
Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

29

Coordination In Large Agile Projects
Peng Xu, University of Massachusetts Boston, USA

ABSTRACT

Faced with rapid changes in technology and business environments, more and more information

technology (IT) practitioners and researchers are advocating agile methods, which aim to

increase customer satisfaction, eliminate waste, accelerate the development process, and lower

defects rates. Agile methods, which initially were aimed at small projects, face several challenges

when applied to large software projects, however. Concentrating on the challenges of

coordinating large agile projects, this study identifies three dimensions of coordination--

decision-making structure, communication, and control—and proposes a research framework

and a set of propositions to address coordination challenges in large agile projects. Three

published case studies are used to illustrate and strengthen the propositions.

Keywords: agile methods, coordination, software development methodology

1 INTRODUCTION

acing rapid changes in technology and business environments, more and more IT practitioners and

researchers are advocating agile methods, such as Extreme Programming (XP) and Scrum, as the new

generation of software development methodologies. These methods aim to increase customer

satisfaction, eliminate waste, accelerate the development process, and lower defects rates (Boehm & Turner, 2003).

Both practices and principles of agile methods have been proposed to guide software development. While practices

proposed in different agile methods vary, they share such common characteristics as iterative processes, incremental

systems development, self-organizing teams, emergent technologies and requirements, dynamic interactions and

communications, and reduction of resource-intensive intermediate artifacts (Lindvall et al., 2002; Meso & Jain,

2006).

Initially, most agile methods were aimed at small, non-mission critical projects (Highsmith & Cockburn,

2001). However, more and more large, mission-critical projects have started to explore the possibility of adopting

agile methods (Drobka, Noftz, & Raghu, 2004; Fitzgerald, Hartnett, & Conboy, 2006). Prior research demonstrates

that though it is not practical to adopt agile practices in their original form, it is reasonable to bring some agility to

large, complex projects (Boehm & Turner, 2003; Fitzgerald et al., 2006). Unfortunately adopting processes are not

implemented without drama. Numerous difficulties were reported (Fitzgerald et al., 2006; Schalliol, 2001; Taber &

Fowler, 2000).

This study concentrates on one of the challenges faced in large software projects that try to adopt agile

methods, i.e., coordination. Effective coordination is critical for software development regardless of development

methods used (Kraut & Streeter, 1995). Agile methods advocate coordination strategies that are dramatically

different from those used in plan-driven methods (Boehm, 2003; Boehm & Turner, 2003). These coordination

strategies work well in small projects, but face problems when applied to large projects (Elssamadisy, 2001;

Schalliol, 2001). For example, though face-to-face communication has proven very effective in small projects, it can

cause a huge overhead in large teams (Xu & Ramesh, 2007). Large projects need to balance structure and agility

when choosing coordination mechanisms.

Prior research on coordination mainly has been conducted in the context of plan-driven methods and fairly

stable business environments (Kraut & Streeter, 1995; Levina, 2005; Nidumolu, 1995). Few studies have been done

to understand coordination strategies used in agile software development, especially in the setting of large software

projects. Motivated by this observation, this study investigates the following research questions:

F

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

30

1. What coordination strategies are available, and how they can help software development in agile methods?

2. How can these coordination strategies be applied to achieve agility in large projects?

This paper addresses these questions by applying coordination theory and developing propositions. To

illustrate the arguments more concretely, this paper examines three published case studies on three projects.

The paper is organized as follows. Section 2 discusses coordination strategies used in agile methods and the

challenges of applying these strategies in large projects. Section 3 develops a research framework and a set of

propositions of coordination in large agile projects. Section 4 illustrates the proposed coordination framework using

published case studies. This is followed by a discussion and conclusions.

2 COORDINATION IN AGILE METHODS AND CHALLENGES IN LARGE PROJECTS

2.1 Coordination in Agile Methods

Different from plan-driven methods, agile methods encourage face-to-face communication, participation of

team members in decision-making processes, and shared ownership of artifacts among team members (Cockburn &

Highsmith, 2001). For example, agile methods promote daily, short, stand-up meetings instead of long, formal

meetings. Agile methods rely on interpersonal interactions to share information and discuss issues instead of using

formal documents as a way to convey messages. Agile methods encourage team members to voluntarily sign up for

tasks and share ownership instead of assigning tasks from the top-down
1
. The main coordination mechanisms

proposed in agile practices are (using practices of XP as examples):

 Daily stand-up meetings

 Co-located teams

 Collective code ownership

 Pair programming

 On-site customers

 Release planning & iteration planning

 Coding standards

2.2 Coordination Challenges in Large Projects

Most coordination practices proposed by agile methods emphasize an informal management style. When

the project is small, close interactions among team members are effective and problems can be quickly spotted and

corrected. However, as the size of the project increases, opportunities for close interactions among project team

members drop (Van de Ven, Delbecq, & Koenig Jr, 1976). In large projects, it is difficult for developers to make

important decisions only through informal conversations. Miscommunications and misunderstandings happen more

often and are more difficult to solve. Large projects need to address unique challenges, such as the knowledge loss

caused by turnover of team members and long project duration, complex requirements and interdependency of tasks,

and limited resources (Xu & Ramesh, 2007). Relying only on informal strategies is no longer adequate. To

summarize, the coordination challenges of using agile methods in large projects are:

 Lack of interaction among participants

 Communication difficulties

 Loss of knowledge

 Complex and unstable requirements

 Complex interdependency tasks

 Technical complexity

1 http://www.extremeprogramming.org/

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

31

Facing these problems and issues, coordination strategies in large projects need to balance agility and

discipline (B. Boehm, 2003). Prior studies on coordination in the context of software development are spotty and

fragmented (Crowston & Kammerer, 1998; Espinosa, Slaughter, Kraut, & Herbsleb, 2007; Faraj & Sproull, 2000;

Wagstrom & Herbsleb, 2006). Most of these studies are conducted in the context of plan-driven methodologies, not

in the context of agile methods. None of them examines coordination in large agile projects.

