
Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

41

CRUD On The Web – Pedagogical Modules

For Web-Based Data Access
Kelly Fadel, Utah State University, USA

David Olsen, Utah State University, USA

Karina Hauser, Utah State University, USA

ABSTRACT

The growing popularity of Internet-enabled commerce has produced increased demand for

Information Technology (IT) professionals who are skilled in the development and management of

data-driven, Web-based business applications. Many academic programs in information systems

offer courses on relational database design and management, as well as courses on Web

development using technologies such as PHP or Microsoft’s ASP.NET. However, such courses

typically contain independent content, which tends to leave students with a fragmented

understanding of how these technologies (i.e. the Web and relational databases) interact. In this

paper, we present integrated instructional modules for teaching best practices in connecting

advanced Web applications with a relational database backend. The objective of these modules is

to provide students with a seamless context for developing both a relational database and a Web

interface supporting database transactions.

INTRODUCTION

he growing popularity of Internet-enabled commerce has produced increased demand for

Information Technology (IT) professionals who are skilled in the development and management of

data-driven, Web-based business applications. A 2005 study investigating highly sought-after IT

skills reported that “not only has Web programming jumped into a commanding lead in the total number of jobs

requiring programming skills, it is now mentioned in an impressive 42.6% of job ads” [8, p. 91] More, recently,

Litecky, et al. [5], report that Web programming topped the list of the most frequently demanded skills by

employers, appearing in 26.5% of the reviewed job postings. Not far behind is the market for database

programming and management skills: both studies ranked SQL programming within the top 10 most demanded

skills in the IT job market.

The obvious popularity of Web and SQL programming skills highlights the need for academic IS programs

to enable emerging IT professionals to meet this demand. Many academic programs in information systems offer

courses on relational database design and management, as well as courses on Web development using technologies

such as PHP or Microsoft’s ASP.NET [4]. However, such courses typically contain independent content, which

tends to leave students with a fragmented understanding of how these technologies (i.e. the Web and relational

databases) interact. Because today’s Web applications rely increasingly on dynamically updated data from a data

source such as a relational database, Web application developers must have a working knowledge of both the back-

end database and the front-end Web interface. Consequently, there is a need for comprehensive pedagogical

material that provides an integrated context for teaching these skills.

To address this need, we have developed integrated instructional modules for teaching best practices in

connecting advanced Web applications with a relational database backend. These modules introduce students to the

common practices of connecting Web applications to a relational database and performing CRUD (Create,

Read/Retrieve, Update, Delete/Destroy) operations on the data through a Web-based interface. These modules were

successfully integrated in a Management Information Systems (MIS) undergraduate program that offers both a

database management course and a Web development course. Students are first introduced to the database modules

in the database management course, after which they work though the Web modules in the Web development

T

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

42

course. The objective of these integrated modules is to provide students with a seamless context for developing both

a relational database and a Web interface supporting database transactions.

The next section presents the learning modules we developed. Database modules are first presented,

followed by the Web Modules. The technology used in teaching these modules is Microsoft SQL Server 2005 and

ASP.NET 2.0. However, implementation of the concepts presented can be modified to suit any similar

technological platform.

CONTEXT DESCRIPTION

The context for this case is a United States-based foreign currency exchange service. The database

contains account and contact information about each customer of the service. Customers can be individual persons

or corporations, and each can execute transactions in which they exchange US Dollars for other currencies. The

database also contains utility/lookup tables for information such as US States and a calendar identifying business

days, holidays, and weekends.

DATABASE MODULES

This section first describes the conceptual data model followed by the Data Definition Language (DDL)

required to create the database structure.

Conceptual Data Model

Since the introduction of Codd’s [3] relational model, conceptual data modeling has become an integral

part of database development. The purpose of conceptual data models is to gather and describe the information

involve in the business process at a high-level independent of the DBMS used later in the implementation. It is an

important step in the requirements analysis phase and helps to facilitate communication between end-users, database

administrators and developers. Conceptual data modeling should be an integral part of any database class, but an

analysis of textbooks [6] shows that even textbook authors have problems creating integrated and consistent

examples for instructors and students to follow. The entity-relationship (ER) diagram developed by Chen [2] is the

most widely used diagram used to represent data. The ER Diagram for the current case is shown in Figure 1 below
12

:

1 Attributes for each entity are omitted from the ER Diagram for the sake of clarity. Attributes are identified in the data definition

language presented in the following section.
2 The Calendar entity is included as a utility for easily identifying work days, holidays, etc. Relationships could be drawn

between the calendar entity and other entities that have date attributes (e.g. CustAddresses). However, for the sake of clarity, the

Calendar entity is shown relating only to the Transactions entity.

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

43

Figure 1. ER Diagram for Foreign Currency Exchange Application

Data Definition Language For Creating And Populating Database

We now present the DDL for creating the database structures (tables, constraints, triggers, etc.) that

implement the conceptual data model. This example is written for the Microsoft SQL Server 2005 DBMS; however,

the SQL code is ANSI-compliant and should therefore work in any DBMS environment.

Listing 1. DDL for creating Database Tables and Constraints

CREATE TABLE Calendar

(

 ActualDate DATETIME NOT NULL PRIMARY KEY,

 MonthName CHAR(15) NULL,

 DayNumber INT NULL,

 YearNumber INT NULL,

 DayOfWeek CHAR(15) NULL

 CHECK (DayOfWeek IN ('Sunday','Monday','Tuesday',

 'Wednesday', 'Thursday', 'Friday', 'Saturday')),

 DayType CHAR(15) NULL

 CHECK (DayType IN ('Business','Weekend', 'Holiday')),

)

CREATE TABLE USStates

(

 Abbreviation char (2) NOT NULL PRIMARY KEY,

 StateName char (25) NOT NULL

)

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

44

Listing 1. DDL for creating Database Tables and Constraints

CREATE TABLE Customers

(

 CustomerID int NOT NULL PRIMARY KEY,

 CreditRating int NULL ,

 AccountType char (10) NULL

 CHECK (AccountType = 'Unlimited' or AccountType = 'Margin' or

 AccountType = 'Basic'),

 EmailAddress char (25) NULL ,

 CreditLimit decimal(21, 13) NULL ,

 CashBalance decimal(21, 13) NULL

)

