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ABSTRACT 

 

In this study, we analyzed the multifractality and the source of multifractality of the returns of 

GBP/USD, EUR/USD, USD/JPY and USD/CHF currencies. In the examination of multifractality 

we performed the Multifractal Detrended Fluctuation Analysis (MF-DFA). Also, we used shuffled 

and surrogated data that was derived from the Statically Transformed Autoregressive Process 

(STAP) method to determine the source of multifractality. According to the results, GBP/USD 

returns have monofractal features, whereas EUR/USD, USD/JPY and USD/CHF returns have 

multifractal behaviors. The tests concerning the source of multifractality indicated that the reason 

of multifractality for EUR/USD and USD/JPY returns is fat-tails of the probability density 

function of returns, whereas the reason of multifractality of USD/CHF returns are both long 

memory and fat tails. Also we have seen that there is an ambiguous relationship between the 

liquidity of the currency market and multifractality.     
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1. INTRODUCTION 

 

he movements in currency rates and the structure of these movements have important effects ranging 

from individuals to firms and countries. We can see that there is variety of currency regime 

experiences in different countries in the historical perspective. Every system has some advantages and 

disadvantages as usual. For instance in the floating rate regime, although prices are formed in the market depending 

upon supply and demand equilibrium, sharp and extreme movements can cause large losses in both sides. Hence, 

some methods and financial instruments have been developed in order to manage these types of risks. However, the 

most important point in this issue is not the variety of the techniques; the question is which methods properly define 

the real structure of these assets’ price process? Beyond the currency regimes, currency rate risks and risk 

management instruments; in this study we will analyze the answer to this question for four important currency 

markets and try to define the new generation “stylized facts” of the currency markets via Multifractal Detrended 

Fluctuations Analysis. 

 

 In order to analyze the financial time series’ idiosyncratic features, many studies have been conducted in 

conjunction with the availability of high frequency data in financial markets. As an output of these studies, we have 

seen that there are some “stylized facts” in the financial time series, such as fat tails and volatility clustering (Segnon 

and Lux, 2013). In the last 50 years, Mandelbrot’s brushstrokes with fractality concept have caused irreversible, 

significant changes to the conventional finance theory based on the random walk. Therefore, Mandelbrot added new 

realities to the existing “stylized facts”, such as long memory and self-similarity.  The assumption that the financial 

asset returns do not have correlation under the Efficient Market Hypothesis has been criticized severely after the 

studies of Mandelbrot (1963, 1966, 2004), and studies have explicitly shown that nonlinear return functions (squared 

and absolute returns) have long memory properties (Pochart and Bouchaud, 2002).  

 

 The fractality concept that is based on the assumption that the financial times series may have long range 

dependence that consists of scaling and power law notions. Scaling defines the relationships of the returns in 
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different time scales such as daily, weekly and monthly (Mandelbrot et al., 1997a). The occurrence of extreme 

events in the returns of the financial time series creates fat tails in the return distributions. Due to these fat tails that 

are derived from large returns, scaling functions decay hyperbolically, instead of exponentially. In other words, the 

time series that have fractality features scale in accordance with the power law. In the literature, the first definition 

in exhibiting scaling properties of financial time series is Mandelbrot’s (1972) Hurst exponent obtained via     

analysis. If the      random walk process is self similar, it satisfies the scaling rule below:    

 

                                                                                                                                                                                                
  

where   is the time scale,   is a constant, and finally,   denotes the Hurst exponent. When we increase the time 

increment, the Hurst exponent,        , demonstrates that scaling occurs in accordance with a the power law; 

that is, the       value is scaled with the power law that is equal to  (Peters, 1994). The Hurst exponent,  , in 

Equation (1) is constant, and the relation variates follow the nonlinear power law defined by  .  

 

 In recent studies, Mandelbrot (1997) has shown that the time series may have more than one scaling 

exponent. In such circumstances, multifractal analysis that uses multiple scaling exponents provides more 

confidential results than one scaled exponent monofractal analysis. As it was explained by Kantelhardt et al. (2002) 

many time series do not exhibit monofractal scaling behaviours. Under these conditions, using only one scaling 

exponent does not provide enough to define the characteristics of the time series because different regimes of the 

series may have different scaling values. In such cases, in order to define the scaling behaviour properly, we need 

multiple scaling exponents as seen in the multifractal model below: 

 

                                                                                                                                                                                               
 

where      denotes the generalized Hurst exponent that is unconstant and different from the Hurst exponent in 

Equation (1). It means that, under different   orders,      can have different values. A constant      means 

monofractality and      is equal to the classical Hurst exponent.  Multifractality is a scaling property that considers 

both extreme events and long memory.  Therefore, in a multifractal analysis both fat tails, in the unconditional 

distributions of return, and long memory, in the absolute returns, are taken into account (Calvet and Fisher, 2002). 

