sale or purchase of capital assets in a timely manner. 

The second method, on the other hand, is more of a relative valuation that determines the most critical of the input 

assumptions. This approach can also aid in managerial financial decisions by identifying those inputs that have the 

largest impact on the value of the asset.  That is, it might give the financial decision maker a quantitative method to 

evaluate the impact of a specific decision such as, for example, the installation of winglets to increase fuel 

efficiency. Both methods are instructive and we will demonstrate each in turn. Table 1 provides the minimum and 

maximum list price for each of the four aircraft for which the present value was calculated using equation 3. 
 

 

Table 1:  Theoretical Values for each of Four Aircraft 

Aircraft Type List Price 

 Minimum Maximum Average Theoretical value % Difference 

A320 73.2 80.6 76.9 68.4 6.56 

A330 176.3 185.5 180.9 155.8 11.63 

B737 57.0 67.5 62.25 44.7 21.58 

B767 154.0 169.0 161.5 150.0 2.60 

 

 

 As the Table 1 shows, in all cases the discounted net present value approach produced values that were less 

than the 2008 minimum listed sale price for all of the aircraft. For example, the Boeing 737 -- 700 had a theoretical 

net present value of $44.7 million whereas the minimum sale price was $57 million.  This represents a 21.5% 

decline in the theoretical vs. the list price of the aircraft.  Thus, the theoretical valuation may represent a cyclical 

decline in the financial condition of the aviation industry, or it may represent the increase in price (decrease in 

present value) for some of the inputs (in this case most likely fuel). For the A320, the difference between the 

theoretical valuation and the minimum sales price is 6.5%.  On the other hand, the theoretical value of the wide 
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bodied 767 – 400ER is much closer to the minimum list price.  In this case, the theoretical difference amounts to 

only a decline of 2.6%, while the difference for the A330 is about 11.63%.  The average difference for the four 

aircraft amounts to about 10%.  While the differences are of course subject to the assumptions outlined above, they 

are close enough to the minimum list price to validate the present value approach as a reasonable first approximation 

to the valuation of an asset using this technique.  In any event, the final sale or purchase price will always be a 

function of market equilibrium and the bargaining power of the buyer and the seller.  However, the method 

described above appears to give at least a reasonable "lower end" valuation for the capital asset. 

 

 The second way by which the present value technique can be applied is to calculate the sensitivity of the 

present value to changes in input prices. As mentioned, this provides financial information on the relative value of 

price changes for either costs or revenues. Table 6 in the Appendix presents the resulted variations in present value 

of the aircraft for 1% increase or decrease in various input factors.  As Table 6 shows, changes in the passenger yield 

have the largest impact on the present value of the aircraft.  This is clearly a result of the compounding value of 

increased revenue over the relatively long lifespan of an aircraft as a capital asset.  On the other hand, a 1% increase 

in fuel cost has a bigger impact than the same 1% increase in maintenance costs and so forth. Different results and 

figures will be obtained if the percentages used to forecast revenue and expense are varied. 

 

Another way of looking at these changes is to use the well-known concept of elasticity.  Elasticity measures 

the percent change in one factor relative to the percent change in another, so that it is a measure that is free of units. 

Point elasticity measures a relative change at a particular point whereas arc elasticity measures the change over some 

larger amounts and is calculated as the average relative change.  The formula for arc elasticity is calculated as 

follows: 

 

E = [∆v/(v1 + v2)]/[∆x/(x1 + x2)] (5) 

 

Where: 

 

E = arc elasticity of theoretical aircraft value  

v = theoretical aircraft value 

x = input variable 

 