CREATE TABLE CorpCustomers

(

 CustomerID int NOT NULL PRIMARY KEY,

 CorpName char (20) NULL ,

 ContactName char (20) NULL ,

 StateOfIncorporation char (2) NULL ,

 FOREIGN KEY (CustomerID) REFERENCES Customers (CustomerID)

)

CREATE TABLE PersonCustomers

(

 CustomerID int NOT NULL PRIMARY KEY,

 FirstName char (20) NULL ,

 LastName char (20) NULL ,

 FOREIGN KEY (CustomerID) REFERENCES Customers (CustomerID)

)

CREATE TABLE CustAddresses

 (

 CustomerID int NOT NULL,

 Address char (30) NOT NULL

 PRIMARY KEY (CustomerID,Address),

 City char (25) NULL ,

 State char (2) NULL ,

 ZipCode char (10) NULL ,

 DateMovedIn datetime NULL ,

 DateMovedOut datetime NULL ,

 PrimaryOrSecondary char (1) NULL ,

FOREIGN KEY (DateMovedIn) REFERENCES Calendar (ActualDate),

FOREIGN KEY (DateMovedOut) REFERENCES Calendar (ActualDate),

FOREIGN KEY (CustomerID) REFERENCES Customers (CustomerID),

FOREIGN KEY (State) REFERENCES USStates (Abbreviation)

)

CREATE TABLE CustPhoneNumbers

(

 EmployeeID INT NOT NULL,

 PhoneNumber CHAR(25) NOT NULL

PRIMARY KEY (EmployeeID,PhoneNumber)

CHECK (phonenumber LIKE '([0-9][0-9][0-9]) [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]'),

 PhoneType CHAR (10) NULL

CHECK (PhoneType IN ('Home','Cell','Work','Fax')),

FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID)

)

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

45

Listing 1. DDL for creating Database Tables and Constraints

CREATE TABLE ForeignCurrencies

(

 ForeignCurrencyID int NOT NULL PRIMARY KEY,

 CurrencyName char (30) NULL ,

 ExchangeRateUSDollar decimal(18, 11) NULL

)

CREATE TABLE Transactions

(

 TransactionID int NOT NULL PRIMARY KEY,

 TransDate datetime NULL ,

 TransType char (5) NULL

 CHECK (TransType IN ('Sell','Buy')),

 AmountUSDollars decimal(18,10) NULL ,

 Fee AS (AmountUSDollars * 0.02) ,

 TotalAmount AS (AmountUSDollars * 1.02) ,

 ForeignCurrencyID int NULL ,

 FCAmount decimal(30, 14) NULL ,

 CustomerID int NULL

FOREIGN KEY(ForeignCurrencyID) REFERENCES ForeignCurrencies

(ForeignCurrencyID),

FOREIGN KEY(CustomerID) REFERENCES Customers(CustomerID)

)

The Calendar table in the code listing above is a utility table used to identify weekdays/weekends, holidays,

and days of the week. Although this information can be obtained using built-in SQL Server Date functions in

queries, utilizing the Calendar table simplifies many of these operations, particularly for SQL beginners. The

following listing provides the code for populating the calendar table with dates and associated information from

January 1, 1900 to December 31, 2019
3
.

Listing 2. SQL Code for populating the Calendar table

SET NOCOUNT ON

DECLARE @Counter INT

DECLARE @ActualDate DATETIME

DECLARE @FirstDate DATETIME

SET @Counter = 1

SET @FirstDate = '1/1/1900'

SET @ActualDate = @FirstDate

 WHILE @Counter < 43830

BEGIN

INSERT INTO Calendar(ActualDate)

 values(@ActualDate)

SET @ActualDate = DATEADD(day, @Counter, @FirstDate)

SET @Counter = @Counter + 1

END

GO

UPDATE Calendar

SET DayOfWeek = DateName(DW, ActualDate)

GO

UPDATE Calendar

3 Only three holidays are identified in our example. However, other holidays could be added if desired.

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

46

Listing 2. SQL Code for populating the Calendar table

SET DayNumber = DateName(DD, ActualDate)

GO

UPDATE Calendar

SET MonthName = DateName(MM, ActualDate)

GO

UPDATE Calendar

SET YearNumber = DateName(YY, ActualDate)

GO

UPDATE Calendar

SET DayType = 'Business'

WHERE DayOfWeek <> 'Saturday' AND DayOfWeek <> 'Sunday'

GO

UPDATE Calendar

SET DayType = 'Weekend'

WHERE DayOfWeek ='Saturday' OR DayOfWeek = 'Sunday'

GO

UPDATE Calendar

SET DayType = 'Holiday'

WHERE (MonthName ='January' AND DayNumber = 1) OR

 (MonthName ='July' AND DayNumber = 4) OR

 (MonthName ='December' AND DayNumber = 25)

GO

When a new foreign currency transaction is inserted in the database or an existing transaction is modified,

the foreign currency amount associated with the transaction can be calculated from the AmountUSDollars field of

the Transactions table and the ExchangeRateUSDollar field of the ForeignCurrencies table. This is accomplished

using a database trigger, the DDL for which is shown below in Listing 3. INSERTED is an SQL Server-proprietary

pointer to the currently inserted tuple.

Listing 3. DDL for the Foreign Currency Amount Trigger

CREATE TRIGGER FCAmountCalc ON dbo.Transactions

FOR INSERT, UPDATE

AS

UPDATE Transactions

SET FCAmount = t.AmountUSDollars * ExchangeRateUSDollar

 FROM INSERTED AS i JOIN ForeignCurrencies AS FC ON

 (i.ForeignCurrencyID = FC.ForeignCurrencyID) JOIN Transactions AS t

 ON (i.TransactionID = t.TransactionID)

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

47

WEB MODULES

In this section, we outline the development of a Web application that interfaces with the foreign currency

database. The application provides functionality supporting each of the CRUD operations for customers, addresses,

phone numbers, and foreign currency transactions. The technology used in these examples is ASP.NET 3.5, with

C# as the programming language. All code was developed in Microsoft Visual Studio 2005. We begin by

discussing the advantages of a tiered application architecture and describing how such an architecture is applied to

the foreign currency application. We then present code samples that illustrate the functionality of each tier.

