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Abstract 

 

The Resource-Event-Agent (REA) data model identifies these three categories of entities in busi-

ness processes and establishes relationships among them based on the rules that underlay actual 

business practices. The model becomes more efficient when the principle of relational database 

design, i.e., normalization, is applied. However, the higher the level of normalization in the data-

base, the higher will be the degree of information segregation. Therefore, to ensure the accuracy 

of the information retrieved, it is crucial to understand the database structure and apply queries 

with correct join operations. “Join” is one of the fundamental relational database query opera-

tions. Join handles the processes that determine how data from two tables will be merged and se-

lected. In this paper, a taxonomy of the join operations applicable to the REA data model is pre-

sented: it classifies the combinations of the categorical components in the REA model, identifies 

the join operation, and links to AIS documents and reports.  

 

 

1.  Introduction 

 

End-users are increasingly involved in querying databases to find and cope with the information needed to 

carry out their daily business activities (O’Donnell and David 2000). However, they are not equipped with the 

knowledge and skills that are essential for performing queries in relational database management systems (Bowen 

and Rohde 2002; Borthick et al. 2001; Chan et al. 1999). Database topics, such as database architecture, database 

management systems, and data modeling techniques, are covered to some extent in accounting education, but the 

textbooks written for the Accounting Information Systems (AIS) courses and covered by AIS educators often do not 

include sufficient coverage of information retrieval to provide the needed knowledge and skills (Bain, Blankley, and 

Smith 2002). Some studies provide basic information about database query, such as Structured Query Language 

(SQL) (Olsen 2000), and query guidelines (Pillsbury and Wang 2003). Nevertheless, a fundamental query language, 

“join”, which specifies how data can be aggregated and selected, is never completely dealt with for AIS end-users.  

 

The purpose of this paper is to provide AIS end-users and educators with knowledge about joins in rela-

tional database query, focusing on queries of information, such as accounting documents and financial reports in the 

REA model. We will provide a taxonomy of the join operations applicable to the REA data model to classify the 

combinations of the categorical components in the REA model, specify the type of join operation involved, and link 

to AIS documents and reports. We will demonstrate an REA data model by using a simple merchandise company 

case to illustrate applications of the join operations.  

 

This paper is organized as follows: Section II reviews types of joins, Section III describes AIS applications 

of the join operations in the REA data model, and Section IV concludes the paper. 

 

2.  Types Of Joins 

 

The REA data model has influenced industrial software and it plays a significant role in the AIS education 

(Weber 1986; Dunn and McCarthy 1997). The superiority of this data model over the traditional AIS architecture is 

documented in the literature for its ability to provide both financial and non-financial related information as well as 

improving data consistency and efficiency in storage (McCarthy 1982; Hollander, et al. 2000). 



The Review Of Business Information Systems Volume 8, Number 1 

 10 

REA data modeling in relational databases results in related information being decomposed and stored in 

separate tables. For example, information about business activities are taken apart and stored in different tables ac-

cording to the Resources, Events, and Agents categories (e.g., Product, Selling Event, and Customer, respectively). 

Normalization of relations (entities/tables) will further decompose related information stored in these categorical 

tables. Subsequently, queries are used to merge tables and retrieve related information from the relational database. 

The join operation is required when there is more than one table involved in a query, combining tuples (records) 

from two different tables based on some common information. 

 

The join operation has been examined and discussed extensively in the CIS and MIS literature. Most of 

these studies relate to algorithms of the join operations used to improve efficiency and optimization (Morishita 1997; 

Mishra and Eich 1992). There are more than a few join types, for example, equijoin, natural join, semijoin, outerjoin, 

and self-join (Mishra and Eich 1992), and most database textbooks in CIS and MIS include coverage of them (e.g., 

Ramakrishnan and Gehrke 2000).  