The corresponding theoretical aircraft values at each level are computed for a +/- 1% increase/decrease in 

the input factor (Table 6) and the arc elasticity of each factor for every aircraft model is calculated. The results are 

tabulated in Table 7 in the Appendix.  As Table 7 clearly shows, block hour usage has the highest impact on the 

present value of the aircraft. With a 1% increase in block hours producing an approximately 24% increase in the 

present value of the aircraft.  A good real world example of this is Southwest Airlines which has the highest block 

hour usage rate among the major airlines and is also consistently profitable.  As mentioned earlier, passenger yield is 

also a major contributor to present value and this shows up in Table 7 as an approximate 18% increase in present 

value for a 1% increase in passenger yield. Table 7 also shows that fuel costs have a bigger impact on present value 

than maintenance costs.  Finally, we note that a 1% increase in the discount rate produces a 7.4% decrease in the 

present value of the aircraft.  The reason for this of course is the fact that we are comparing the present value of the 

aircraft as an asset to other possible investment opportunities in the economy and, as the rate of return on those 

investment opportunities increases, the value of the aircraft as an asset will decrease. 

 

Tables 8 and 9 contain the theoretical aircraft values obtained by applying the different growth rates in 

various input factors. The change in present value is calculated for the applicable growth rate contained in the tables 

while all other factors are held constant at year 2005 values.  The factor studied is increased or decreased by a fixed 

percentage based on the previous year’s value. Then the theoretical aircraft value is estimated by applying Equation 

3. For factors other than the discount rate, a discount rate of 12% is applied to obtain today’s value of the periodic 

cash flows (present values). The theoretical aircraft values in Tables 8 and 9 in the Appendix are calculated for new 

aircraft only. Keeping the useful life-time for an aircraft at thirty years, a one year old aircraft will generate less net 

cash flows (29 periods only). Therefore the aircraft’s theoretical value will be less. Calculating the value of the 

aircraft at each of the thirty periods a valuation trend can be plotted. Applying the same rules as for Table 8 and 

Table 9, the graphs for each factor and aircraft model can be generated.  As the tables show, the present value of the 
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aircraft can vary greatly depending on the changes in the input variables.  However, it is also clear that tables and 

figures such as these should be helpful in various financial decisions that might accompany the purchase or disposal 

of an aircraft as an asset.  For example, suppose that an airline is employing a 737 on a specific route where the 

passenger yield has been dropping over some period of time.  This could come about through increased competition 

or regulatory constraints (noise restrictions, etc.) or a decrease in population or any number of other factors.  At the 

same time maintenance costs, fuel costs and personnel costs have all been increasing and both of these trends are 

expected to continue.  The airline could use equation 3 with the appropriate extrapolations of the decreasing 

revenues and increasing costs (from historical data) and conclude that this aircraft will become non-profitable in the 

near future.  At this juncture the airline might decide to switch the aircraft to another route, retire the aircraft, 

attempt to lease it, or sell it.  The airline would still use judgment and experience in the final decision, but it would 

have some quantitative evidence to support that decision. 

 

CONCLUSION 

 

This research has utilized a modified DCF model to forecast the net cash flows generated by an aircraft 

over time. We included factors, such as revenue per passenger mile, revenue per ton mile of cargo, available seat 

miles, block hours, fuel consumed, flight personnel labor rate, maintenance and material costs, expected economic 

life, indirect costs, and capital cost per aircraft day to forecast net cash flows. These net cash flows are then 

discounted at an appropriate cost of capital to estimate the theoretical value of an aircraft.  

 

The authors then compared the actual price of an aircraft in the market to see how closely the calculated 

theoretical value came to this price. In general, the average deviation was approximately 10% less than the actual 

price.  This value provided a benchmarking procedure that was an acceptable first approximation to the value of the 

aircraft.  

 

Following this, we calculated the sensitivity of the theoretical valuation of the asset to changes in the price 

of the input factors (revenue or costs). This method provided a type of absolute valuation based on the assumed 

future revenues and costs of the aircraft and is an application of the benchmarking potential of the technique. 

 

Since the air transport industry is in a dynamic environment, it is quite likely that one or more of the base 

assumptions may change and this, in turn, will change the theoretical value of an aircraft. Therefore, the theoretical 

valuation was calculated for different discount rates, fuel costs, maintenance costs, passenger yields, and block 

hours. In order to calculate the possible outcomes, all factors, except one, were kept constant. The variable factor 

was then rotated among the factors. The results of the calculations showed that significant changes in the theoretical 

value of aircraft can be attributed to modest change in the discount rate, fuel cost, and passenger yield.  