Given the unique challenges faced in coordinating large projects, there is a need to develop a new research

framework to help us understand coordination strategies in large agile projects. This provides motivation for the

present study.

3 COORDINATION IN LARGE AGILE PROJECTS

This section defines coordination in software development, identifies three key aspects of coordination, and

develops propositions.

3.1 Definition of Coordination

Effective coordination is critical for any team work, especially in software development (Faraj & Sproull,

2000). Several definitions covering different aspects of coordination have been proposed in literature. One research

stream focuses mainly on task interdependence in coordination. These studies define coordination as the process of

managing dependencies among activities (Crowston & Kammerer, 1998; Malone & Crowston, 1994; Wagstrom &

Herbsleb, 2006). This definition recognizes only tasks and tangible resource dependencies in coordination, ignoring

its social aspects.

The other research stream on coordination expands the definition to incorporate social interactions among

participants. For example, Faraj and Sproull (Faraj & Sproull, 2000) define coordination as team-situated

interactions aimed at managing resources and expertise dependencies. This definition includes administrative

coordination that manages tangible and economic resource dependencies and expertise coordination that manages

knowledge and skill dependencies. Andres and Zmud (Andres & Zmud, 2002) and Espinosa et al. (Espinosa et al.,

2007) also adopt this definition and emphasize organic coordination, which relies primarily on informal mechanisms

to deal with the social aspects of coordination.

This study adopts the definition of coordination from the second research stream because coordination in

software development involves not only task interdependency, but also information and expertise interaction. In this

study, coordination is defined as team efforts toward achieving common and explicitly recognized goals and the

integration of different parts of teams to accomplish a collective set of tasks (Kraut & Streeter, 1995).

3.2 Three Dimensions of Coordination and Their Impacts on Project Performance

Coordination is a multidimensional concept. However, few studies explicitly define the dimensions of

coordination. Drawing from prior literature on organization coordination and software development, this study

identifies three dimensions of coordination in the context of software development: decision-making structure,

communication mode, and control mechanisms. This section discusses each of these dimensions in the context of

large agile projects, their implementation, and their impacts on project performance.

3.2.1 Decision-Making Structure

Decision-making is an important activity in coordinating software development in that decision-making

structure defines hierarchies, creates decision-making autonomy, and links pins, teams, direct contacts, etc. for a

project (Andres & Zmud, 2002). The objective of decision-making structure is to facilitate information flow within

and between teams, integrate differentiated tasks and knowledge, solve conflicts, move the project forward, and

achieve common outputs.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

32

In software development, stakeholders typically hold conflicting interests and inconsistent requirements. As

prior researchers have pointed out, it is important to have appropriate decision-making structures in place that match

the project’s tasks and social context to address these challenges in coordination (Andres & Zmud, 2002).

There are two types of decision-making structures in software development: decentralization and

centralization. Decentralization refers to the process by which “unit members are permitted to choose the means for

completing the task” (Kyu Kim & Umanath, 1992/1993) (p. 163). In such a structure, decision-making is dispersed

in teams; every member is encouraged to actively participate in the decision-making process; they can determine

solutions without reporting to higher authorities. This structure is encouraged in agile methods.

In contrast, centralization refers to a high degree of organization, a uniform treatment of problems, and a

focus on orderliness (Kyu Kim & Umanath, 1992/1993). Such a design is widely used in plan-driven development

processes. When adopting this structure, only dedicated authorities are actively involved in the decision-making

process, while others are mainly order recipients. Agile methods typically seek to replace centralization with

decentralization.

This study proposes that centralization in decision-making is necessary in large agile projects.

Proposition 1 (P1). Centralization in the decision-making structure has a positive impact on project performance in

large agile projects.

The logical reasoning behind this proposition is as follows. Agile methods faithfully adopt the principle of

decentralization that empowers each team members in decision-making and task execution. Decentralization builds

up a highly connected network for information flows among peers. Such a structure enhances the team’s agility

because it increases opportunities for feedback and dynamic adjustments to changes, addressing problems of high

uncertainty, such as changing business requirements. For example, XP argues for self-organizing and self-direction

instead of rigid pre-planning. These practices have proved effective when dealing with changes in small and midsize

projects (Highsmith & Cockburn, 2001; Williams & Cockburn, 2003).

However, large projects that try to adopt agile methods face dilemmas when using a decentralized structure.

Decentralization matches the context of small projects that can easily build up a cooperative culture where conflicts

can be quickly resolved and agreement can be easily reached among peers. When the team size increases beyond a

certain point, decentralization can cause confusion among team members because of the larger volume of

information and more complex interdependence among team members and tasks. It is reasonable to argue that in

large teams, self-organizing alone is not sufficient in decision-making. Such a mismatch between decision structure

and the project needs will lead to delays, chaos, and miscommunication (Kyu Kim & Umanath, 1992/1993). Certain

centralization mechanisms are necessary to address these problems. Such centralization includes two specific

designs: division of teams and hierarchy of authority in decision-making across teams.

Proposition 1a (P1a). Division of teams has a positive impact on project performance in large agile projects

Proposition 1b (P1b). Hierarchy of authority across teams has a positive impact on project performance in large

agile projects.

These two centralization strategies need to be implemented at the same time to ensure the project’s success.