Tiered Application Architecture

The growing complexity of today’s software applications has prompted a movement toward software

architectures that support component modularity and reusability. A well-known approach to promoting this

objective is to develop a software application as a series of logical tiers, producing what is referred to as an n-tier

architecture. Each tier encapsulates a logical set of functions within the application, and communicates with one or

more other tiers through a well-defined interface. A tiered architecture provides enhanced flexibility and

maintainability, since code within each tier can be modified independently of the other tiers within the application.

A common version of the n-tier architecture employs three distinct application tiers: the data tier, the business tier,

and the presentation tier. The data tier is responsible for managing connection to the data source and handling all

data source interactions. The business tier interacts with the data tier and performs logical operations on the data

retrieved. The business tier then passes the data on to the presentation tier, which is responsible for managing the

user interface and displaying the appropriate data to the end user. Figure 2 provides an example of a user interacting

with a tiered architecture in an e-commerce application.

Figure 2. Sample of user interaction with a 3-tier application; adapted from Darie and Watson

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

48

An overview of the 3-tier architecture used in the foreign currency application is shown in Figure 3. Each

tier of this architecture is then described below.

Figure 3. 3-tier architecture of the foreign currency application

Data Tier

The purpose of the data tier is to manage interactions with a data source such as a relational database. A

frequently recommended technique for handling these interactions is to encapsulate data manipulation operations

within stored procedures, database objects that store code for performing one or many data operations. Because

stored procedures are housed within and managed by the DBMS, they offer several performance and security

benefits over sending SQL commands directly from application code [7]. Using stored procedures obviates the need

to place potentially complex SQL statements directly within the application code, thus promoting code modularity

and interpretability. For these reasons, stored procedures are well-suited to creating a tiered data-driven Web

application.

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

49

As shown in Figure 3, the data tier of the foreign currency application consists of SQL stored procedures

and a single C# class called DBAccess. The purpose of the DBAccess class is to: (1) receive database requests from

the business tier, (2) connect to the database and invoke the required operations through stored procedure calls, and

(3) return data to the business tier. The code for this class is shown in Listing 4. (Descriptive code comments within

this and subsequent listings are enclosed in /* */.)

Listing 4. DBAccess C# Class

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient; //Contains Sql Server ADO.NET classes

/// <summary>

/// Data tier class for interfacing with a SQL Server Database

/// </summary>

public static class DBAccess

{

 /* Creates and prepares a new SqlCommand object on a new connection */

 public static SqlCommand CreateCommand(string procedureName)

 {

 /* Obtain the database connection string */

 string connectionString = "Data Source=johnson.usu.edu;Initial Catalog=foreigncurrency;User

ID=*****;Password=*****";

 /* Obtain a new SqlConnection object for connecting to the database */

 SqlConnection conn = new SqlConnection(connectionString);

 /* Obtain a new SqlCommand object with the name of the stored procedure to be executed and the connection object */

 SqlCommand comm = new SqlCommand(procedureName, conn);

 /* Set the command type to stored procedure */

 comm.CommandType = CommandType.StoredProcedure;

 /* Return the initialized command object */

 return comm;

 }

 /* execute a select command and return the results as a DataTable object */

 public static DataTable ExecuteSelectCommand(SqlCommand command)

 {

 /* The DataTable to be returned */

 DataTable table;

 /* Execute the command making sure the connection gets closed in the end */

 try

 {

 /* Open the data connection */

 command.Connection.Open();

 /* Execute the command and save the results in a DataTable */

 SqlDataReader reader = command.ExecuteReader();

 table = new DataTable();

 table.Load(reader);

 /* Close the reader */

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

50

Listing 4. DBAccess C# Class

 reader.Close();

 }

 catch (Exception ex)

 {

 throw ex;

 }

 finally

 {

 /* Close the connection */

 command.Connection.Close();

 }

 return table;

 }

 /* execute an update, delete, or insert command and return the number of affected rows */

 public static int ExecuteNonQuery(SqlCommand command)

 {

 /* The number of affected rows */

 int affectedRows = -1;

 /* Execute the command making sure the connection gets closed in the end */

 try

 {

 /* Open the connection of the command */

 command.Connection.Open();

 /* Execute the command and get the number of affected rows */

 affectedRows = command.ExecuteNonQuery();

 }

 catch (Exception ex)

 {

 throw ex;

 }

 finally

 {

 /* Close the connection */

 command.Connection.Close();

 }

 /* return the number of affected rows */

 return affectedRows;

 }

}

Business Tier

The function of the business tier is to serve as an interface with the data tier and the presentation tier and

implement any required business logic in processing the data. The business tier of a moderately-sized application

may consist of several application classes that manage these functions. For the foreign currency applicatoin, the

business tier is implemented using a single static C# class named CustomerManager. This class contains methods

needed to select, insert, update, and delete all customer information, including transactions. In the interest of

brevity, the entire CustomerManager class will not be presented here. Instead, sample methods from this class will

be shown in the Application Examples section below.

Presentation Tier

As its name suggests, the presentation tier is responsible for receiving data from the business tier and

presenting it to the application user. The presentation tier of a typical Web application consists of a collection of

Web pages which are rendered to the user in a browser. For the foreign currency application, the presentation tier

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

51

consists of a single ASP.NET Web page named CustomerManagement.aspx. Consistent with the recent ASP.NET

code-behind development model
4
, this page is logically divided into two files. The first,

CustomerManagement.aspx, contains all declarative HTML and ASP.NET markup that is rendered to the browser as

HTML. This file is referred to as the content file. The second, CustomerManagement.aspx.cs, contains all of the

programming logic required to respond to various events associated with the application. This file is called the

code-behind file, since it sits “behind” the content file and responds to events that occur on the page. When the user

requests an .aspx page from the Web server, the content and code-behind files are combined to create a fully

functional Web page that is rendered to the user.