 

2. LITERATURE REVIEWS 

 

 Mandelbrot’s (1972) Rescaled Range analysis (   ), that is based on the study of Hurst (1951), has been 

used by many researchers in the testing of the scaling behaviours of the financial time series in future years. Peng et 

al. (1994) performed a different way called the Detrended Fluctuation Analysis (DFA) in the computing of the Hurst 

exponent, and provided a robust alternative to the classical     analysis.     

 
 In spite of the fact that the fractal split in two as monofractals and multifractals, until the studies of 

Mandelbrot et al. (1997a,b), previous studies were centered generally on  monofractal structures. Mandelbrot et al. 

(1997a,b) presented a new model, known as the Multifractal Model of Asset Returns (henceforth, MMAR), as an 

alternative to the ARCH type models. The key features of this model take long memory and fat tails in the return 

distribution into account. For instance, Fillol (2003) showed the outperforming of MMAR against the GARCH and 

FIGARCH models in his study that analyzed multifractal features of the French Stock Market (CAC40).     

 

 In the period following these studies, as an extended version of the Peng et al. (1994) model,  Kantelhardt 

et al. (2002) presented the Multi Fractal Detrended Fluctuation Analysis (henceforth, MF-DFA) that considered the 

multifractal structure of the unstationary time series. Using the shuffled time series, they also suggested a procedure 

that determined the source of multifractality. Since then, this model has been used in different fields, from 

astronomy, to data traffic, to financial time series, and provided successful results in the modeling of multifractality. 

In one of these studies, Norouzzadeh and Rahmani (2006) tested the Iranian Rial’s multifractal structure and scaling 

properties against the U.S. Dollar. In a different study, Jiang and Zhou (2008) performed MF-DFA to analyze 

multifractal features of two index volatilities from the China stock market, and regarding the idea of ensemble, 

reported that China stock markets have multifractal properties. Likewise, Yuan et al. (2009) exhibited the existence 

of multifractality in the Shanghai stock market, and stated that the reason of multifractality is fat-tailed probability 
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distributions and non-linear temporal correlations. In spite of that, Du and Ning  (2008) reported weak 

multifractality for the Shanghai stock market. In a different study for the China stock market, Wang et al. (2009) 

analyzed the efficiency of the Shenzhen stock market via MF-DFA. The authors split the index into two periods and 

showed that the index has been gradually more efficient. Another finding is that traditional models such as GARCH 

and EGARCH are not successful in the forecasting of volatilities. On the other hand, Zhang (2011) stated that 

although multifractal spectrums are different in both China and Japan’s stock markets, they also showed that China’s 

stock market has larger and more frequent fluctuations. For Asian stock markets more recently, Niere (2013) 

examined the multifractality of the Peso/Dollar currency rate and reported that source of the multifractality is fat-tail 

in the probability distributions. Similar to Wang et al. (2009), Lye and Hooy (2012) tested the efficiency of the 

Malaysian stock market. According to their findings, multifractality in the Malaysian stock market arises from the 

long memory and fat tails; the Malaysian sectoral efficiency has been impacted negatively by Asian and global 

financial crises. In a study from India Kumar and Deo (2009) showed the multifractality of the BSE & NSE indexes.  

 

 In the studies from European stock markets, there is also evidence of multifractality. For example, Caraiani 

(2012) used the EMB-based MF-DFA analysis to test the multifractal structure of Czech, Hungarian and Polish 

stock markets. According to the results, multifractal spectrums and variations of the generalized Hurst exponent for 

different   orders provided signs of multifractality for the three stock markets. Pleşoianua et al. (2012) analyzed the 

Romanian stock markets’ informational efficiency via one dimensional backward multifractal detrended moving 

average (MF-DMA) method, and investigated the source of multifractality with surrogated and shuffled time series. 

Similar to this study, Ioan et al. (2012) examined multifractal features of the east European countries’ (Czech 

koruna, Croatian kuna, Hungarian forint, Polish zlot, Romanian leu and Russian rouble) currencies against the euro. 

Results showed that the Russian foreign currency market is the most efficient market within these countries, whereas 

the Hungarian market’s efficiency level is the lowest. Benbachir  and El Alaoui (2011) investigated the source of 

multifractality in the Moroccan All Shared Index (MASI) and the Moroccan Most Active Shares Index (MADEX) 

using shuffling and the phase randomization techniques. Their findings showed that the MASI index has a higher 

level of multifractality than the MADEX index. Also they reported that similar to the findings of Lye and Hooy 

(2012), the reason of fractality in the MASI and MADEX  indexes are long memory and fat tails in the probability 

distribution. Liu et al. (2008) tested multifractality of different assets such as stocks, currencies and bonds using the 

Markov-switching multifractal model. According to the findings of their analysis, the Lognormal Markov-switching 

multifractal model and Binomial Markov-switching multifractal model analysis gave approximately the same 

results. Qian et al. (2011) improved a new MF-DFA model based on the empirical mode decomposition, named 

EMD-based MF-DFA. The authors showed that when the moment order q of the detrended fluctuations is positive, 

EMD-based MF-DFA outperforms classical MF-DFA.              