The logical reasoning behind this set of propositions is based on organization theory (Hatch, 1997). Each worker has

his or her responsibility in a business. When a business grows to a critical size, jobs are grouped into organizational

units, such as departments or divisions. Integration of divisions’ work makes it possible to achieve the business’s

goal. Similarly, in software development, to mitigate the risks caused by size and complexity, while also

maintaining agility, sub-teams can be held responsible for different parts of the project (Lindstrom & Jeffries, 2004).

In such a design, each team can maintain its small size, thus maintaining agility within it.

With multiple teams working on different parts of the system simultaneously, it is important to establish a

centralized decision-making unit, such as a project management office that can coordinate efforts across teams to

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

33

accomplish common project goals (Lindstrom & Jeffries, 2004; Lindvall et al., 2002; Taber & Fowler, 2000). Such

legitimate hierarchy is central to large-size projects that want to use agile methods. The main function of this

management unit is to achieve concerted action across teams, not to manage the details of each team. Through such

a structural arrangement, it is easier to negotiate conflicting interests, reach consensus among team members, forge

an effective information network, synchronize goals and efforts across numerous stakeholders, and effectively direct

activities in a large project, thus improving overall project performance (Hatch, 1997; Lindvall et al., 2002; Schalliol,

2001; Xu & Ramesh, 2007).

At the same time, within each team that maintains its small size, decentralization should play a central role.

I propose:

Proposition 2 (P2). Decentralization in the decision-making structure within each team has a positive impact on

project performance in large agile projects.

The logical reasoning behind this proposition is straightforward. One of the agile principles is to empower

individual members to make decisions effectively without going through a hierarchy, thus making it possible to

address problems more quickly (Williams & Cockburn, 2003). To benefit from this principle, it is important for each

team to remain small, so that it can fully implement a decentralized decision-making structure within itself.

A centralized decision-making unit is meant to coordinate critical decisions across teams and solve

conflicts and discrepancies among teams. It is not meant to intervene with day-to-day operational decisions on the

floor. Each team obtains tasks, project goals, directions, and suggestions from the centralized unit and works on its

part of the system following typical agile practices. They can use a decentralized structure and empower members to

make their own decisions unless such decisions conflict with the overall goals or involve other teams.

3.2.2 Communication Mode

Vertical communication vs. horizontal communication

In software development, various stakeholders who are in charge of different tasks and possess different

expertise need to agree on a common definition of what they are building, so that they can effectively share

information and adjust their activities accordingly (Kraut & Streeter, 1995). Communication plays a critical role in

this process. Team members need to coordinate by generating feedback through communication (Espinosa et al.,

2007).

Communication modes can be differentiated based on their media and extent of formality. One way to

differentiate communication modes is by the direction of information flow, i.e., vertical communication and

horizontal communication (Nidumolu, 1995). Vertical communication typically involves authorities in the process

of information sharing (Nidumolu, 1995). In this mode, information flows from subordinates to their supervisors,

who process information and/or forward it to relevant recipients. An example of vertical communication is a team

member reporting to the project manager. In contrast, horizontal communication occurs mainly through peer-

oriented information exchanging, such as daily conversations and sharing artifacts between peers (Nidumolu, 1995).

Proposition 3 (P3). Horizontal communications within each team has a positive impact on project performance in

large agile projects.

Horizontal communication happens through mutual adjustments and direct interaction among peers. The

importance of horizontal communication has been recognized in plan-driven processes (Nidumolu, 1995; Xu &

Ramesh, 2007). One significant difference between agile methods and traditional methods is that agile methods

regard such communication as a primary mechanism, while plan-driven processes see it as secondary (Boehm &

Turner, 2003). In agile projects, intensive peer-to-peer communication is a key success factor. Co-located

developers frequently talk to one another face-to-face to solve problems and conflicts. Collective ownership and

trust fostered within the team enable developers to rely on horizontal communication without reporting to a higher

authority. A simple project design and minimal documents can be easily shared among peers. Such horizontal

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

34

communication can remove the bottleneck of communication and increase the speed of problem solving and

responses.

In large projects, multiple small teams are formed. With a manageable size, each team can adopt the

horizontal communication proposed in agile methods as its main communication strategy to increase its agility and

performance.

Proposition 4 (P4). Vertical communication facilitated by the boundary spanners of each team has a positive impact

on project performance in large agile projects.

Vertical communication is associated with hierarchy and social structure (Hatch, 1997). Systems theory

suggests that different units in one organization that deal with particular tasks or environments usually establish their

own norms, values, time frames, and coding schemes to effectively share and process information (Tushman, 1977).

This theory can be extended to a large agile software development project that involves multiple teams dealing with

different tasks. Each team has unique problems, environments, stakeholders, interests, and even practices. Such

differences can impede communication, hindering the flow of information among teams.

Though when adopting agile methods, it is important to encourage more direct peer interactions as an

effective way to share information, communication between teams in large projects needs to incorporate a certain

degree of vertical communication. First, stakeholders in software projects often have conflicting interests and goals

(Levina & Vaast, 2006). This problem worsens as the size of the project increases. Second, individuals on each team

may not have complete information regarding the project because of its size and complexity. In this case, mainly

relying on horizontal communication at the individual level between two teams can result in incomplete, ambiguous,

and even inconsistent information and knowledge, creating coordination obstacles for the project.

Prior studies highlight the importance of the roles played by boundary spanners in dealing with the

challenges of managing across boundaries (Levina, 2005; Levina & Vaast, 2006). Boundary spanners are individuals

who are capable of connecting teams and/or work units, obtaining external information, and channeling this

information to their colleagues (Tushman, 1977). Such roles help overcome difficulties in gathering and diffusing

information across unit boundaries, transform the local settings if necessary to accommodate the counterparts’

interests, negotiate for the unit, facilitate sharing, and exchange and combine work produced by separate units

(Levina, 2005; Tushman, 1977). Boundary spanners play a gate-keeping role, ensuring the accuracy, completeness,

and relevancy of incoming and outgoing information.