 

 This paper provides a comprehensive review of aircraft valuation. It presents a methodology that will more 

accurately measure return on investment, improve the efficiency of managing operating costs, and more effectively 

determine yield analysis.  As such, it should provide the basis for an improved negotiating position for the purchase 

or lease of new or used to aircraft.  Additionally, it also provides quantitative evidence to determine when an aircraft 

should be retired and/or replaced. 
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APPENDIX 

 
Table 2:  Characteristics of All Selected Aircraft Models 

   A330  

 A320- 200 B737-700 -200 -300 B767-400 

Launch 1988 1993 1998 1993 2000 

Normal Seating 164 126 293 335 243 

Range, miles 

(max. payload) 
2,167 5,179 7,674 5,179 4,315 

Speed (mach) 0.78 0.79 0.82 0.86 0.80 

In Service 

(world/US) 
1,448/348 705/317 203/9 186/20 37/37 

US-Operators 

(for decoding please 

refer to appendix) 

B6-87 

NW-73 

Ted-57 

UA-40 

US-77 

U5-13 

Virgin-1 

FL-23 

AS-22 

AQ-8 

CO-36 

WN-228 

NW-9 NW-11 

US-9 

CO-16 

DL-21 

 

 

Table 3:  Calculated Factors 

Factor Calculation 

Total Block Hours Daily Utilization x 365.25 

Gallons Consumed Gallons per Block Hour x Total Block Hours 

Passenger Revenue RPM x overall passenger yield 

Cargo Revenue RTM x overall cargo yield 

Aircraft Fuel Gallons consumed x Fuel cost (price per gallon) 

Servicing, Sales and General Expense Allocated bases on ASM 

 

 

Table 4:  Factors Forecasting for Narrow-Body Aircrafts 

 Airbus A320-200  Boeing 737-700LR 

Factor % Year 2005 Year 2034  % Year 2005 Year 2034 

Daily utilization (hours) 0.10 11.63 11.97  0.10 11.65 11.99 

Gallons per block hour -0.05 793.49 782.07  -0.05 709.43 699.22 

Fuel cost ($ per gallon) 2.00 1.67 2.97  2.00 1.31 2.32 

RPM (millions) 0.05 204.71 207.70  0.05 159.76 162.10 

Passenger yield (cents) 1.25 11.92 17.09  1.25 11.92 17.09 

RTM (millions) 0.01 20.81 20.87  0.01 16.50 16.54 

Cargo yield (cents) 1.25 70.18 100.61  1.25 70.18 100.61 

Direct maint. ($) 3.75 1,677,664 4,879,329  7.10 734,221 5,357,781 

All other factors (costs) 2.00    2.00   

Note: Base is the year 2005. For every year the previous year’s figure is increase by the percentage listed (compounding) for a 

total of thirty year (estimated asset life-time) 
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Table 5:  Factors Forecasting for Wide-body Aircrafts 

 Airbus A330  Boeing 767-400ER 

Factor % Year 2005 Year 2034  % Year 2005 Year 2034 

Daily utilization (hours) 0.10 13.85 14.26  0.10 14.26 14.68 

Gallons per block hour -0.05 1,858.69 1,831.92  -0.05 1,651.91 1,628.12 

Fuel cost ($ per gallon) 2.00 1.73 3.07  2.00 1.73 3.07 

RPM (millions) 0.05 546.56 554.50  0.05 500.79 508.10 

Passenger yield (cents) 1.25 11.99 17.19  1.25 11.99 17.19 

RTM (millions) 0.01 71.50 71.71  0.01 64.35 64.54 

Cargo yield (cents) 1.25 39.50 56.63  1.25 48.00 68.82 

Direct maint. ($) 12.45 700,000 21,034,024  12.65 830,000 26,259,277 

All other factors (costs) 2.00    2.00   

Note:  Base is the year 2005.  For every year, the previous year’s figure is increase by the percentage listed (compounding) for a 

total of thirty year (estimated asset life-time). 