 

3. METHODOLOGY: MULTIFRACTAL MODEL AND MULTIFRACTAL DETRENDED 

FLUCTUATIONS ANALYSIS 

 

 Using the definition of Mandelbrot et al. (1997b), we can exhibit the scaling law in multifractality as 

follows:  Let         denote increments of the sthocastic process     . In this case:  

 

                                                                                                                                                                  
 

Mandelbrot et al. (1997b) defines a multifractal process with stationary increments and it satisfies the equation 

below: 

 

                                                                                                                                                                                  
 

where for all   and q,                 .  Equation (4) is the scaling law in the moments of        and it specifies 

a form for their change as    varies.  All information about the growth rate is within the scaling function     . 
Therefore      is the focal concept within the multifractal theory. Kantelhardt et al. (2002) adapted the DFA model 

of Peng et al. (1994) to the multifractal concept with reference to this definition. In order to define MF-DFA, let’s 

examine the    series.       can be interpreted as there is not any value in the related  . The first three steps of 

the MF-DFA is identical with the classical DFA. MF-DFA consists of five steps:   
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Step 1.  In the first step the profile      is determined    

 

             

 

   

                                                                                                                                                               

 

Step 2. Then      is split into    sub-segments. The same procedure is also done again starting from the other side 

of the series, and hence the 2   segment is obtained.    

 

Step 3.  After local trends are determined by OLS for every segment, variance function is defined as follows  

 

        
 

 
                    

  

 

   

                                                                                                                                

 

where       is the fitting polynomial in every segment  . These polynomials can be linear (DFA1), quadratic 

(DFA2), cubic (DFA3) or higher degrees.  

 

Step 4.  In order to obtain the q order fluctuation function, all of the segments are averaged, 

 

       
 

   
          

 
 

   

   

 

 
 

                                                                                                                                                       

 

where        will increase with the rise of    

 

Step 5.  In the last step, scaling behaviour of fluctuation functions are determined by plotting log-log graphs of       

versus   for every value of q. In the case that there is long term power law correlation in the series, we obtain the 

result below   

 

       
                                                                                                                                                                                                

 

 As it is stated, for the stationary series      will be equal to  . Therefore the      function is called the 

generalized Hurst exponent.      has a close relationship with the classical multifractal scaling exponent     . This 

relationship can be exhibited as follows  

 

                                                                                                                                                                                            
 

 Another way of characterizing multifractal time series is the singularity spectrum     . Connection of the 

    and h(q) can be demonstrated in the following way: 

 

                                                                                                                                                                                          
 

where   is the singularity strength or Hölder exponent.  

 

4. EMPIRICAL ANALYSIS 

 

 In this section of the study, we investigate the multifractal structure of the returns of different currency 

markets via MF-DFA, and in the case of seeing any multifractality signs on the returns, we examine the source of 

multifractality. All the data used in empirical analysis obtained via the Bloomberg data base and consist of daily 

frequency. As we do not want to let the liquidity effect on the results of analysis, we preferred to use the most liquid 

currency markets presented in the Bank for International Settlements’ (BIST) reports. These currency markets are 

the US Dollar, the Japanese Yen, the British Pound, the Swiss Franc and the Euro, and the currency pairs are the 
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British Pound/US Dollar, the Euro/US Dollar, the US Dollar/Japanese Yen and the US Dollar/Swiss Franc 

(henceforth; GBP/USD, EUR/USD, USD/JPY and USD/CHF, respectively). The time interval of the series is from 

01/01/2004 to 02/25/2014, and the returns of the currencies are calculated in the following way:   

 

        
  
    

                                                                                                                                                                                 

 

where,    is price in time,  , and    is the logarithmic returns of the related currency.  

  

4. 1.  Multifractal Detrended Fluctuations Analysis 

 

 Before we start the empirical analyses, in the first instance, we followed the first three steps suggested by 

Kantelhardt et al. (2002), and using Equation (7), we calculated the fluctuation functions   (s)  for 101 different   

orders. Multiscaling behaviours of the   (s) versus the time scale   are presented in Figure 1 below. Figure 2 

demonstrates the similar behaviours for fitted lines obtained via the ordinary least squares method with three 

different   values (         and    ). 