Figure 4. Screen capture of CustomerManagement.aspx page as rendered in a Web browser

4 For a more detailed discussion of the code-behind model, see

http://quickstarts.asp.net/QuickStartv20/aspnet/doc/pages/codebehind.aspx.

http://quickstarts.asp.net/QuickStartv20/aspnet/doc/pages/codebehind.aspx

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

52

A screen capture of the CustomerManager.aspx page is shown in Figure 4
5
. As with the business tier class,

the code for this page will not be presented here in its entirety; however, relevant components of the page will be

shown in the next section, where we present sample code for performing CRUD operations in the foreign currency

application.

Application Examples

As noted above, the foreign currency application enables select, insert, update, and delete operations for

customer information, including customer account details, addresses, phone numbers, and transactions. Table 1

summarizes each of the operations supported and identifies the relevant components of each tier. In the interest of

parsimony, only components in shaded rows of Table 1 are described further below. These components include:

1. Selecting person/corporate customer names and IDs from the database, and

2. Performing each of the CRUD operations for customer foreign currency transactions.

These operations were chosen because they are illustrative of the other data operations supported by the

application
6
.

5 We intentionally minimized formatting of the CustomerManagement.aspx page so as not to distract from database connectivity

as the primary focus of this module. However, the design of the page could be altered using ASP.NET themes and skins and/or

Cascading Style Sheets (CSS).
6 Code for the entire foreign currency application is available online at: http://olsen.usu.edu/RBIS/RBISCRUDontheWeb.html

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

53

Table 1. Data operations and application components of the foreign currency application

DB

Operation

Data Data Tier

(Includes DBAccess class and the

following stored procedures)

Business Tier

(Methods of the CustomerManager

class)

Presentation Tier

(Controls of the CustomerManagement.aspx

page)

Select All customer names and IDs for

person/corporate customers
GetPersonCustomers, GetCorpCustomers

GetPersonCustomers,

GetCorpCustomers
DropDownList ddlCustomers

Customer account information
GetPersonCustomerInfo,

GetCorpCustomerInfo

GetPersonCustomerInfo,

GetCorpCustomerInfo

FormView fvwPersonCustInfo, FormView

fvwCorpCustInfo,

ObjectDataSource odsCustInfo

Customer addresses GetCustomerAddresses GetCustomerAddresses
GridView gvwCustAddresses,

ObjectDataSource odsCustAddresses

Customer phone numbers GetCustomerPhoneNumbers GetCustomerPhoneNumbers
GridView gvwCustPhoneNumbers,

ObjectDataSource odsCustPhoneNumbers

Customer transactions GetCustomerTransactions GetCustomerTransactions
GridView gvwCustTransactions,

ObjectDataSource odsCustTransactions

Foreign currency names and IDs GetForeignCurrencies GetForeignCurrencies
DropDownList ddlEditForeignCurrency,

DropDownList ddlInsertForeignCurency

Insert
Person/corporate customer,

including account information

InsertCustomer, InsertPersonCustomer,

InsertCorpCustomer

InsertPersonCustomer,

InsertCorpCustomer

FormView fvwPersonCustInfo, FormView

fvwCorpCustInfo,

ObjectDataSource odsCustInfo

Customer address InsertCustomerAddress InsertCustomerAddress
DetailsView dvwCustAddresses,

ObjectDataSource odsCustAddresses

Customer phone number InsertCustomerPhoneNumber InsertCustomerPhoneNumber
DetailsView dvwCustPhoneNumbers,

ObjectDataSource odsCustPhoneNumbers

Customer transaction InsertCustomerTransaction InsertCustomerTransaction
DetailsView dvwCustTransactions,

ObjectDataSource odsCustTransactions

Update

Customer account information

UpdateCustomerInfo,

UpdatePersonCustomerInfo,

UpdateCorpCustomerInfo

UpdatePersonCustomerInfo,

UpdateCorpCustomerInfo

FormView fvwPersonCustInfo, FormView

fvwCorpCustInfo,

ObjectDataSource odsCustInfo

Customer address UpdateCustomerAddress UpdateCustomerAddress
GridView gvwCustAddresses,

ObjectDataSource odsCustAddresses

Customer phone number UpdateCustomerPhoneNumber UpdateCustomerPhoneNumber
GridView gvwCustPhoneNumbers,

ObjectDataSource odsCustPhoneNumbers

Customer transaction UpdateCustomerTransaction UpdateCustomerTransaction
GridView gvwCustTransactions,

ObjectDataSource odsCustTransactions

Delete Person/corporate customer,

including account information

DeletePersonCustomer,

DeleteCorpCustomer

DeletePersonCustomer,

DeleteCorpCustomer
LinkButton btnDeleteCustomer

Customer address DeleteCustomerAddress DeleteCustomerAddress
GridView gvwCustAddresses,

ObjectDataSource odsCustAddresses

Customer phone number DeleteCustomerPhoneNumbers DeleteCustomerPhoneNumbers
GridView gvwCustPhoneNumbers,

ObjectDataSource odsCustPhoneNumbers

Customer transaction DeleteCustomerTransaction DeleteCustomerTransaction
GridView gvwCustTransactions,

ObjectDataSource odsCustTransactions

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

54

Selecting Customer IDs and Names for Person/Corporate Customers

In order to view or modify customer information, the application user must first select a customer type

(person or corporate), and then a specific customer (see Figure 4). This is accomplished with two ASP.NET server

controls: a RadioButtonList named rblCustType and a DropDownList named ddlCustomer. The user first selects a

customer type (person or corporate) from the rblCustType control. When a selection is made, the ddlCustomer

control is populated with a list of person or corporate customers according to the selected type in rblCustType. The

ddlCustomer control shows a list of customer names (for person customers) or corporation names (for corporate

customers). The Value property of each item in the DropDownList contains the CustomerID of the customer.

The data tier for supporting this functionality consists of two stored procedures in addition to the DBAccess

class presented earlier. These stored procedures, shown in Listing 5, provide parallel functionality for person and

corporate customers, respectively.