 

To illustrate join operations, let’s first take a look at the Cartesian product of two tables since it is related to 

some of these operations. The Cartesian product of two tables combines each record of the first table with every 

record of the second table. In other words, the derived (virtual/result) table of such Cartesian product consists of all 

combinations of records (N x M) and attributes (data fields) from the two tables. For example, there are Customer 

and Zip Code tables as follows: 

 

CUSTOMER TABLE  ZIP CODE TABLE 

Name Zip Code  ZipID City State 

Adam Smith 53201  53201 Milwaukee WI 

William King 53211  53706 Madison WI 

   54821 Cable WI 

 

The result table of the Cartesian product is as follows: 

 

Name Zip Code ZipID City State 

Adam Smith 53201 53201 Milwaukee WI 

Adam Smith 53201 53706 Madison WI 

Adam Smith 53201 54821 Cable WI 

William King 53211 53201 Milwaukee WI 

William King 53211 53706 Madison WI 

William King 53211 54821 Cable WI 

 

City and State give information about the customers, but they are stored in two different tables because 

they are violating the non-transitive dependency of the 3
rd

 norm form (i.e., the Zip Code determines the City and the 

State attributes). As a result, City, State, and ZipID are discomposed from the Customer table. The data values of the 

Zip Code and ZipID in Customer and Zip Code tables, respectively, are set to be inconsistent in order to ease the 

demonstration of different join operations (of course, the inconsistency could also be a result of lack of enforcing 

referential integrity
1
 between these two tables). 

 

To perform a join operation, two data fields from the Cartesian product and a join condition must be speci-

fied in the query. Multiple conditions can be applied by using the logical connective AND (Desai 1990; El-Masri and 

Navathe 1989; Maier 1983). A general join is called a theta-join (or θ-join). A θ operator, such as =, ≠, >, <, ≥, or ≤, 

will be required in every condition. A join operation is called an equijoin when a θ operator, “=”, is specified in the 

condition. For example, a join involving the Customer and the Zip Code tables based on the equality between Zip 

Code and ZipID, is an equijoin. In our previous example, the result table of the equijoin will contain the first record 

of the Cartesian product since that is the only row in which the join condition is met (i.e., the data values of Zip 

Code and ZipID equal to each other). If a “≠” is used as a θ operator in a general join, the result table will include all 

but the first records in our example. 
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The natural join can be defined as an equijoin, joining on same data fields in both tables and projecting on 

either one of data fields. In most cases, especially in the REA data model, one of the data fields is a key of one table 

and the other a foreign key created to link the tables, and the referential integrity is enforced on a 1-to-Many rela-

tionship. Our previous example of the Cartesian product does not fit in, as most cases do, because the referential 

integrity is not enforced (i.e., data values in Zip Code and ZipID are not consistent). Therefore, to demonstrate the 

natural join, suppose that the referential integrity were enforced (that is, a Zip Code value, 53211, is referenced in 

the Zip Code table with 53211, Shorewood, WI), the result table of the natural join will include both records from 

the Customer table with all the data fields from two tables except that one of the common data fields is (Zip Code or 

ZipID) dropped, as shown below.  

 

Name Zip Code City State 

Adam Smith 53201 Milwaukee WI 

William King 53211 Shorewood WI 

 

If the referential integrity is enforced between tables (which is not required in the natural join) with a 1-to-

Many relationship, the information obtained in the result table from the natural join will be based on the table that 

has the “Many” side of the relationship (i.e., the numbers of records are exactly the same). The natural join takes the 

table that has the “Many” side of the relationship and merges data from the table that has the “1” side of the relation-

ship, based on the referenced values in the common data fields. In our modified example, there is a 1-to-Many rela-

tionship between the Zip Code and the Customer tables with the referential integrity enforced (i.e., all of the data 

values in the Zip Code, a foreign key in the Customer table, are referenced in the ZipID, a primary key in the Zip 

Code table). In the natural join, the result table will include all of the information from the Customer table (i.e., the 

basis of the information from the table with the “Many” side of the relationship) and then merge information about 

City and State from the Zip Code table based on the referenced values stored in the Zip Code and ZipID. In a case in 

which the referential integrity is not enforced, the basis of the information will still remain in the table that has the 

“Many” side of relationship, but the non-participative records will be excluded. 