 
  GBP/USD EUR/USD 

  
USD/JPY  USD/CHF  

  
Figure 1. The plotting of log   (s) vs. log   of the series 

 

 As it can be seen from both groups of plots, the fluctuation functions of the GBP/USD returns are almost a 

parallel in every scale level, whereas the functions of the EUR/USD, USD/JPY, USD/CHF returns approach each 

other at high scale values. In other words, the slope of the fluctuation functions of the GBP/USD returns are 

approximately constant. In this stage these findings can be interpreted as monofractal behaviours of the GBP/USD 

returns. As it has been mentioned earlier, in the monofractality situation, we have only one generalized Hurst 

exponent value      for different   orders.       
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GBP/USD EUR/USD 

  
USD/JPY  USD/CHF  

  
Figure 2. The plotting of log       vs. Scale of the series 

 

 Table 1 presents the obtained generalized Hurst exponent values      for three different   orders (-5,0,5) 

that are used throughout the study. One of the important signs of multifractality is the distance of generalized Hurst 

exponent values from each other for different   orders. According to the results, in accordance with the increase of q 

orders, obtained h(q) values decrease. As it is seen, while the highest decrease (0.1772) is in the USD/JPY returns, 

the lowest decrease is in the GBP/USD returns (0.0322). These findings are related to the path that the generalized 

Hurst exponent h(q) function follows versus the increasing q orders. As a result, the lower the slope of the h(q) 

function, the closer the values are to the generalized Hurst exponents. This situation can be seen in Figure 3.          
 

Table 1. q Orders of the Generalized Hurst Exponents 

 h(q=-5) h(q=0) h(q=5) 

GBP/USD 0.5421 0.5263 0.5099 

EUR/USD 0.5830 0.5380 0.4379 

USD/JPY  0.5949 0.4983 0.4177 

USD/CHF  0.5583 0.5196 0.3874 

 

 Figure 3 demonstrates the path that is followed by the generalized Hurst exponent h(q) of the currency 

returns versus q orders. In other words, in this plot we see the dependence of generalized Hurst exponent h(q) to q 

orders. If we look closely, it is seen that, except for the GBP/USD returns, the generalized Hurst exponent h(q) 

functions of other currency returns have nonlinear decreasing functions, versus the increasing values of q orders. 

Slopes that are approximately zero give evidence that the time series has a monofractal structure. This circumstance 

can be seen in the GBP/USD return series clearly. In comparison with other return series, it is obvious that these 

results arise from the monofractal structure of the GBP/USD returns that have a lower slope in the h(q) function. 
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                                                               q 

 Figure 3.  The generalized Hurst exponent h(q) vs. q 

  

 (
q

) 

 

                                                              q 

 Figure 4.  Classical multifractal scaling exponent  (q) vs. q 

 

 Similar interpretations can be made by examining the plot of the classical multifractal scaling exponent 

(Reni exponent) versus q orders. As stated by Mandelbrot et al. (1997a), nonlinear relations on this plot demonstrate 

the existince of multifractal behaviours.  Figure 4 exhibits that the  (q) values of the EUR/USD, USD/JPY and 

USD/CHF returns are dependent to q orders nonlinearly. However, the GBP/USD returns perform a linear 

relationship rather than nonlinear behaviours. Linear and white noise relationships are the sign of monofractality. 

Consequently, we can say that for the         ve     values classical multifractal scaling exponent’s q 

dependency indicate almost identical behaviours in the GBP/USD returns. 

 

 As it is stated by Ausloos (2012), in conjunction with the acquiring of the h(q) function, we can obtain the 

multifractal spectrum      . Where      is the distribution of the exponent   (            ) of the object.  The 

multifractal spectrum is one of the most important tools to provide information about multifractality. The width and 

shape of the multifractal spectrum indicate the intensity of multifractality and also give information about the 

sensitivity of multifractality to small and large fluctuations. Deviations from the mean and fractal structure for 

different segments with small and large fluctuations is presented by the multifractal spectrum width (Ihlen, 2012). 
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Table 2 shows the multifractal spectrum statistics for different q orders (                ) and width 

values. 

 
Table2. Multifractal Spectrum Statistics and Width Values 

               

 f( )   f( )   f( )                   

GBP/USD 0.7259 0.5970 1 0.5271 0.6512 0.4401 0.1568 

EUR/USD 0.7544 0.6322 1 0.5371 0.4168 0.3213 0.3108 

USD/JPY  0.5539 0.6841 1 0.4966 0.6454 0.3467 0.3374 

USD/CHF  0.7960 0.5991 1 0.5186 0.2699 0.2414 0.3577 

  

 Benbachir and El Alaoui (2011) reported that the monofractal time series has a multifractal spectrum shape 

that is dense around the single point where     with       .  This form clearly can be seen in the plot of 

GBP/USD shown in Figure 5. This figure robustly supports the previous results, and it means that the GBP/USD 

returns have monofractal features instead of multifractal. In the other three plots, EUR/USD, USD/JPY and 

USD/CHF, unlike the GBP/USD returns’ multifractal spectrum shape, the curves have a single-humped shape. That 

is, the generalized Hurst exponent h(q) of these three currency returns  variate more under different scales, and these 

currencies have multifractality behaviours. 