In a large project that tries to implement agile methods, it is necessary to appoint key contact persons on

each team as boundary spanners to manage the information flow across the team’s boundaries. This spanner role

needs to be involved in the centralized management unit, which acts as an agent that unites different teams in their

pursuit of common project interests. Boundary spanners can use two types of practices to coordinate among teams:

community-like and market-like (Levina & Vaast, 2006). In community-like boundary-spanning practices, the

spanner uses interpersonal relationships to engage in the project’s joint production and negotiation with spanners

from other teams. In market-like practices, the spanner plays an intermediary role by presenting the team-work

product and facilitating information sharing and discussions among teams.

Personal Communication vs. Impersonal Communication

The second way to differentiate between communicate modes is by formality. Extensive literature on

knowledge sharing has discussed two important knowledge types based on the sharing media: explicit knowledge

and tacit knowledge. The former refers to knowledge that can be codified and stored in certain media, such as

documents and databases, while the latter refers to knowledge that people carry in their minds, which is, therefore,

difficult to access (Nonaka, 1994). Explicit knowledge and information usually are associated with impersonal

communication, which relies on media such as documents and reports for sharing, while tacit knowledge is

associated with personal communication, which relies on interpersonal interaction. As crucial strategies of

coordination, both communication modes are deployed in software development (Tiwana & Mclean, 2005; Xu &

Ramesh, 2007). Managers need to balance these two according to the project’s context and development method.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

35

Agile methods promote personal over impersonal communication, arguing that by doing so, projects can remove

much overhead and increase speed. However, in large agile projects, personal communication needs to be

supplemented by impersonal communication.

Proposition 5 (P5). Personal communication that is supplemented by impersonal communication (boundary objects)

has a positive impact on project performance.

Individual interaction is more important than processes and documents in agile methods (Highsmith &

Cockburn, 2001). Based on this principle, multiple practices, such as iteration meetings, daily stand-up meetings,

and on-site customers have been proposed for personal communication. Social interaction (personal communication),

which has proven effective in small and midsize projects (Cockburn & Highsmith, 2001), is valued more than

impersonal communication in agile methods.

Though personal communication that primarily relies on tacit knowledge can improve agility and reduce

communication costs in small projects, the effectiveness of this communication mode decreases as the size of project

increases (Xu & Ramesh, 2007). A large team faces difficulties in sharing relevant project information with a large

number of participants over time. A prerequisite for effective personal communication is a cohesive, trusting culture

within the team. Such a culture is difficult to build in large projects that involve numerous stakeholders. This

obstacle hinders effective personal communication, thus affecting project performance (Boehm & Turner, 2003).

Therefore, though it is important to leverage the benefits of personal communication as proposed by agile methods,

large agile projects also need to supplement it with a more formal communication mode, i.e., impersonal

communication.

Impersonal communication uses artifacts as means of sharing and preserving information and knowledge.

These artifacts, which can be as formal as system architecture or as informal as post-it notes, can be fully

incorporated into the team’s daily practices and used to preserve knowledge and document critical decisions.

 Such objects are even more important in communication between teams. Prior studies have recognized the

importance of boundary spanning that can effectively connect internal units (Levina & Vaast, 2006; Tushman, 1977).

In large agile projects, the important role of boundary spanners needs to be supplemented with appropriate boundary

spanning objects. The concept of boundary objects is introduced to address the limitations of boundary spanners

(Levina & Vaast, 2006). Boundary spanners, connecting different units, may have limited social networks or face

temporal and physical constraints that prevent them from effectively directing communication across boundaries

(Tushman, 1977). In such cases, boundary objects, defined as a broad range of artifacts that can reflect local needs

and interests, can bridge the communication gap between groups separated by location, hierarchy, and functions

(Levina & Vaast, 2005). Examples of boundary objects in the context of software development are prototypes,

design models, and standardized reporting forms. These objects reflect practices and knowledge from each team and

represent teams’ work and views (Levina & Vaast, 2005). They help boundary spanners and the centralized

management unit collect information, continue discussion, and integrate knowledge across teams. These objects can

provide the basis for coordination and negotiation among teams, thus positively affecting project performance.

3.2.3 Control

As the third dimension of coordination in software development, control attempts to ensure that individuals

act according to agreed-upon strategies to achieve desired objectives by fusing together complementary roles and

motivating individuals to work in accordance with organizational goals and objectives (Kirsch, 1997). According to

coordination theory, control mechanisms must facilitate the information exchanges and decisional autonomy needed

for effective coordination (Andres & Zmud, 2002).

Informal control

Prior studies have categorized control strategies as informal and formal (Choudhury & Sabherwal, 2003;

Kirsch, 1997; Kirsch, Sambamurthy, Ko, & Purvis, 2002). Informal control is encouraged by agile methods and

proposed as the main control mechanisms in agile projects. Informal control is mainly based on social or people

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

36

strategies. It includes clan control and self control (Kirsch, 1997). Clan control is implemented “by promulgating

common values, beliefs, and philosophy within a clan which is defined as a group of individuals who are dependent

on one another and who share a set of common goals” (Kirsch, 1997) (p. 217). Examples of clan control include

socialization, shared values, trusting culture, and training. Self control acts as a function of individual objectives and

intrinsic motivation, and depends on individuals’ self-monitoring, self-rewarding, and self-sanctioning (Kirsch,

1997; Kirsch et al., 2002).