 

The semijoin operation is designed to exclude data fields of one table in the result table. It is similar to any 

join that projects only on data fields from one table. Semijoin reduces the size of the second table that is participating 

in the join operation and improves efficiency (Kambayashi 1985; Perrizo et al. 1989; Yoo and Lafortune 1989). For 

example, an equijoin joins on Zip Code and ZipID from Customer and Zip Code tables, respectively, and projects on 

Name and Zip Code data fields of the Customer table. It first drops the City and State data fields of the Zip Code 

table from the join operation and then selects records from the Cartesian product based on the equality (or any other 

θ operator) condition of Zip Code and ZipID. It will then exclude the joining data field, ZipID, before the result ta-

ble is finalized. 

 

The outerjoin operation (also called the external join) handles non-participative (or dangling) records from 

either or both tables. In any of the before-mentioned joins, records that are not included in the result table are called 

“non-participative records”. For example, the second records in the Customer table, William King and 53211, and 

the second and the third records in the Zip Code table, 53706 and 54821, are non-participative records in the equi-

join of the two tables on Zip Code and ZipID. There are three kinds of outerjoins: left-outerjoin, right-outerjoin, and 

full-outerjoin. In the result table, in addition to all participative records, the left-outerjoin includes the non-

participative records from the left side of the table and the right-outerjoin includes the non-participative records 

from the right side of the table when the tables are placed next to one another in the query (e.g., SQL statement or 

Query-By-Example [QBE] screen). The full-outerjoin includes non-participative (in addition to participative) 

records from both tables. In our example, the left-outerjoin of Customer and Zip Code tables on Zip Code and ZipID 

for equality contains the first record from both tables and all non-participative records in the Customer table (as 

shown below), assuming the Customer table is on the left side and the Zip Code is on the right side. The non-

participative records will contain null vales on the joining data fields from the table on the right. 

 

Name Zip Code ZipID City State 

Adam Smith 53201 53201 Milwaukee WI 

William King 53211 NULL NULL NULL 
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The self-join operation involves joining a table with the table itself. That is, a Cartesian product will be 

formed consisting of the combination of each record with all records of the same table. The selection of the records 

that takes place next is based on the data field(s) and the join condition using any of the θ operators. The self-join is 

performed when the relationship between records on a set of specific data fields in that table is of interest (e.g., we 

may be interested in the customer’s purchasing behavior after they have purchased a specific product.) 

 

Some of these join operations are required to retrieve disaggregated information from the database due to 

the R-E-A categories and normalization, and some are used to manipulate the data for various purposes. However, 

the most commonly used join operations in the REA data model are natural and outer joins because the relationships 

between tables, if there are any, are pre-defined and pre-established in the data modeling. In the next section, we will 

use a simple merchandise company case to demonstrate the applications of these two join operations in the REA data 

model to retrieve accounting information, such as accounting documents and financial reports.  

 

3.  AIS Applications Of Join Operations In The REA Model 

 

We created a simplified merchandise case similar to those in McCarthy (1979) and Wang, Du, and Lee 

(2002) in order to illustrate the taxonomy of the join operations in the REA data model. Table I shows the entities 

recognized within each type of business processes for a simplified merchandise company using the R-E-A categories 

in the REA data model. There is one Resources (Product), four consecutive Events (Purchase Ordering, Goods Re-

ceiving, Purchase Invoicing, and Purchase Payment Disbursing), and two Agents (Vendor and Employee) recog-

nized in the Acquisition and Payment business processes, and one Resource (Product), four consecutive Events 

(Sales Ordering, Goods Shipping, Sales Invoicing, and Sales Collecting), and four Agents (Salesperson, Customer, 

Carrier, and Employee) in the Sales and Collection business processes. We eliminate the Cash Resource by assum-

ing that there is only one cash account involved in the case. To simplify the case further, suppose that the purchase-

invoicing event is an optional entity in the database since most of its data can be obtained from the matched records 

between the goods receiving and purchase ordering entities. 