 
 GBP/USD  EUR/USD 

 
  
  

 
  

 
  
  

 
  

 USD/JPY   USD/CHF  

 
  
  

 
  

 
  
  

 
  

Figure 5. Multifractal Spectrums 

 

As it is stated before, fractal spectrum width gives information about monofractality and multifractality. When the 

multifractal spectrum width becomes larger, structural differences between the periods with small and large 

fluctuations will growth. Figure 5 demonstrates that the width for the EUR/USD, USD/JPY and USD/CHF returns 

are more than 0.30, whereas the multifractal spectrum width of GBP/USD is around only half of that value. This 

result confirms that unlike the other three currencies, the GBP/USD returns have monofractal behaviours, as well. 

 

4. 2. Source of the Multifractality 

 

 Results up to now showed that, except for the GBP/USD, three of the four currency returns have 

multifractality features. In this stage of the paper we analyze the source of multifractality in the returns of the 
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EUR/USD, USD/JPY and USD/CHF currency rates. Kantelhardt et al. (2002) stated that distinguishing the two 

different types of multifractality in the time series is possible. The first type of multifractality arises from the fat-tail 

probability density function. As for the second type, it stems from different long memory features in the small and 

large fluctuations.  In this study, we have used two different types of data in order to reveal the source of 

multifractality in the EUR/USD, USD/JPY and USD/CHF return series: shuffled data and surrogated time series. As 

the correlations are non-existent in the shuffled data, the second type of multifractality can easily be identified, 

whereas the first type cannot be removed by the shuffling procedure due to it arising from the frequency of 

observations. As the shuffled series will exhibit random behaviours,          will be equal to 0.5. In case 

multifractality arises from the fat-tail in the probability density function, the situation of h(q) in the original series 

does not change, and          becomes equal to     .  Nevertheless, if there is a multifractality that stems from 

both types, then the shuffled series will exhibit lower multifactality than the original series.  

 

 Regarding the first type, we have used surrogated data (phase-randomization techniques) in order to 

determine the multifractality that arises from the fat-tail in the probability density function following the study of 

Movahed et al. (2006). Although there are different types of methods in obtaining surrogated data, we preferred the 

Statically Transformed Autoregressive Process (henceforth, STAP) method because of its flexibility and fiducial 

inference. Using the surrogate method, we changed the phase of discrete fourier transform (DFT) coefficients with a 

set of pseudo independent distributed uniform quantities. Therefore, we have transformed the probability density 

function to the Gaussian distribution without any change in the correlations. Hence, if there is multifractality related 

with fat-tails, the surrogated series’ generalized Hurst exponent         will be independent from the q orders.  

With the following section we start to analyze the source of multifractality that arises from the long memory features 

of the series. As it is mentioned before, when the autocorrelations, which stem from the long memory, are removed 

by the shuffling procedure in the new series, it is expected that             . On the other hand, if the reason of 

multifractality is both long memory and fat-tails, the shuffled series has lower multifractality features.            
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 Figure 6.  The generalized Hurst exponent h(q) vs. q 

 

 Figure 6 was plotted to show the path of the generalized Hurst exponent h(q) versus q order for both the 

original and shuffled series. According to the results, except for USD/CHF series, the shuffled series still have 

multifractality features, even though it is lower than the original data. These results exhibit that multifractality of the 

returns of EUR/USD and USD/JPY arise from the fat tails. In the USD/CHF returns, the slope of the h(q) function 

has decreased in comparison with the original data. That is, the multifractality of the USD/CHF returns in the 

shuffled data is quite lower than its original data. However, there are still signs of multifractality in the shuffled 

USD/CHF returns. This finding demonstrates that the multifractality of the USD/CHF returns stems from both long 

memory and fat tail features of the series. Table 3 presents the same results in terms of the exact values of the 

.36

.40

.44

.48

.52

.56

.60

euro/dollar

dollar/yen

dollar/frang

shf(euro/dollar)

shf(dollar/yen)

shf(dollar/frang)

-5  0  5 

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/


Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4 

Copyright by author(s); CC-BY 380 The Clute Institute 

generalized Hurst exponents in different q orders. It is clear that the difference between the USD/CHF’s generalized 

Hurst exponent h(q) values are quite small. 

 
Table 3. The generalized Hurst exponent h(q) values for different orders 

 Original Series Shuffled Series  

 h(q=-5) h(q=0) h(q=5) h(q=-5) h(q=0) h(q=5) 

EUR/USD 0.5830 0.5380 0.4379 0.5043 0.4447 0.3824 

USD/JPY  0.5949 0.4983 0.4177 0.4850 0.4328 0.3751 

USD/CHF  0.5583 0.5196 0.3874 0.5240 0.5664 0.5424 

 

 In order to gain a different viewpoint, we presented multifractal spectrum width for the original and 

shuffled series. As it can be seen from the results, all of the  three series’ multifractal spectrum widths are more 

narrow in the shuffled data than the original ones. These results also supported the findings of Figure 6. If we pay 

attention, it is clear that the multifractal spectrum width of the EUR/USD and USD/JPY returns in the shuffled series 

are still high and are bigger than USD/CHF width. The situation shows that although we removed the correlations in 

the original series, there is still multifractality in the shuffled series of EUR/USD and USD/JPY returns, and it arises 

from the fat tails.     