Listing 5. Data Tier - DDL for GetPersonCustomers and GetCorpCustomers Stored Procedures

CREATE PROCEDURE GetPersonCustomers

AS

SELECT CustomerID, FirstName + ' ' + LastName AS FullName

 FROM PersonCustomers

 ORDER BY LastName;

CREATE PROCEDURE GetCorpCustomers

AS

SELECT CustomerID, CorpName

 FROM CorpCustomers

 ORDER BY CorpName;

The business tier components for supporting this operation include two methods of the CustomerManager

class: GetPersonCustomers and GetCorpCustomers. These methods, shown in Listing 6, utilize the DBAccess data

tier class to call the stored procedures listed above. They then pass the resulting DataTable object back to the

presentation tier.

Listing 6. Business Tier - GetPersonCustomers and GetCorpCustomers Methods

/* Gets CustomerIDs and Names for all person customers */

 public static DataTable GetPersonCustomers()

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("GetPersonCustomers");

 /* Invoke the data tier to execute the stored procedure and return the data set in a DataTable object */

 DataTable resultsTable = DBAccess.ExecuteSelectCommand(comm);

 return resultsTable;

 }

/* Gets CustomerIDs and Names for all corporate customers */

 public static DataTable GetCorpCustomers()

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("GetCorpCustomers");

 /* Invoke the data tier to execute the stored procedure and return the data set in a DataTable object */

 DataTable resultsTable = DBAccess.ExecuteSelectCommand(comm);

 return resultsTable;

 }

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

55

As described above, the presentation tier involves two ASP.NET server controls: a RadioButtonList named

rblCustType and a DropDownList named ddlCustomer. The content file code for these controls is shown in Listing

7. Note that the DataValueField property of ddlCustomer is set to CustomerID. This causes the value of each item

in the DropDownList control to be set to the value stored in the CustomerID column of the control’s data source.

Listing 7. Presentation Tier – ddlCustomers DropDownList Content File Code

<asp:RadioButtonList ID="rblCustType" runat="server" AutoPostBack="true"

OnSelectedIndexChanged="rblCustType_SelectedIndexChanged"

RepeatDirection="Horizontal">

 <asp:ListItem Value="0">Person</asp:ListItem>

 <asp:ListItem Value="1">Corporate</asp:ListItem>

</asp:RadioButtonList>

<asp:DropDownList ID="ddlCustomer" runat="server" DataValueField="CustomerID"

OnSelectedIndexChanged="ddlCustomer_SelectedIndexChanged" AutoPostBack="True" AppendDataBoundItems="True">

</asp:DropDownList>

The data source of ddlCustomer is not set declaratively in the content file. Instead, the data source is set

dynamically in the code-behind file depending on whether the application user has selected person or corporate

customers in rblCustType. As shown in Listing 8, a private method, initializeCustomerddl, is called to initialize the

DropDownList whenever the selected customer type in rblCustType is changed. Note that this method sets the data

source of ddlCustomer by calling the appropriate business tier method, depending on the type of customer selected.

The visibility of several panels is also set in this method; this is simply to ensure that only certain components of

the page are made visible before the user has selected a specific customer.

Listing 8. Presentation Tier – ddlCustomers DropDownList Code-Behind Code

/* Event fired when a customer type is selected from rblCustType RadioButtonList */

 protected void rblCustType_SelectedIndexChanged(object sender, EventArgs e)

 {

 /* Set panel visibility */

 pnlModifyExistingCustomer.Visible = false;

 pnlCustInfo.Visible = false;

 /* Initialize Customer DropDownList for person or corporate customers */

 if (rblCustType.SelectedValue == "0")

 {

 this.initializeCustomerddl(CustomerManager.GetPersonCustomers(), "FullName");

 }

 else if (rblCustType.SelectedValue == "1")

 {

 this.initializeCustomerddl(CustomerManager.GetCorpCustomers(), "CorpName");

 }

 }

/* Initializes the ddlCustomer DropDownList for person or corporate customers and sets panel visibility */

 private void initializeCustomerddl(object dsource, string dataTextField)

 {

 ddlCustomer.Items.Clear();

 ddlCustomer.DataTextField = dataTextField;

 ddlCustomer.Items.Add(new ListItem("Select a customer", "-1"));

 ddlCustomer.DataSource = dsource;

 ddlCustomer.DataBind();

 pnlCustomer.Visible = true;

 btnDeleteCustomer.Visible = false;

 pnlCustInfo.Visible = false;

 pnlModifyExistingCustomer.Visible = false;

 }

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

56

Selecting, Inserting, Updating, and Deleting Customer Transaction Data

After selecting a customer type from rblCustType and a specific customer from ddlCustomer, the

application user can then view, insert, update, and delete customer account information, addresses, phone numbers,

and transactions. We present here the code for viewing and manipulating customer transactions, as it is exemplary

of the code for viewing and manipulating the other types of customer data.

The data tier supporting customer transactions consists of four stored procedures for performing each of the

CRUD operations. DDL for these stored procedures is shown in Listing 9. We point out that the

InsertCustomerTransaction procedure creates a new primary key value for the record to be inserted by selecting the

maximum key value of the table and incrementing it by one. Although this can be accomplished using an

IDENTITY field in SQL Server, IDENTITY implementations differ across DBMSs and can cause portability issues

when the database is migrated[1]. We therefore chose the approach below to maximize portability across DBMSs.

In addition to the four stored procedures described above, an additional stored procedure is utilized to select

all foreign currency names and IDs from the ForeignCurrencies lookup table. The data returned by this procedure

will be utilized to support updating and inserting transactions, as will be shown below.