 

Figure 1 depicts the REA data model, based on the entities recognized in Table I, and the cardinalities of re-

lationships based on a generic merchandising case. We will also assume the types of relationships between entities 

in the data model, especially for those involving with Many-to-Many type (we will demonstrate the join operation 

dealing with a Many-to-Many relationship later in the paper). The layout of the REA data model in Figure 1 is orga-

nized using the types of business processes and the R-E-A categories of the entities. 

 

Table II shows the taxonomy of join operations in the REA data model by listing the entity categories in-

volved, entity focused, join type based, origin of the information, and documents and reports generated in a query. 

There are many combinations of the three R-E-A categories. However, in our example, there are two common types 

of combinations applicable to the accounting information systems, such as R-E-A and Event-Event (E-E). In the REA 

data model, most of the relationships are pre-defined and pre-established through the REA data modeling. As a result, 

the most commonly used join operations are Natural and Outer. Typical documents and reports often used by ac-

counting users in their daily business activities, such as Purchase Order, Receiving Report, Purchase Journal, and 

Cash Disbursement Journal, are retrieved using these join operations. 

 

The first major type of entity combination involves all three R-E-A categories and has Event as the origin of 

the information that will require a Natural join in the query (see Table II). This type of join focuses on the Event and 

retrieves its related information from the Resources and Agents tables. The origin of Event-type information includes 

events such as Purchase Ordering, Goods Receiving, Purchase Disbursing, Sales Ordering, Goods Shipping, Sales 

Invoicing, and Sales Collecting. Documents are directly associated with Events since they are used to capture and/or 

process information involved in the Events. Reports are used to provide summarized information to users about the 

Events. Related events-documents-reports include Purchase Ordering-Purchase Order-Purchase Journal, Goods Re-

ceiving-Receiving Report-Receiving Summary, Purchase Disbursing-Check-Cash Disbursement Journal, etc.  

 

For example, to obtain the Sales Journal, natural joins are performed involving Product (tblProduct), Sales 

Invoicing (tblSalesInvoicing), and Customer (tblCustomer) tables (see Figure 1 as well). A relationship table
2
 is 
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created for the implementation of a Many-to-Many relationship between tblProduct and tblSalesInvoicing in rela-

tional database management systems. The join operation is straightforward in a 1-to-Many situation because it is not 

involved with an additional table. Figure 2 shows the process of the natural joins. In the joins, related information 

from tblProduct and tblCustomer
3
 are first aggregated with the information in the tblSalesInvoicing based on com-

mon information stored in the foreign keys
4
 (e.g., Customer# in tblSalesInvoicing, and Product# and Inv# indivi-

dually in the relationship table, tblSIProd) and then included in the result table. (See the note in Figure 2 for detailed 

descriptions of the join operations.) Figure 3 illustrates natural joins performed using both QBE and SQL. QBE has 

a graphical user interface that allows users to create queries by using example tables on the screen; it is often used as 

a more intuitive user-interface for simpler queries while SQL is utilized for more complex queries. 

 

In the join operations of the R-E-A categories in the REA data model, the focus also can be placed on the 

Resources (see Table II). In our example, the focus can only be on the Product table since it is the only resource in 

the simplified case. We can obtain Inventory Subsidiary information using the outer join operation on the Product 

table because we want to show all activities--receiving and/or shipping out, or inactivity--for each of the items in the 

Product table. However, to obtain Inventory Subsidiary, we must combine information from the database about 

goods receiving and shipping out. First, a natural join will be applied to tblProduct and tblGoodsShipping to obtain 

information from the database about goods shipped out (See Figure 1 as well). The natural join is used because the 

company can only ship whatever they have in the tblProduct. Since there is a Many-to-Many relationship between 

tblProduct and tblGoodsShipping, a relationship table is thus created. This relationship table will serve as the basis 

of the information for the result table in the natural join since it is the “Many” side of the relationships to both 

tblProduct and tblGoodsShipping. Second, an outer join operation will be applied to tblProduct and tblGoodsRe-

ceiving, based on tblProduct, in order to include all records, both participative and non-participative (i.e., received 

and non-received), from the tblProduct. It would be a left (or right) outer join if tblProduct is on the left (or right). 