 

 

Table 6:  Net Aircraft Value Trend Changes 

 Discount Rate 

+/- 1% 

Fuel Cost 

+/- 1% 

Maintenance 

+/- 1% 

Pax Yield 

+/- 1% 

Block Hour 

+/- 0.1% 

Narrow Body      

A320-200 + 

                      - 

(5,403,299) 

6,166,951 

(4,593,908) 

4,019,128 

(1,771,206) 

1,490,406 

17,973,531 

(15,821,149) 

1,940,246 

(1,941,626) 

B737-700 + 

                      - 

(3,843,702) 

4,386,930 

(3,223,495) 

2,820,178 

(1,253,484) 

1,076,017 

14,047,544 

(12,327,185) 

1,578,608 

(1,558,858) 

Wide-body      

A330            + 

     - 

(12,994,586) 

14,831,102 

(13,254,621) 

11,596,238 

(2,850,478) 

2,410,339 

48,316,101 

(42,398,980) 

4,643,621 

(4,585,520) 

B767-400ER        

                     + 

      - 

 

(12,753,537) 

14,555,985 

 

(12,140,706) 

10,621,686 

 

(3,496,076) 

2,954,928 

 

44,273,757 

(38,851,689) 

 

4,554,906 

(4,497,915) 

Note: Aircraft valuation variances are based on the assumption that all factors are kept constant but the factor studied. For factors 

other than the discount rate, the discount rate was estimated to be 12%. 

 

 

Table 7:  Arc Elasticity for Each Aircraft and Factor 

 Discount Rate Fuel Cost Maintenance Pax Yield Block Hour 

      Narrow Body      

A320-200 -7.40 -6.16 -2.24 17.19 24.35 

B737-700 -7.40 -6.06 -2.32 18.48 27.57 

         Wide-body      

A330 -7.40 -7.56 -1.52 18.73 24.07 

B767-400ER -7.40 -6.99 -1.95 17.75 24.06 
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Table 8:  Impact on Theoretical Aircraft Value of New Narrow-body Aircrafts by changing One Factor, 

Holding all Others Constant 

 Theoretical new aircraft value ($) 

Factor Applied growth rate 
Airbus A320-

200 

Boeing 737-

700LR 

Discount 

rate 
12% 

9% 

10% 

11% 

13% 

77,781,963.66 

99,205,431.77 

91,028,573.62 

83,948,914.28 

72,378,664.80 

55,335,193.94 

70,575,003.77 

64,758,314.94 

59,722,124.29 

51,491,491.49 

Fuel cost  

(price per 

gallon) 

2% 

1% 

1.5% 

3% 

5% 

70,232,334.77 

74,251,462.71 

72,308,001.14 

65,638,426.44 

54,293,482.80 

50,037,701.50 

52,857,879.84 

51,494,174.01 

46,814,206.02 

38,853,582.54 

Maintenance 

expenses 

A320-200; 

B737-

700LR; 

3.75%; 7.10% 

1%; 1% 

2,5%; 4% 

5%; 6% 

8%, 11% 

73,008,644.28 

76,730,504.74 

74,872,627.23 

70,786,590.16 

63,441,201.62 

50,192,221.55 

54,876,051.79 

53,070,329.46 

51,367,213.18 

43,954,374.45 

Passenger 

yield 
1.25% 

1% 

1.5% 

2% 

3% 

97,221,004.19 

93,079,311.47 

101,500,158.25 

110,493,836.74 

130,398,834.51 

70,506,204.00 

67,273,860.22 

73,845,828.17 

80,864,857.05 

96,399,518.92 

Block hours 0.1% 

0% 

0.05% 

0.5% 

0.75% 

79,723,589.47 

77,781,963.66 

78,749,725.69 

87,740,075.10 

92,961,748.92 

56,894,051.88 

55,335,193.94 

56,112,173.62 

63,330,173.93 

67,522,442.45 

Note: Theoretical aircraft valuation trends are based on the assumption that all factors are kept constant but the factor studied. 