Proposition 6 (P6). Informal control within each team has a positive impact on project performance in large agile

projects.

Informal control should play a dominant role within each team as long as the team is of manageable size, as

proposed in agile methods. Informal control, including clan control and self control, is important, especially at the

beginning of the project when outcome measurements are still vague (Kirsch et al., 2002)

Clan control is exercised via peer pressure. The key success factor in clan control is to build up a cohesive

culture within the team. Proposed agile practices, such as daily stand-up meetings, collective ownership, and pair

programming, if well executed, can all contribute to trust building and clan control. These practices facilitate

dynamic interaction among team members so that they can quickly share and understand team values and goals, and

at the same time, use common values and goals to guide individual behaviors.

Self control is also an important control mechanism for coordination in agile methods (Kirsch et al., 2002).

Self-control mechanisms rely on individuals to establish standards and motivate themselves to work toward project

goals (Choudhury & Sabherwal, 2003). The proposed agile practices, such as allowing individuals to voluntarily

sign up for tasks, encouraging collective ownership, and empowering individuals by granting autonomy in what

individual does on job and how individual does the work, promote effective self-control mechanisms.

Effectively implementing informal control within each team that maintains its small size can motivate each

individual and, at the same time, save overhead associated with formal control (Cockburn & Highsmith, 2001).

Formal control

Formal control includes two mechanisms: behavioral control and outcome control. Behavior control uses

specific rules and procedures to ensure desired outcomes, while outcome control relies on articulating standards and

goals and rewarding team members who meet the goals (Kirsch, 1997; Kirsch et al., 2002). Examples of behavior

control in software development are using well-defined development processes and providing specific job

descriptions. Examples of outcome control in software development include establishing deadlines and budgets,

outlining performance expectations, specifying milestones, and signing contracts with users.

Though formal control does not get strong support from agile methods, in large agile projects, some degree

of formal control, especially at the project level (across teams), is necessary for effective project performance.

Proposition 7 (P7). Formal control across teams has a positive impact on project performance in large agile

projects.

The logical reasoning for this proposition is as follows. Agile methods mainly rely on social processes and

promote informal control. However, project size does affect the choice of control modes (Meso & Jain, 2006). While

informal control is suitable for small projects, large projects with multiple teams need to add more formal control

elements in efforts to coordinate across teams (Kirsch, 1997).

The centralized management unit needs to control across teams by influencing each team’s behaviors

(behavior control). Unlike in plan-driven software projects, where behavior control is implemented by well-defined

rules, processes, and team hierarchy, the centralized management unit does not need to specify details of methods

and processes for each team. Instead, it only needs to explicitly define and assign tasks to different teams as part of

its behavior control efforts. The management unit does not directly observe and influence every single developer’s

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

37

behavior, but exercises its behavioral control by influencing the contact person of each team and observing the

various teams’ aggregated work.

Agile methods emphasize system evolution, which “allows the solution being developed to be responsive to

the emerging changes in project requirements by taking into account feedback gained from the exercise of frequent

releases and integration” (Meso & Jain, 2006)(p. 23). However, facing multiple teams that are in charge of different

parts of the system, the centralized management unit needs to explicitly specify the expected outcomes for each

team so that it can coordinate teams’ efforts and integrate their work. Formal control mechanisms at the project level

are crucial to overall project performance.

4 APPLYING THE RESEARCH FRAMEWORK TO EMPIRICAL SETTINGS

To illustrate the arguments made in this paper and the proposed research framework, this section briefly

examines three published cases. All three cases are large software development projects that tried to adopt agile

methods. These cases are chosen because they show how large, complex projects can embrace agile practices in

their coordination efforts. The purpose is to provide examples to strengthen the research propositions more

concretely and show how propositions can be applied in real world examples. They cannot be considered as

empirical data to validate the claims. However, it is instructive to examine how the proposed research propositions

can be applied to empirical settings. Prior studies have used this method in studies of organization theory

development (Overby, 2008) and software development (Lyytinen & Robey, 1999).

4.1 Cases Background

Case 1: ThoughtWorks

ThoughtWorks is a Chicago-based system integration and consulting company specializing in building

business applications. The case reported is a leasing application. After spending about 18 months following plan-

driven methods, the project encountered numerous serious problems. The project then introduced Extreme

Programming (XP) as a new method, hoping that the agile methods could help solve problems faced by the project,

which had a team of about 50 people. Three papers examine this case study (Elssamadisy, 2001; Schalliol, 2001;

Taber & Fowler, 2000). Each paper approaches this case from a different perspective. Therefore, they provide a

fairly comprehensive picture of the project.

Case 2: Intel Shannon

This case study examines Intel Shannon of Ireland, which is Intel's Infrastructure Processor Division and

employs about employs 125 people, among which 90 are involved in software development (Fitzgerald et al., 2006).

The study at Intel Shannon is based on the software development of two product families, the IXP2XX and IXP4XX

network processors. The IXP2XX project involved approximately 15 engineers, lasting 18 months, and the IXP4XX

product had over 30 engineers, lasting about 24 months. As a CMM level 2 organization, Intel Shannon decided to

adopt XP to cope with time-to-market pressure. Intel Shannon had used agile method for five years before this study

was conducted and had committed and experienced developers.

Case 3: Radio System-A Mission Critical Project

This case describes a complex mission-critical, two-way radio system (Drobka et al., 2004). The project,

which lasted 18 months, is part of a large system. The ship dates are set well before the customers finalize their

product requirements.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

38

4.2 Coordination Strategy in Three Cases

4.2.1 Decision-making Structure

Centralization (P1): Division of Teams (P1a) and Hierarchy of Authority across Teams (P1b)

Proposition 1 (a & b) proposes that large teams need to divide into small teams and establish a hierarchy of

authority across teams. These three cases demonstrate how it works.