Listing 9. Data Tier - DDL for GetCustomerTransactions, InsertCustomerTransaction, UpdateCustomerTransaction,

and DeleteCustomerTransaction Stored Procedures

CREATE PROCEDURE GetCustomerTransactions

 @CustomerID INT

AS

SELECT

 TransactionID,

 TransDate,

 TransType,

 AmountUSDollars,

 Fee,

 TotalAmount,

 t.ForeignCurrencyID,

 FCAmount,

 CurrencyName

FROM Transactions t JOIN

 ForeignCurrencies f ON

 t.ForeignCurrencyID = f.ForeignCurrencyID

 WHERE CustomerID = @CustomerID;

CREATE Procedure InsertCustomerTransaction

 @TransDate DATETIME,

 @TransType CHAR(5),

 @AmountUSDollars DECIMAL(18,10),

 @ForeignCurrencyID INT,

 @CustomerID INT

AS

DECLARE @NewTransactionID INT

SELECT @NewTransactionID = MAX(TransactionID)+1 FROM Transactions

INSERT INTO Transactions (

 TransactionID,

 TransDate,

 TransType,

 AmountUSDollars,

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

57

Listing 9. Data Tier - DDL for GetCustomerTransactions, InsertCustomerTransaction, UpdateCustomerTransaction,

and DeleteCustomerTransaction Stored Procedures

 ForeignCurrencyID,

 CustomerID)

VALUES (

 @NewTransactionID,

 @TransDate,

 @TransType,

 @AmountUSDollars,

 @ForeignCurrencyID,

 @CustomerID);

CREATE PROCEDURE UpdateCustomerTransaction

 @TransactionID INT,

 @TransDate DATETIME,

 @TransType CHAR(5),

 @AmountUSDollars DECIMAL(18,10),

 @ForeignCurrencyID INT

AS

UPDATE Transactions

SET TransDate = @TransDate,

 TransType = @TransType,

 AmountUSDollars = @AmountUSDollars,

 ForeignCurrencyID = @ForeignCurrencyID

WHERE TransactionID = @TransactionID;

CREATE PROCEDURE DeleteCustomerTransaction

 @TransactionID INT

AS

DELETE FROM Transactions WHERE TransactionID = @TransactionID;

CREATE PROCEDURE GetForeignCurrencies

AS

SELECT ForeignCurrencyID,

 CurrencyName

FROM ForeignCurrencies;

As in the previous example, the business tier supporting transaction management consists of methods of the

CustomerManager class that invoke the data tier and pass data on to the presentation tier. These methods, one

corresponding to each of the stored procedures above, are shown in Listing 10.

Listing 10. Business Tier - GetCustomerTransactions, InsertCustomerTransaction, UpdateCustomerTransaction, and

DeleteCustomerTransaction Methods

/* Gets transaction information for a given customer */

 public static DataTable GetCustomerTransactions(int CustomerID)

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("GetCustomerTransactions");

 /* Initialize SqlParameter objects for each of the necessary parameters and add to the SqlCommand parameter collection

*/

 SqlParameter param = new SqlParameter("@CustomerID", CustomerID);

 param.SqlDbType = SqlDbType.Int;

 comm.Parameters.Add(param);

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

58

Listing 10. Business Tier - GetCustomerTransactions, InsertCustomerTransaction, UpdateCustomerTransaction, and

DeleteCustomerTransaction Methods

 /* Invoke the data tier to execute the stored procedure and return the data set in a DataTable object */

 DataTable resultsTable = DBAccess.ExecuteSelectCommand(comm);

 return resultsTable;

 }

/* Inserts a transaction */

 public static int InsertCustomerTransaction(string TransDate, string TransType, decimal AmountUSDollars, int

ForeignCurrencyID, int CustomerID)

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("InsertCustomerTransaction");

 /* Initialize SqlParameter objects for each of the necessary parameters and add to the SqlCommand parameter collection

*/

 SqlParameter param = new SqlParameter("@TransDate", TransDate);

 param.SqlDbType = SqlDbType.DateTime;

 comm.Parameters.Add(param);

 param = new SqlParameter("@TransType", TransType);

 param.SqlDbType = SqlDbType.Char;

 param.Size = 5;

 comm.Parameters.Add(param);

 param = new SqlParameter("@AmountUSDollars", AmountUSDollars);

 param.SqlDbType = SqlDbType.Decimal;

 param.Precision = Convert.ToByte(18);

 param.Scale = Convert.ToByte(10);

 comm.Parameters.Add(param);

 param = new SqlParameter("@ForeignCurrencyID", ForeignCurrencyID);

 param.SqlDbType = SqlDbType.Int;

 comm.Parameters.Add(param);

 param = new SqlParameter("@CustomerID", CustomerID);

 param.SqlDbType = SqlDbType.Int;

 comm.Parameters.Add(param);

 /* Invoke the data tier to execute the stored procedure and return the number of affected rows */

 int numRowsAffected = DBAccess.ExecuteNonQuery(comm);

 return numRowsAffected;

 }

 /* Updates a transaction */

 public static int UpdateCustomerTransaction(int TransactionID, string TransDate, string TransType, decimal

AmountUSDollars, int ForeignCurrencyID)

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("UpdateCustomerTransaction");

 /* Initialize SqlParameter objects for each of the necessary parameters and add to the SqlCommand parameter collection

*/

 SqlParameter param = new SqlParameter("@TransactionID", TransactionID);

 param.SqlDbType = SqlDbType.Int;

 comm.Parameters.Add(param);

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

59

Listing 10. Business Tier - GetCustomerTransactions, InsertCustomerTransaction, UpdateCustomerTransaction, and

DeleteCustomerTransaction Methods

 param = new SqlParameter("@TransDate", TransDate);

 param.SqlDbType = SqlDbType.DateTime;

 comm.Parameters.Add(param);

 param = new SqlParameter("@TransType", TransType);

 param.SqlDbType = SqlDbType.Char;

 param.Size = 5;

 comm.Parameters.Add(param);

 param = new SqlParameter("@AmountUSDollars", AmountUSDollars);

 param.SqlDbType = SqlDbType.Decimal;

 param.Precision = Convert.ToByte(18);

 param.Scale = Convert.ToByte(10);

 comm.Parameters.Add(param);

 param = new SqlParameter("@ForeignCurrencyID", ForeignCurrencyID);

 param.SqlDbType = SqlDbType.Int;

 comm.Parameters.Add(param);

 /* Invoke the data tier to execute the stored procedure and return the number of affected rows */

 int numRowsAffected = DBAccess.ExecuteNonQuery(comm);

 return numRowsAffected;

 }

/* Deletes a transaction */

 public static int DeleteCustomerTransaction(int TransactionID)

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("DeleteCustomerTransaction");

 /* Initialize SqlParameter objects for each of the necessary parameters and add to the SqlCommand parameter collection