 
Table 4.  Multifractal Spectrum Width Values 

 Original series  Shuffled series  

EUR/USD 0.3108 0.2353 

USD/JPY  0.3374 0.2184 

USD/CHF  0.3577 0.1334 

 

 Ihlen (2012) reported that the shape of the multifractal spectrum does not need to be symmetrical. Arising 

from the negative and positive leveling of the generalized Hurst exponent, respectively, the multifractal spectrum 

can be left and right truncation. The leveling of the generalized Hurst exponent demonstrates the unsensitivity of the 

q order root mean square (RMS), versus local fluctuations. If the time series’ multifractal structure is unsensitive to 

small size local fluctuations, the multifractal spectrum will have a long left tail. Otherwise, if the time series has a 

multifractal structure that is unsensitive to the large size fluctuations, this time the multifractal spectrum will have a 

long right tail. According to Figure 7, the USD/JPY has a symmetrical multifractal spectrum, whereas the EUR/USD 

and USD/CHF’s multifractal spectrums are in the right truncation shape. This means that the EUR/USD and 

USD/CHF returns’ multifractality is less sensitive to the small size local fluctuations. 
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Figure 7. Multifractal Spectrums for Original, Shuffled and Surrogated Series 

 

 The second type of multifractality is related to the fat-tails in the probability density function. In order to 

analyse the existince of the second type, we computed surrogated data via the STAP method and presented the 

generalized Hurst exponent results of them together with original data results. Table 5 shows that, except for the 

USD/CHF data, surrogated series’ statistics are not quite different from the original data. In spite of that, the gap 

between the different q orders for USD/CHF returns in the surrogated data is quite small. Besides, the h(q) values 

for the      and     are almost same. According to the results, there is a fat tails effect in the multifractality of 

the USD/CHF data besides the long memory.     

 
Table 5. Generalized Hurst Exponents for Original and Surrogated Data 

 Original Series Surrogated Series 

 h(q=-5) h(q=0) h(q=5) h(q=-5) h(q=0) h(q=5) 

EUR/USD 0.5830 0.5380 0.4379 0.5633 0.5138 0.4577 

USD/JPY  0.5949 0.4983 0.4177 0.6164 0.5757 0.5338 

USD/CHF  0.5583 0.5196 0.3874 0.5147 0.5125 0.4482 

  

 Another finding for the surrogated data is lower multifractalities of the EUR/USD and USD/JPY returns 

than shuffled data. This situation becomes reversed for the USD/CHF returns, it’s multifractality is higher than the 

shuffled data for the surrogated data. Briefly, we can say that the higher multifractality of the surrogated data 

compared with the shuffled series substantially arises from the long memory features of the returns, however the 

higher multifractality of the shuffled series stems from fat-tails. This situation can be seen in Figure 8. In this figure, 

the h(q) functions of the surrogated and original series were plotted versus q orders. If we pay attention to the 

USD/CHF returns, we can say that, similar to GBP/USD returns in Figure 3, the slope of the USD/CHF returns’ h(q) 

function seems quite different from the original data. Moreover this slope is almost the same for      and    . 

This situation shows the effect of the fat-tails in the multifractality of the USD/CHF returns besides the long 

memory. 
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 Figure 8. The generalized Hurst exponent h(q) vs. q 

 

 While the multifractal structure of the three currencies (EUR/USD, USD/JPY and USD /CHF) arises from 

the fat tails, we can see that this effect is higher in the EUR/USD and USD/JPY returns. Besides its theoretical 

meaning, this finding also indicates that individuals and firms that make transactions on these currencies may be 

exposed to higher risks financially. Because, statistically we know that the factors, which cause these types of fat 

tails in the return distributions, are instant and extreme events in financial markets. Oil crisis (1973), Asia crisis 

(1997), Russia crisis (1998) and mortgage crisis (2008) can be given as good examples for these extreme events in 

the currency markets. In these periods many firms were subjected to large risks in the foreign trade operations. In 

fact, it can be said that the collapse of LTCM maybe is the best example in this issue. Because, although they used 

the “modern” mathematical statistics in the risk analysis, as the definition and measurement of the risk and prices 

processes were wrong, they did not take the extreme events or Black Swans of financial markets into account. On 

the other hand, in conjunction with the fat tails, another reason of the multifractality, which is long memory, 

exhibited that return series have a memory property differently from the random walk assumption of the 

conventional finance theory. This is a very important finding in terms of the market’s itself and firms aside from the 

theoretical approaches. Because in the measurement and hedging of financial risks, today many association still use 

conventional finance methods that are based on the efficient market hypothesis, random walk and normal 

distribution assumptions. In every model, which uses normal distribution in the modeling as an assumption, reduces 

the tail probabilities to insignificant levels. However, our findings demonstrate that fat tails are a very important 

reason of the multifractal structure of EUR/USD and USD/JPY returns. Therefore it is clear that traditional 

approaches in the definition and modeling of financial asset returns are not adequate to catch the real characteristics 

of the prices’ process and do not consider stylized facts of these assets. That is why we suggest using Stable Paretian 

Distributions and multifractal models in order to consider long memory and fat tail features of the financial asset 

returns. Hurst exponent value of the models that based on the Efficient Market Hypothesis is constant and equal to 

0.5. This value means that all these models, such as geometric Brownian motion, take only short memory process 

into account. However, our findings indicate that there is not only one Hurst exponent value in the returns of 

EUR/USD, USD/JPY and USD/CHF, that is, these three currency returns exhibit multifractal properties. 