Finally, a union operation will be used to combine the results of these two join operations. QBE, as well as SQL, can 

be used to accomplish these tasks. (The join processes with detailed descriptions, are shown in Figure 4). For exam-

ple, using QBE, we can first create a Make-Table query for the natural join operation after we create a permanent 

table object (e.g., InventorySubsidiary) to store goods shipped-out-information in the Inventory Subsidiary, and then 

create another Append query for the outer join operation to combine both goods shipped-out- and received-

information. The Inventory Subsidiary is retrieved after the result table is sorted, based on the items in the tblPro-

duct and the date. 

 

The focus can also be placed on the Agents in the join operations of the R-E-A categories (see Table II). 

The origin of Agent-type information includes Salesperson, Customer, Carrier, Employee, and Vendor. Examples of 

reports about this type of information are performance evaluations-related. The join process in such joins is similar 

to the outer join mentioned above, but because of space limitations, we will not go through any examples. 

 

The second major type of entity combination involves two sequential events, E-E, with an emphasis on the 

previously occurred event. This combination requires an outer join on the previously occurred event in the query 

and produces a result table containing all records, both participative and non-participative, from the previously-

occurred event table. The purpose of performing this outer join is to obtain non-participative records as well as the 

participative records that do not meet a specific condition (e.g., quantity received does not equal quantity ordered). 

As a result, the participative records that do satisfy the condition will be screened out in the query operation. The 

origin of the Event→Event-type information includes Sales Ordering→Goods Shipping, Sales Invoicing→Sales 

Collecting, Purchase Ordering→Goods Receiving, and Goods Receiving→Purchase Disbursing. Reports that result 

from the use of this type of information are unfilled sale orders, A/R subsidiary, unfilled purchase orders, and A/P 

subsidiary.  

 

The processes of the join operations for A/R Subsidiary are similar to those for Inventory Subsidiary (i.e., 

using Union in Figure 4). However, Figure 5 illustrates an example of A/R aging report by invoice instead. In this 

example, an outer join is performed on two result tables: one for the Invoice Summary information (involving natu-

ral joins with tables such as tblCustomer, tblSalesInvoicing, tblSIProd, and tblProduct, shown in Figure 2), and 

another for the Collection Summary information (involving a natural join on tblSalesCollecting and tblCustomer) 

based on the Invoice Summary which contains information about all of the invoices issued. Information contained in 
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both result tables will be aggregated (i.e., GROUP BY and SUM) based on the Invoice# before the outer join opera-

tion. A query condition will be set on the inequality between InvTotal and CkAmt (i.e., a balance remains on the 

invoice) to screen out invoices that have been paid in full (See the note in Figure 5 for detailed descriptions of the 

join operations.) This process also can be used to obtain inventory on-hand information. 

 

4.  Conclusions And Future Research 

 

There are many other types of entity combinations that can be applied to AIS using the REA data model, 

such as E-A, R-E, or R-A (these may exist in some cases, but they are not covered in the case used here, nor are 

many other needed accounting documents and reports). A presentation of the join operations involved in a complete 

case is definitely of interest but is not within the scope of this paper. We hope that the taxonomy of join operations 

presented will provide AIS end-users and educators with the needed general knowledge and understanding of join 

operations and their accounting applications in relational database queries. 

 

We have demonstrated the join applications applicable to the REA data model, but this approach can be ap-

plied to any E-R data model using categories such as Objects, Events, Persons, Places, and Concepts (McFadden, 

Hoffer, and Prescott 1999). A similar taxonomy consisting of combinations of the categorical elements, focused 

entity, origin of the information, and documents and reports, can be created accordingly. As a matter of fact, the 

results in this case may be similar since the categories in the REA and the E-R are interchangeable (e.g., Re-

sources=Objects, Events=Events, and Agents=Persons).   