*/

 SqlParameter param = new SqlParameter("@TransactionID", TransactionID);

 param.SqlDbType = SqlDbType.Int;

 comm.Parameters.Add(param);

 /* Invoke the data tier to execute the stored procedure and return the number of affected rows */

 int numRowsAffected = DBAccess.ExecuteNonQuery(comm);

 return numRowsAffected;

 }

/* Gets foreign currency names and ids from the database */

 public static DataTable GetForeignCurrencies()

 {

 /* Invoke the data tier class to create a new SqlCommand object */

 SqlCommand comm = DBAccess.CreateCommand("GetForeignCurrencies");

 /* Invoke the data tier to execute the stored procedure and return the data set in a DataTable object */

 DataTable resultsTable = DBAccess.ExecuteSelectCommand(comm);

 return resultsTable;

 }

The architecture of the presentation tier differs somewhat from that of the previous example in that the

present case utilizes an ObjectDataSource control to handle interactions with the business tier. The

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

60

ObjectDataSource control provides means for interfacing with a business object such as the CustomerManager

object in the present example. The ObjectDataSource is connected to a business tier object by setting its TypeName

and Method properties, the former indicating the business tier class to be used and the latter indicating a method for

performing each of the four CRUD operations. Additionally, parameters required by each of these methods can be

specified.

The content file code for the odsCustTransactions ObjectDataSource is provided in Listing 11. The

TypeName property indicates the CustomerManager business object, and the SelectMethod, InsertMethod,

UpdateMethod, and DeleteMethod properties are set to the appropriate respective methods of this object.

Parameters required by each of these methods are also specified. Note that the customerID parameter is

implemented using a ControlParameter object that references the ddlCustomer DropDownList shown earlier. This

specifies that the value of this parameter is retrieved from the selected value (i.e. the selected CustomerID) of the

ddlCustomer DropDownList.

Listing 11. Presentation Tier – odsCustTransactions ObjectDataSource Content File Code

<asp:ObjectDataSource ID="odsCustTransactions" runat="server" DeleteMethod="DeleteCustomerTransaction"

 InsertMethod="InsertCustomerTransaction" SelectMethod="GetCustomerTransactions" TypeName="CustomerManager"

 UpdateMethod="UpdateCustomerTransaction">

 <DeleteParameters>

 <asp:Parameter Name="TransactionID" Type="Int32" />

 </DeleteParameters>

 <UpdateParameters>

 <asp:Parameter Name="TransactionID" Type="Int32" />

 <asp:Parameter Name="TransDate" Type="String" />

 <asp:Parameter Name="TransType" Type="String" />

 <asp:Parameter Name="AmountUSDollars" Type="Decimal" />

 <asp:Parameter Name="ForeignCurrencyID" Type="Int32" />

 </UpdateParameters>

 <SelectParameters>

 <asp:ControlParameter ControlID="ddlCustomer" Name="customerID" PropertyName="SelectedValue"

 Type="Int32" />

 </SelectParameters>

 <InsertParameters>

 <asp:Parameter Name="TransDate" Type="String" />

 <asp:Parameter Name="TransType" Type="String" />

 <asp:Parameter Name="AmountUSDollars" Type="Decimal" />

 <asp:Parameter Name="ForeignCurrencyID" Type="Int32" />

 <asp:ControlParameter ControlID="ddlCustomer" Name="customerID" PropertyName="SelectedValue"

 Type="Int32" />

 </InsertParameters>

</asp:ObjectDataSource>

The ObjectDataSource provides an interface for interacting with the business tier, but it does not display

the data to the application’s user. For this, two ASP.NET data display controls are used. The first is a GridView

control named gvwCustTransactions. The GridView control is useful for displaying data in tabular format, where

the columns represent fields and the rows represent records in the data source. The GridView can be linked directly

to a data source control such as the ObjectDataSource, and can provide “out of the box” select, update, and delete

capabilities, significantly streamlining the code required to implement this functionality.

The content file code for gvwCustTransactions is shown in Listing 12. The GridView is a fairly complex

control, and a full explanation of its intricacies will not be provided here. However some attributes shown in the

code below deserve mention. First, the DataSourceID property indicates that the GridView will utilize the

odsCustTransactions ObjectDataSource control as its data source. The DataKeyNames property points to the

primary key of the data set returned by this data source. Second, the content (or columns) of the GridView is made

up of a series of fields, including CommandFields, BoundFields, and TemplateFields. The CommandField provides

edit and delete functionality, while the BoundFields and TemplateFields are linked to fields in the data source, as

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

61

denoted by the DataField property (for BoundFields), and the Bind() method (for TemplateFields). Finally, note that

the DataSource property of the ddlEditForeignCurrency DropDownList (contained within the foreign currency

TemplateField) is set with a direct call to the business tier method GetForeignCurrencies, which returns a DataTable

object to which the DropDownList can be bound.

Listing 12. Presentation Tier – gvwCustTransactions GridView Content File Code

<asp:GridView ID="gvwCustTransactions" runat="server" DataKeyNames="TransactionID" AllowPaging="True"

AutoGenerateColumns="False" DataSourceID="odsCustTransactions" AllowSorting="True" EmptyDataText="No transactions

found for this customer">

 <Columns>

 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />

 <asp:BoundField DataField="TransDate" HeaderText="Transaction Date" SortExpression="TransDate" />

 <asp:TemplateField HeaderText="Transaction Type" SortExpression="TransType">

 <EditItemTemplate>

 <asp:DropDownList ID="ddlUpdateTransType" runat="server" SelectedValue='<%# Bind("TransType") %>'>

 <asp:ListItem Value="Buy ">Buy</asp:ListItem>

 <asp:ListItem Value="Sell ">Sell</asp:ListItem>

 </asp:DropDownList>

 </EditItemTemplate>

 <ItemTemplate>

 <asp:Label ID="lblUpdateTransType" runat="server" Text='<%# Bind("TransType") %>'></asp:Label>

 </ItemTemplate>

 </asp:TemplateField>

 <asp:BoundField DataField="AmountUSDollars" HeaderText="Amount in $" DataFormatString="{0:c}"