About 50 people work on the ThoughtWorks project. Twenty-five developers are divided into two teams:

the domain team and the testing team. Each team maintains a small size (about 12 members). The domain team is

solely responsible for new functionality, and the testing team is responsible for testing and fixing bugs. There is also

a quality assurance (QA) team and an analyst team, each consisting of about eight members respectively. The

project establishes a project management office that consists of two account managers who serve as main contact

with clients, two iteration managers who manage two teams respectively, and a release plan manager who facilitates

and makes the decisions on how features written in story cards will play in the long-term plan. The management

office plays the authority role, managing coordination at the project level and coordinating efforts across the teams.

Similarly, at Intel Shannon, the IXP2XX project involves approximately 15 engineers split into four teams

across three sites, and the IXP4XX project consists of five teams and over 30 engineers, across two sites. Each team

has team lead who manages the daily tasks of each team. There is also an overall project lead who plays the

authority role in decision-making and receives reports from the team leads.

The radio system involves four teams, each of which is in charge of different parts of the system. The

project managers working with domain experts prioritize the features required for each release. Any changes to the

iteration plan need to be approved by project managers, who have the authority to move functionality from iteration

to iteration. In this case, the project managers form the centralized management unit that mainly works on overall

release plans and coordinates tasks across the four teams.

All three cases demonstrate how team division and centralization work in their respective decision-making

structures.

Decentralization within Each Team (P2)

Though all three projects use a hierarchical structure, they all maintain decentralization within each team to

embrace the spirit of agility.

In the radio system, after the project managers prioritize functionality and make the release plans, each

team holds its own planning meetings. During the meeting, team members assess and discuss the iteration plan

together and sign up for tasks voluntarily. Though the project managers recommend rules about what processes and

practices need to be followed, each team has the authority to modify these practices when appropriate to suit their

needs. For example, instead of allocating a dedicated customer as managers proposed, one team rotated the team’s

senior members through the role.

At ThoughtWorks, development staff meets as a group to assess and discuss tasks and voluntarily sign up

for tasks for the upcoming iteration. Every member participates in this decision-making process. Collective

ownership is encouraged. Individuals are given ownership to their own problems. Intel Sharon adopts similar

strategies.

In sum, all three cases show that within each team, the decision structure is decentralized to give more

power to individuals.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

39

4.2.2 Communication

Horizontal communications within each team (P3)

All three cases report that they rely on horizontal communications within each team. Teams meet for a

quick stand-up meeting to discuss the project’s progress and issues every day or every other day. They all use pair-

programming for team members to work together and share information when appropriate. This enables team

members to frequently engage in conversation with others and share knowledge within the team. Collective

ownership goes hand in hand with horizontal communication and provides opportunities for individuals to become

exposed to all team tasks. It equips each member with adequate background knowledge and facilitates discussion

among team members. Horizontal dissemination of information is also done via rotating team members through

different parts of the code. It is reported that very good communications takes place via informal chats, code-reviews,

and short stand-up meetings.

Vertical communication facilitated by boundary spanners (P4)

Vertical communication also plays an important role in all three cases examined in this paper. Though agile

methods promote horizontal communication, these cases demonstrate the importance to leverage benefits offered in

vertical communication in large projects, as suggested in proposition 4. In each case, the project designates

managers, leads, and/or experts as boundary spanners, who guard and disseminate information across the team

boundary.

At ThoughtWorks, multiple clients representing different divisions and units are involved. To manage

competing voices, project managers require clients and developers to report critical requests and changes so that

managers can facilitate negotiations between clients and developers on decisions regarding how to prioritize

development plans and functions. Each team also needs to report important decisions, such as iteration planning, to

managers. In this case, managers (two account managers, two iteration managers and release plan manager) serve as

boundary spanners who monitor and direct information flows across teams.

Intel Shannon also finds that horizontal communication across multiple teams is not realistic because of the

overhead at a large scale. To improve communication, it incorporates vertical communication mechanisms. After

each team discusses iteration plans, team leads outline the final plan and report the milestones and the contents of

each iteration to the overall project lead, who integrates information and informs team leads. In this case, team leads

and the project lead serve as the boundary spanners.

During the radio system project, each team designates domain experts as the customer proxy. The experts

serve as boundary spanners, who are responsible for gathering information about the system’s requirements.

Communication between developers and clients occurs through the customer proxy. These spanners are also

responsible for interfacing with other teams and coordinate communications between teams.

In sum, all three cases adopt vertical communication and boundary spanners and show that such strategies

work well in large agile projects.

Personal Communication Supplemented by Impersonal Communication (Boundary Objects) (P5)

Agile methods promote personal communication and argue that personal communication can replace

intermediate artifacts. However, personal communication can be constrained in large projects because of the

extensive information and complexity in team structure. As indicated in proposition 5, personal communication

needs to be supplemented by impersonal communication (e.g., boundary objects).

At ThoughtWorks, teams rely heavily on verbal communication most of the time, as proposed in agile

methods. As the system grows in size and complexity, teams have difficult time keeping track of progress because

there is no holistic picture of the application available to everyone during the development process. Individuals

know local functions, but fail to grasp the connections in their minds because of the large scope. All of these hinder

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

40

discussions and sharing among team members. The situation becomes worse when new members join the teams.

Therefore, the teams draft a sketch of the architecture design (a boundary object) to maintain the big picture of the

system. Such object helps teams see the connections of the different parts of the system and facilitate

communication between teams. ThoughtWorks also uses demos and narratives (less formal use cases) for team

members to understand the system.