Figures in bold font are the base percentage changes used for theoretical aircraft valuation among additional factors introduced in 

Table 4 in the Appendix. 
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Table 9:  Impact on Theoretical Aircraft Value of New Wide-body Aircrafts by changing One Factor, 

Holding all Others Constant 

 Theoretical new aircraft value ($) 

Factor Applied growth rate Airbus A330 
Boeing 767-

400ER 

Discount 

rate 
12% 

9% 

10% 

11% 

13% 

187,074,341.29 

238,596,282.72 

218,931,529.78 

201,905,443.30 

174,079,755.17 

183,604,118.45 

234,170,329.31 

214,870,356.99 

198,160,103.94 

170,850,581.52 

Fuel cost  

(price per 

gallon) 

2% 

1% 

1.5% 

3% 

5% 

165,291,696.60 

176,887,926.98 

171,280,534.43 

152,037,075.17 

119,303,959.45 

163,652,082.29 

174,273,768.09 

169,137,619.54 

151,511,376.25 

121,529,144.17 

Maintenance 

expenses 

A330; 

B767-

400ER 

12.45%; 12.65% 

9%, 9% 

11%, 11% 

14%; 14% 

15%, 15% 

172,828,517.29 

179,712,746.51 

177,187,438.70 

168,191,602.05 

164,479,368.77 

166,081,472.10 

174,875,370.35 

171,881,076.81 

161,214,584.77 

156,812,936.74 

Passenger 

yield 
1.25% 

1% 

1.5% 

2% 

3% 

239,254,569.70 

228,137,021.40 

250,741,105.58 

274,882,842.28 

328,313,840.01 

231,418,713.14 

221,231,309.18 

241,944,233.53 

264,066,163.44 

313,026,882.45 

Block hours 0.1% 

0% 

0.05% 

0.5% 

0.75% 

191,659,861.54 

187,074,341.29 

189,359,896.19 

210,592,323.70 

222,924,303.92 

188,102,033.42 

183,604,118.45 

185,846,008.36 

206,672,795.38 

218,769,176.03 

Note: Theoretical aircraft valuation trends are based on the assumption that all factors are kept constant but the factor studied. For 

factors other than the discount rate, the discount rate was estimated to be 12%. Bold numbers are the base percentage changes 

used for theoretical aircraft valuation among additional factors introduced in Table 5 in the Appendix. 

 

 

Table 10:  Selected Airline Decoding 

Code Airline Name Code Airline Name 

AQ Aloha Airlines Ted Ted (United Airlines) 

AS Alaska Airlines U5 USA 3000 

B6 Jetblue Airways UA United Airlines 

CO Continental Air Lines US US Airways 

DL Delta Air Lines Virgin Virgin America 

FL AirTran Airways WN Southwest Airlines 

NW Northwest Airlines   
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Table 11:  Examples of Data Set 

Category Sub Account 2005 

Age in Years  1 

Daily Aircraft Utilization  11.6263 
   

Total Block Hours  4,252.01 

Gallons per Block Hour  793.49 

Gallons Consumed  3,373,938.75 

Fuel Cost (Price per Gallon)  1.67 
   

Revenues   

Pax Revenue Total Revenue Passenger Miles 204,708,614.57 

 Yield (Pax) 11.92 

Pax Revenue  24,407,817.53 

Cargo Revenue Total Revenue Ton Miles 20,813,750.25 

 Yield (Cargo) 70.18 

Cargo Revenue  14,606,694.46 

Total Revenue  39,014,512.00 

Revenue per Block Hour  9,175.54 
   

Category Sub Account 2005 

Expenses   

Personnel Expenses Pilots and Copilots 1,310,448.22 

 Other flight Personnel (554.45) 