SortExpression="AmountUSDollars" />

 <asp:BoundField DataField="Fee" HeaderText="Fee" ReadOnly="True" DataFormatString="{0:c}"

SortExpression="Fee" />

 <asp:BoundField DataField="TotalAmount" HeaderText="Total Amount" ReadOnly="True"

DataFormatString="{0:c}" SortExpression="TotalAmount" />

 <asp:TemplateField HeaderText="Foreign Currency" SortExpression="ForeignCurrencyID">

 <EditItemTemplate>

 <asp:DropDownList ID="ddlEditForeignCurrency" runat="server" DataSource="<%#

CustomerManager.GetForeignCurrencies() %>" SelectedValue='<%# Bind("ForeignCurrencyID") %>'

DataTextField="CurrencyName" DataValueField="ForeignCurrencyID">

 </asp:DropDownList>

 </EditItemTemplate>

 <ItemTemplate>

 <asp:Label ID="Label1" runat="server" Text='<%# Bind("CurrencyName") %>'></asp:Label>

 </ItemTemplate>

 </asp:TemplateField>

 <asp:BoundField DataField="FCAmount" HeaderText="Foreign Currency Amount" ReadOnly="True"

 SortExpression="FCAmount" DataFormatString="{0:c}" />

 </Columns>

 </asp:GridView>

While the GridView control is extremely useful for selecting, updating, and deleting data records, it is not

well suited for inserting new records. For this, a DetailsView control is used. A DetailsView is similar to a

GridView in that it can be linked to an ObjectDataSource control and it displays data in a structured format.

However, unlike the GridView, the DetailsView displays only one data record at a time and provides “out of the

box” functionality for inserting a new record.

The content file code for the DetailsView dvwCustTransactions is shown in Listing 13. The code for this

DetailsView is structurally similar to that of the gvwCustTransactions GridView described above, the primary

difference being that the DetailsView contains a collection of fields rather than columns. Additionally, note that the

DefaultMode property of the DetailsView is set to “Insert”. This property is so set because the DetailsView is used

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

62

only as a mechanism for inserting a new transaction, while the GridView is used to select, update, and delete

existing transactions.

Listing 13. Presentation Tier – dvwCustTransactions DetailsView Content File Code

<asp:DetailsView ID="dvwCustTransactions" runat="server" Height="50px" Width="285px"

AutoGenerateInsertButton="True" DataSourceID="odsCustTransactions" DefaultMode="Insert" AutoGenerateRows="False"

HeaderText="Enter new transaction info: " OnItemCommand="dvwCustTransactions_ItemCommand">

 <Fields>

 <asp:BoundField DataField="TransDate"

HeaderText="Transaction Date" />

 <asp:TemplateField HeaderText="Transaction Type">

 <EditItemTemplate>

 <asp:DropDownList ID="ddlInsertTransType"

 runat="server" SelectedValue='<%# Bind("TransType") %>'>

 <asp:ListItem>Buy</asp:ListItem>

 <asp:ListItem>Sell</asp:ListItem>

 </asp:DropDownList>

 </EditItemTemplate>

 <ItemTemplate>

 <asp:Label ID="lblInsertTransType" runat="server" Text='<%# Bind("TransType") %>'></asp:Label>

 </ItemTemplate>

 </asp:TemplateField>

 <asp:BoundField DataField="AmountUSDollars" HeaderText="Amount in $" />

 <asp:TemplateField HeaderText="Foreign Currency">

 <EditItemTemplate>

 <asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind("ForeignCurrencyID") %>'></asp:TextBox>

 </EditItemTemplate>

 <InsertItemTemplate>

 <asp:DropDownList ID="ddlInsertForeignCurrency" runat="server" DataSource="<%#

CustomerManager.GetForeignCurrencies() %>" SelectedValue='<%# Bind("ForeignCurrencyID") %>'

DataTextField="CurrencyName" DataValueField="ForeignCurrencyID">

 </asp:DropDownList>

 </InsertItemTemplate>

 <ItemTemplate>

 <asp:Label ID="Label1" runat="server" Text='<%#

Bind("ForeignCurrencyID") %>'></asp:Label>

 </ItemTemplate>

 </asp:TemplateField>

 </Fields>

 </asp:DetailsView>

CONCLUSION

The growing popularity of data-driven Web applications has spurred the need for more integrated curricular

materials that help instructors teach database and Web development concepts in a holistic manner. In this paper, we

have presented application modules that help to fill this need. We encourage database and Web development

instructors to adopt and extend the modules we have developed in an effort to better train the next generation of IS

professionals.

REFERENCES

1. Celko, J., Joe Celko's SQL For Smarties: Advanced SQL Programming. Third Edition ed: Morgan

Kaufmann.

2. Chen, P.P.-S., The Entity-Relationship Model - Toward a Unified View of Data. ACM Transactions on

Database Systems, 1976. 1(1): p. 9-36. 1976

3. Codd, E.F., A Relational Model of Data for Large Shared Data Banks. Communications of the ACM 1970.

13(6). 1970

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

63

4. Kung, M., Yang, S.C., and Zhang Y., The Changing Information Systems (IS) Curriculum: A Survey of

Undergraduate Programs in the United States. Journal of Education for Business, 2006. 81(6): p. 291-300.

2006

5. Litecky, C., B. Prabhakar, and K. Arnett. The IT/IS Job Market: A Longitudinal Perspective. in SIGMIS

Computer Personnel Research Conference. 2006. Claremont, CA: ACM.

6. Morien, R.I., A Critical Evaluation Database Textbooks, Curriculum and Educational Outcomes.

Information Systems Education Journal, 2006. 4(44): p. 2-14. 2006

7. Patton, T. Determine when to use stored procedures vs. SQL in the code. 2005 [cited 2008 May, 28];

Available from: http://articles.techrepublic.com.com/5100-10878_11-5766837.html.

8. Prabhakar, B., C. Litecky, R., and K. Arnett, IT Skills in a Tough Job Market. Communications of the

ACM, 2005. 48(10): p. 91-94. 2005

NOTES

http://articles.techrepublic.com.com/5100-10878_11-5766837.html

Review of Business Information Systems – First Quarter 2009 Volume 13, Number 1

64

NOTES