Intel Shannon also incorporates impersonal communication and uses several boundary objects. In addition

to personal communication, a simple design document is created before different teams take on coding. This design

document is shared by all teams as a guideline and is the basis for release and iteration planning. During short daily

meetings, team members use post-it notes, an informal boundary object, to make their ideas and decisions visible.

Team members are encouraged to bring their next 24-hour plans before each meeting and post them in their named

area. The completed tasks are moved to “done” area. This helps team members in tracking progress, visualizing the

whole system, preparing more thoroughly before daily meetings, and engaging in productive discussion on the

project.

In a similar vein, the radio system project developed a high-level architecture document to provide a

roadmap for developers. To further facilitate communication within and between teams, artifacts (boundary objects)

with common formats, such as use cases, are created and shared among teams. Such boundary objects provide a

common language and knowledge for communication within and across teams.

In all three cases, impersonal communication and boundary objects are proved necessary in large agile

projects for more effective communication. However, they by no means can replace the primary role played by

personal communication.

4.2.3 Control

Informal Control within Each Team (P6)

Proposition 6 proposes that each team needs to follow the informal control proposed by agile methods to

maximize benefits of agility. Both ThoughtWorks and Intel Sharon use this strategy. They adopt pair programming,

a clan control mechanism to ensure code quality. Pair programming has proved to save considerable debugging time.

It is reported in the case of Intel Sharon that one of the teams that used pair programming achieved zero-defect

quality, while another that did not use pair programming, had the highest defect density. Developers who are

involved in pair programming report higher job satisfaction and are more enthusiastic about their work compared to

those who do not use pair programming, according to the case of Intel Sharon. In this way, pair programming helps

build trust and a cooperative culture, which further motivates self-control. Both ThoughtWorks and Intel Sharon

encourage team members to voluntarily sign up for tasks and give them ownership of the tasks, a strategy that

motivates both clan and self control.

Formal control across teams (P7)

Though agile methods encourage informal control, certain formal control mechanisms are proved necessary

in large agile projects. For example, at ThoughtWorks, user requirements, detailed in a narrative document, must be

approved and signed by clients. Also, upon finishing their tasks, team members must obtain clients’ formal approval.

This formal approving process helps control project outcomes and ensures consistency in large projects. Intel

Shannon implemented formal control in the form of a strict coding standard defined early in the project and referred

to it extensively during the project as a way to control the coding processes and outcomes.

The radio system also takes steps in formal control to ensure quality. Critical documents (e.g., use cases)

and changes need to go through a formal review process to get approval. Such behavioral control ensures that

everything is consistent with the overall system requirements and plan. To further strengthen consistency and quality

across teams, the project establishes a formal review process at the end of each iteration for all four teams. External

experts are invited to assess the design and code and point out errors and inefficiency. All three cases demonstrate

the importance of formal control in large agile projects.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

41

5 DISCUSSIONS AND CONCLUSIONS

Drawing from the literature and published case studies, this study examined three dimensions of

coordination in large software projects that embrace agile methods. Table 1 summarizes how large agile projects

coordinate.

Table 1. Summary of Coordination Strategy in Large Agile Projects

Dimensions of Coordinating

Large Agile Projects

Classification Strategies

Decision-making structure Centralization Divide the project into multiple teams, each of which maintains

small or mid size and is responsible for a subset of the tasks;

Establish a centralized management unit that allocates resources,

solves conflicts and coordinates efforts across teams

Decentralization Use decentralization structure as proposed in agile methods within

each small team.

Communication Vertical Rely on vertical communication channel across teams

Horizontal Use horizontal communication channel within each team as

proposed in agile methods

Personal Rely on personal communication within each team supplemented by

impersonal communication

Impersonal Rely on impersonal communication using boundary objects between

teams

Control Formal Use formal control across teams

Informal Use informal control within each team

This study suggests the choices of coordination strategies in the context of agile methods are contingent on

project size. Consistent with prior research (Boehm, 2003), this study shows that it is necessary to maintain the team

size to fully embrace the practices of agile methods. As the project size increases, more formal coordination

strategies, such as centralization, vertical communication, impersonal communication, and formal control are

necessary. Original agile practices are applicable within each team that remains small to midsized. However, at the

project level, across multiple teams, more formal coordination strategies are needed because of the complexity of the

large project and differences among teams. This can embrace the spirit of agile methods, but at the same time

maintain the balance between agility and discipline that is deemed critical in large projects (Boehm, 2003). The

three cases cited in this paper by no means validate the study’s propositions, but they do provide concrete evidence.

At the same time, these cases demonstrate how each proposition can be implemented in real project contexts.

This study contributes to both the literature of agile methods and agile practices. Though more and more

attention has been paid to agile methods and their applications in various contexts, no prior studies have examined

coordination strategies in agile projects, especially in large agile projects. By examining the literature and published

case studies, this study identifies three dimensions of coordination in software development and discusses how

different communication strategies, decision-making structures, and control modes help large projects become agile

and improve project performance. Though a few papers and books focus on balancing agility and discipline (Boehm,

2003; Boehm & Turner, 2003), none of them explicitly explain it from the perspective of coordination. The present

research addresses this gap. This study also provides insights for practitioners, especially project managers that

manage agile projects. The study suggests how to choose and apply various coordination strategies at different levels.

The specific strategies discussed in this paper are of interest to practitioners.