 

Footnotes 

 

1 Referential integrity ensures that the foreign key (i.e., Zip Code) of the Customer table is a reference to the 

primary key (i.e., ZipID) of the Zip Code table. 

2 Since a Many-to-Many relationship cannot be directly implemented in relational database management 

systems, a relationship/bridge table is created to bridge this relationship. As a result, most of the relation-

ships (if not all) in relational database will be One-to-Many. 

3 A Zip Code table consisting of City and State may also be involved in the joins if they are needed in the 

Sales Journal. To simplify the demonstration, however, this particular table is excluded.  Some customer 

and product information is also excluded in the result table. 

4  Foreign keys are included to establish relationships between two tables. 
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Table 1 

Entity Types for Acquisition/Payment and Sales/Collection Processes of a Simple Merchandise Company 

 

Types of 

Business 

Processes 

Entity Types Based on REA Data Model 

Resource# Event  Agent 

 

Acquisition/ 

Payment  

 

Product (tblProduct) 

 

Purchase Ordering (tblPO) 

Goods Receiving (tblGoodsReceiving) 

Purchase Invoicing (tblPurchaseInvoice)* 

Purchase Payment Disbursing (tblPayment)  

Vendor (tblVendor) 

Employee (tblEmployee) 

 

Sales/Collection 

Product (tblProduct) 

 

Sales Ordering (tblSO) 

Goods Shipping (tblGoodsShipping) 

Sales Invoicing (tblSalesInvoicing) 

Sales Collecting (tblCashReceiving) 

Salesperson (tblSalesperson) 

Customer (tblCustomer) 

Carrier (tblCarrier) 

Employee (tblEmployee) 

 

*  This is an optional entity since the information can be derived from tblPO and tblGoodsReceiving (i.e., the matched records). 

#  To simplify the illustrations, suppose there is only one Cash account involved in the case. As a result, there is no need to 

create a Cash entity. The cash related information can be gathered from Purchase Payment Disbursing (outflow) and Sales 

Collecting (inflow) events. 
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Figure 1 

  A Simplified REA Data Model For A Simple Merchandise Company 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* The maximum cardinality may be 1 in some other cases. 
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Table 2 

  Taxonomy Of Join Operation In The REA Data Model 

 

Entity Cat-

egories 

Involved  

Entity Focused  
Join Type 

Based† 

 

Origin of the Information Documents Reports 

R-E-A 

R-E*-A Natural Join 

Purchase Ordering Purchase Order Purchase Order Summary 

Goods Receiving Receiving Report Receiving Summary 

Purchase Disbursing Check Cash Disbursement Journal 

Sales Ordering Sales Order Sales Order Summary 

Goods Shipping Bill of Lading Shipping Summary 

Sales Invoicing Sales Invoice Sales Journal 

Sales Collecting Cash Receipts Cash Receipt Journal 

(A-E-)R*-E-A 
Outer & Natural 

Joins 

Product 
Price List Inventory Subsidiary 

R-E-A* Outer & Natural 

Joins 

Salesperson 

 Performance Evaluation 
Customer 

Carrier 

Employee 

Vendor 

E-E 

E1
*-E2 

Outer & Natural 

Joins 

Sales Ordering & Goods Shipping 

 

Unfilled Sales Orders 

Sales Invoicing & Collecting A/R Subsidiary 

A/R Aging Report 

Purchase Ordering & Goods Receiving Unfilled Purchase Orders 

Goods Receiving & Purchase Disbursing A/P Subsidiary 

E1-E2
* 

Outer & Natural 

Joins 

Purchase Ordering & Goods Receiving 
 Purchase Journal 

 

*  Denotes that it is the focus of the join in the query. 