 Trainees and Instructors 46,969.07 

 Personnel Expenses 136,070.48 

 Professional and Technical Fees and Expense 7,229.36 

Total Personnel Expenses  1,500,162.68 

Personnel Expenses per Block Hour  352.81 

Fuel and Oils Aircraft Charges - 

 Aircraft Fuels (P52) 5,636,839.47 

 Aircraft Oils (P52) 3,584.23 

Total Fuel and Oils  5,640,423.69 

Fuel and Oils per Block Hour  1,326.53 

Other Direct Expenses Rentals 1,435,018.05 

 Other Supplies 2,566.50 

 Insurance Purchased - General 43,779.52 

 Employee Benefits + Pensions   413,750.34 

 Injuries Loss and Damage 433.79 

 Taxes - Payroll 87,846.21 

 Taxes - Other than Payroll 287,281.30 

 Other Expenses 5,093.83 

Total Other Expenses  2,275,769.54 

Other Direct Expenses per Block Hour  535.22 

Total Direct Costs (Flying Operations)  9,416,355.92 

Total Direct Costs per Block Hour  2,214.56 

Flight Equipment Maintenance Labor - Airframes 228,139.96 

 Labor - Aircraft Engines 7,987.51 

 Airframe Repairs 555,521.58 

 Aircraft Engine Repair 619,997.60 

 Maintenance Materials - Airframes 137,167.92 

 Maintenance Matertials - Aircraft Engines 94,483.31 

 Airworth. Allow. Provs. - Airframes 15,127.57 

 Airframe Overhauls Deferred - 

 Airworth. Allow. Provs. - Aircraft Engines 19,239.07 

 Aircraft Engine Overhauls Deferred - 

 Total Direct Maintenance - Flight Equipment 1,677,664.51 
   

 Ap. Maintenance Burden - Flight Equipment 561,104.46 

Total Flight Equipment Maintenance  2,238,768.97 

Flight Equipment Maintenance per Block Hour  526.52 
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Category Sub Account 2005 

Depreciation and Amortization Net. Obsol. And Deterior'n - Exp. Parts 16,144.64 

 Amort. - Developmental + Preop. Expense - 

 Amort. - Other Intangibles - 

 Depreciation - Airframes 386,691.31 

 Depreciation - Aircraft Engines 104,450.60 

 Depreciation - Airframe Parts 29,125.13 

 Depreciation - Aircraft Eng. Parts 20,934.33 

 Depreciation - Other Flight Equipment 31,496.84 

 Depreciation - Maint. Equip. + Hangers - 

 Depreciation - General Ground Property - 

 Amortization Expense - Capital Leases - Flt 56,674.12 

 Amortization - Capital Leases - 

 Flying Operations - 

 Maintenance - 

Total Depreciation and Amortization  645,516.97 

Depreciation and Amortization per Block Hour  151.81 

Total Aircraft Operating Expenses  12,300,641.86 

Total Aircraft Operating Expenses per Block Hour  2,892.90 

Servicing, Sales and General Ops Expenses Total Passenger Service Expense 2,042,875.50 

 Total Aircraft Servicing Expense 1,636,502.44 

 Total Traffic Servicing Expense 2,990,293.82 

 Total Reservation and Sales Expense 1,670,845.84 

 Total Advertising and Publicity Expense 289,758.00 

 General and Administrative Expense 1,822,001.61 

 Total Maint. + Deprec. - Ground Property + Equip. 563,258.53 

 Depreciation expense - Maintenance Equipment 42,646.86 

 Amortization (Other than Flight Equipment) 82,131.79 

Total Servicing, Sales and General Ops Expenses  11,140,314.39 
Servicing, Sales and General Ops Expenses per 

Block Hour 

 2,620.01 

Transport related Expenses  5,923,910.84 

Transport related Expenses per Block Hour  1,393.20 

Total Operating Expenses  29,364,867.09 

Operating Expenses per Block Hour  6,906.11 

Total Pre-Tax Profit  9,649,644.91 

Pre-Tax Profit per Block Hour  2,269.43 

Pre-Tax margin  24.73% 

 

 