AUTHOR INFORMATION

Peng Xu is an Assistant Professor at the Department of Management Science and Information Systems of the

University of Massachusetts Boston. She received her Ph.D. in Computer Information Systems from Georgia State

University in 2004. Her research areas are software process, software engineering, knowledge management, and

process agility. Her work has appeared in journals such as the Journal of Management Information Systems,

Communications of the ACM, Requirements Engineering Journal, Information and Management, and Decision

Support Systems.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

42

REFERENCES

1. Andres, H. P., & Zmud, R. W. (2002). A Contingency Approach to Software Project Coordination. Journal

of Management Information Systems, 18(3).

2. Boehm, B. (2003). Balancing Agility and Discipline: A Guide for the Perplexed: Addison Wesley.

3. Boehm, B., & Turner, R. (2003). Using Risk To Balance Agile And Plan-Driven Methods. IEEE Computer,

57-66.

4. Choudhury, V., & Sabherwal, R. (2003). Portfolios of Control in Outsourced Software Development

Projects. Information Systems Research, 14(3), 291 –314.

5. Cockburn, A., & Highsmith, J. (2001). Agile software development: The people factor. IEEE Computer,

34(11), 131-133.

6. Crowston, K., & Kammerer, E. E. (1998). Coordination and Collective Mind in Software Requirements

Development. IBM SYSTEMS JOURNAL, 37(2), 227-245.

7. Drobka, J., Noftz, D., & Raghu, R. (2004). Piloting XP on Four Mission-Critical Projects IEEE Software,

21(6), 70-75.

8. Elssamadisy, A. (2001). XP On A Large Project – A Developer’s View. Raleigh, NC: XP/Agile Universe.

9. Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Team Knowledge and

Coordination in Geographically Distributed Software Development. Journal of Management Information

Systems, 24(1), 135–169.

10. Faraj, S., & Sproull, L. (2000). Coordinating Expertise in Software Development Teams. Management

Science, 46(12), 1554-1568.

11. Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising Agile Methods to Software Practices at

Intel Shannon. European Journal of Information Systems, 15(2), 200.

12. Hatch, M. J. (1997). Organization Theory. New York: Oxford University Press.

13. Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of innovation. IEEE

Computer, 34(9), 120-122.

14. Kirsch, L. J. (1997). Portfolios of control modes and IS project management. Information Systems Research,

8(3), 215-239.

15. Kirsch, L. J., Sambamurthy, V., Ko, D.-G., & Purvis, R. L. (2002). Controlling Information Systems

Development Projects: The View from the Client. Management Science, 48(4), 484–498.

16. Kraut, R. E., & Streeter, L. A. (1995). Coordination in Software Development. Communications of the

ACM, 38(3), 69-81.

17. Kyu Kim, K., & Umanath, N. (1992/1993). Structure and Perceived Effectiveness of Software

Development Subunits: A Task Contingency Analysis. Journal of Management Information Systems, 9(3),

157-181.

18. Levina, N. (2005). Collaborating on multiparty information Systems development projects: A collective

reflection-in-Action view. Information Systems Research, 16(2), 109 –130.

19. Levina, N., & Vaast, E. (2005). The emergence of boundary spanning competence in practice: implications

for implementation and use of information systems. MIS Quarterly, 29(2), 335-363.

20. Levina, N., & Vaast, E. (2006). Turning a Community into a Market: A Practice Perspective on

Information Technology Use in Boundary Spanning. Journal of Management Information Systems, 22(4),

13-37.

21. Lindstrom, L., & Jeffries, R. (2004). Extreme Programming and Agile Software Development

Methodologies. Information Systems Management 21(3), 41-52.

22. Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., et al. (2002). Empirical Findings in

Agile Methods/ Agile Universe 2002. Paper presented at the Extreme Programming and Agile Methods.

23. Lyytinen, K., & Robey, D. (1999). Learning Failure in Information Systems Development. Information

Systems Journal, 9, 85-101.

24. Malone, T. W., & Crowston, K. (1994). The Interdisciplinary Study of Coordination. ACM Computing

Surveys, 26(1), 87-119.

25. Meso, P., & Jain, R. (2006). Agile Software Development: Adaptive Systems Principles And Best

Practices. Information Systems management, 19-30.

26. Nidumolu, S. (1995). The Effect of Coordination and Uncertainty on Software Project Performance:

Residual Performance Risk as An Intervening Variable. Information Systems Research, 6(3), 191-219.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

43

27. Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(1),

14-37.

28. Overby, E. (2008). Process Virtualization Theory and the Impact of Information Technology. Organization

Science, 19(2), 277-291.

29. Schalliol, G. (2001). Challenges for Analysts on A Large XP Project. Raleigh, NC: XP/Agile Universe.

30. Taber, C., & Fowler, M. (2000). An Iteration in the Life of an XP Project. Cutter IT Journal, 13(1), 13-21.

31. Tiwana, A., & Mclean, E. R. (2005). Expertise integration and creativity in information systems

development. Journal of Management Information Systems, 22(1), 13–43.

32. Tushman, M. L. (1977). Special Boundary Roles in the Innovation Process. Administrative Science

Quarterly, 22(4), 587-605.

33. Van de Ven, A. H., Delbecq, A. L., & Koenig Jr, R. (1976). Determinants of Coordination Modes within

Organizations. American Sociological Review, 41(April), 322-338.

34. Wagstrom, P., & Herbsleb, J. (2006). Dependency Forecasting in the Distributed Agile Organization.

Communications of the ACM, 49(10), 55-56.

35. Williams, L., & Cockburn, A. (2003). Agile Software Development: It’s about Feedback and Change. IEEE

Computer, 36(6), 39-43.

36. Xu, P., & Ramesh, B. (2007). Software Process Tailoring: An Empirical Investigation. Journal of

Management Information Systems, 24(2), 293-328.

Review of Business Information Systems – Fourth Quarter 2009 Volume 13, Number 4

44

NOTES