Nevertheless we know that Black-Scholes option pricing model uses the geometric Brownian motion and this 

model’s Hurst exponent value is 0.5. Hence, any firm or investor who uses the conventional methods will have some 

limitations in the modeling and measuring of financial risks. As it is stated before, LTCM is the one of the examples 

of this reality. 

 

 Another thing worth mentioning about the results is liquidity. As we stated, the strongest multifractality 

features appeared in the USD/EUR and USD/JPY returns. As this situation may be related to the liquidity features of 

the currency markets, we presented the Bank of International Settlements’ (BIS) survey results related to the 

currency market liquidity in Table 6.   
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Table 6. Global Foreign Exchange Market Turnover by Currency Pair1 

 2004 2007 2010 2013 

Currency Pair  Amount % Amount % Amount % Amount % 

USD / EUR 541 28.0 892 26.8 1.098 27.7 1.289 24.1 

USD /JPY 328 17.0 438 13.2 567 14.3 978 18.3 

USD /GBP 259 13.4 384 11.6 360 9.1 472 8.8 

USD /CHF 83 4.3 151 4.5 166 4.2 184 3.4 

Source: https://www.bis.org/publ/rpfx13.htm  

 

 According to the information released by the BIS, the USD/EUR and USD/JPY markets are the most liquid 

currency markets. Although this information seems to support the reason of the highest multifractality of these two 

markets, we see that the third most liquid market, which is the USD /GBP,  does not have multifractality features 

according to our findings. These results demonstrate that the relationship between liquidity and multifractality is not 

clear or consistent. 

 

5. RESULTS 

 

 In this study, we want to analyze the multifractality structure of currency markets. Empirical tests are 

conducted for the four leading currencies’ returns: GBP/USD, EUR/USD, USD/JPY and USD/CHF.  All of the data 

has daily frequency, and the time interval is from 01/01/2004  to 02/25/2014. In the testing of multifractality, we 

have used the multifractal detrended fluctuation analysis (MF-DFA) developed by Kantelhardt et al. (2002). On the 

other hand, we have also used surrogated and shuffled data in order to determine the source of multifractality. 

According to the results, there is no multifractality behavior in the returns of the GBP/USD. All the findings have 

shown monofractal features for the GBP/USD data. However, we have obtained strong evidence about the 

multifractality of the EUR/USD, USD/JPY and USD/CHF returns. We have also seen that the reason of the 

multifractality in the EUR/USD and USD/JPY returns is substantially fat tail, whereas the multifractality of the 

USD/CHF series arises from both the long memory and fat-tail probability density functions of returns. The last 

relevant finding is the unclear and inconsistent relationship between multifractality and liquidity of the currency 

markets. 

 

AUTHOR INFORMATION 

 

Samet Günay, Ph.D. is an Assistant Professor of Finance in the Department of Banking and Finance, School of 

Applied Sciences, at Istanbul Arel University, Istanbul, Turkey.  

E-mail: dr.sgunay@gmail.com 

 

REFERENCES 

 

1. Ausloos, M. (2012). Generalized Hurst exponent and multifractal function of original and translated texts 

mapped into frequency and length time series. Physical Review E, 86 (3), 031108  

2. Benbachir, S. & El Alaoui, M. (2011).  A Multifractal Detrended Fluctuation Analysis of the Moroccan 

Stock Exchange. International Research Journal of Finance and Economics, 78, 6-17 

3. Calvet, L. & Fisher, A. (2002). Multifractality in Asset Returns: Theory and Evidence. The Review of 

Economics and Statistics, 84 (3), 381–406 

4. Caraiani, P. (2012). Evidence of Multifractality from Emerging European Stock Markets. Plosone, 7 (7), 1-

9 

5. Du, G. & Ning, X. (2008). Multifractal properties of Chinese stock market in Shanghai. Physica A, 387 (1), 

261–269 

6. Fillol, J. (2003). Multifractality: Theory and Evidence an Application to the French Stock Market. 

Economics Bulletin, 3, No. 31 1−12 

                                                 
1 Daily averages in April, in billions of US dollars and percentages 

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/
mailto:dr.sgunay@gmail.com


Journal of Business & Economics Research – Fourth Quarter 2014 Volume 12, Number 4 

Copyright by author(s); CC-BY 384 The Clute Institute 

7. Hurst, H.E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil 

Engineers, 116, 770-808. 

8. Ihlen, E.A.F. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in 

Physiology, 3 (141), 1-18 

9. Ioan, T., Anita, P. & Razvan, C. (2012). Multifractal structure of central and eastern European foreign 

exchange markets. Annals of Faculty of Economics, 1 (1), 784-790. 

10. Jiang, Z.Q. & Zhou, W.X. (2008). Multifractal analysis of Chinese stock volatilities based on partition 

function approach. Physica A, 387(19), 4881-4888. 

11. Kumar, S. & Deo, N. (2009). Multifractal Properties of the Indian Financial Market. Physica A, 388, 1593-

1602. 

12. Kantelhardt, J., S. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin, and E. Stanley (2002). 

Multifractal detrended  fluctuation analysis of nonstationary time series. Physica A, 316, 87-114 

13. Liu R., Di Matteo T. & Lux T. (2008). Multifractality and Long-Range Dependence of Asset Returns: The 

Scaling Behaviour of the Markov-Switching Multifractal Model with  Lognormal Volatility Components. 

Kiel Working Paper, 1427, 1-15 

14. Lye, C. T. & Hooy, C. W. (2012). Multifractality and Efficiency: Evidence from Malaysian Sectoral 

Indices. Int. Journal of Economics and Management, 6 (2), 278 – 294   

15. Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business 36(4), 394–419. 

16. Mandelbrot, B. (1966). Forecasts of future prices, unbiased markets, and “martingale” models. Journal of 

Business, 39, 242–255. 

17. Mandelbrot, B.B. (1972). Statistical Methodology for Nonperiodic Cycles from Covariance to R/S 

Analysis. Annals of Economic and Social Measurement, 1, 259-290. 

18. Mandelbrot, B. B. (1997). Fractals and Scaling in Finance: Discontinuity, Concentration, Risk, Berlin: 

Springer 

19. Mandelbrot, B.B., Fisher, A. & Calvet, L. (1997a). A multifractal model of asset returns. Cowles 

Foundation Discussion Paper, 1164. 1-33 

20. Mandelbrot, B. B., Fisher, A. J. & Calvet, L. E. (1997b). Multifractality of Deutschemark / US Dollar 

Exchange Rates. Cowles Foundation Discussion Paper, 1166, 1-77 

21. Mandelbrot, B. B. & Hudson, R. L. (2004). The (Mis)behaviour of Markets: A Fractal View of Risk, Ruin, 

and Reward, Profile Books, London. 

22. Movahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S. & Tabar, M.R.R. (2006). Multifractal detrended 

fluctuation analysis of sunspot time series. Journal of Statistical Mechanics, P02003. 

23. Niere, H. M. , (2013). Multifractality in the Philippine Foreign Exchange Market. Management Science and 

Engineering, 7 (3),  67-70 

24. Norouzzadeh, P. & Rahmani B. (2006). A multifractal detrended fluctuation description of Iranian rial-US 

dollar exchange rate. Physica A, 367, 328-336. 

25. Peng, C. K., Buldyrev S. V., Havlin S., Simons M., Stanley H. E. and Goldberger A. L. (1994). Mosaic 

organization of DNA nucleotides. Phys. Rev. E, 49 (2), 1685–1689. 

26. Peters, E. E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, John 

Wiley and Sons, Newyork   

27. Pleşoianua, A., Todeaa, A. & Căpuşan, R. (2012). The Informational Efficiency of the Romanian Stock 

Market: Evidence from Fractal Analysis. Procedia Economics and Finance, 3, 111–118 

28. Pochart, B. & Bouchaud, J.P. (2002).  The skewed multifractal random walk with applications to option 

smiles. Quantitative Finance, 24, 303-314 

29. Qian, X. Y., Zhou W. X. & Gu G. F. (2011). Modified detrended fluctuation analysis based on empirical 

mode decomposition, Physica A, vol. 390, 23-24, 4388–4395. 

30. Segnon, M. & Lux, T. (2013). Multifractal Models in Finance: Their Origin, Properties, and Applications. 

Kiel Institute Working Paper, 1860, 1-60 

31. Wang, Y., Liu, L. & Gu, R. (2009). Analysis of Efficiency for Shenzhen Stock Market Based on 

Multifractal Detrended Fluctuation Analysis. International Review of Financial Analysis, 18, 271-276. 

32. Yuan, Y., Zhuang, X.-T., & Jin, X. (2009). Measuring multifractality of stock price fluctuation using 

multifractal detrended fluctuation analysis. Physica A, 388(11), 2189- 2197. 

33. Zhang L. (2011). Multifractal Properties of the Industry Indices for Chinese and Japanese Stock Markets. 

International Proceedings of Economics Development & Research, 12, 497-502 

http://creativecommons.org/licenses/by/3.0/
http://www.cluteinstitute.com/