† Indicates the join operation based on the focused entity (although there may be other join operations involved in the query).  
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Figure 2 

Natural Join: A Sales Journal Example 

 

 

Product# Name Cost Price … 

1101 T-Shirt $4.00 $6.00 … 

2201 Coffee $1.00 $2.00 … 
3301 Sneakers $7.00 $10.00 … 

4401 Sugar $1.00 $2.00 … 

… … … … … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Note: 

 

Three join operations are required to obtain information on Sales Journal from four tables, such as tblSalesInvoicing, 

tblProduct, tblSIProd (a relationship/bridge table created to implement Many-to-Many relationship between tblSalesInvoicing 

and tblProduct), and tblCustomer. 

 

A natural join, marked as A above, is performed on tblCustomer and tblSalesInvoicing. The information of Name, Ad-

dress, and ZipCode from tblCustomer is merged with the information in tblSalesInvoicing based on the referenced values stored 

in Customer#. 

 

Two natural joins, marked as B and C above, are performed between tblSIProd and tblSalesInvoicing and between 

tblSIProd and tblProduct, respectively. The contents of the tblSIProd serve as the basis for the information in the result table of 

the joins because it is the “Many” side of the relationships. Information from tblProduct and the information from the previous 

result table of the natural join A is merged based on the referenced values stored in Product# and Inv#, respectively. 

Inv# Date Customer# B/L# … 

21110 3/10/2003 0001 10053 … 

21111 3/18/2003 0002 21124 … 

21112 3/20/2003 0002 22146 … 

21113 3/22/2003 0004 24572 … 

… … … … … 

Inv# Product# Qty 

21110 1101 1 

21110 2201 1 

21111 2201 1 

21111 3301 2 

21112 1101 1 

21112 2201 3 

21113 1101 1 

21113 4401 2 

… … … 

Customer# Name Address ZipCode … 

0001 Mary 2106 Grace Ave. 53705 … 

0002 John 1752 Bay Rd. 93274 … 

0003 Ann 3125 Green Rd. 53705 … 

0004 Cherry 1785 Hope Rd. 10010 … 

… … .. … … 

Inv# Product# Qty Date Name B/L# Name Price … 

21110 1101 1 3/10/2003 Mary 10053 T-Shirt $6.00 … 

21110 2201 1 3/10/2003 Mary 10053 Coffee $2.00 … 

21111 2201 1 3/18/2003 John 21124 Coffee $2.00 … 

21111 3301 2 3/18/2003 John 21124 Sneakers $10.00 … 

21112 1101 1 3/20/2003 John 22146 T-Shirt $6.00 … 

21112 2201 3 3/20/2003 John 22146 Coffee $2.00 … 

21113 1101 1 3/22/2003 Cherry 24572 T-Shirt $6.00 … 

21113 4401 2 3/22/2003 Cherry 24572 Sugar $2.00 … 

… … … … … … … … … 

tblProduct (Resource) tblSalesInvoicing (Event) 

1 

∞ ∞ 

1 

The Result Table of the Natural Joins 

1 ∞ 

From tblCustomer From tblProduct 

Natural Join 

A 
B 

tb
lS

IP
ro

d
 

tblCustomer (Agent) 

From tblSalesInvoicing 

C 
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Figure 3 

 Natural Join: A Sales Journal Example Using QBE and SQL 

 

A. Query-By-Example (QBE) 

 

 
 

 

 

 

 

 
B. Structured Query Language (SQL) 

 

SELECT SalesInvoicing.[Inv#], SalesInvoicing.Date, Customer.Name, 

                SalesInvoicing.[B/L#], SalesInvoiceItem.[Product#], Product.Name,  

                SalesInvoiceItem.Qty, Product.Price 

FROM (Customer INNER JOIN SalesInvoicing ON Customer.[Customer#] = 

              SalesInvoicing.[Customer#]) INNER JOIN (Product INNER JOIN  

              SalesInvoiceItem ON Product.[Product#] = SalesInvoiceItem.[Product#]) 

              ON SalesInvoicing.[Inv#] = SalesInvoiceItem.[Inv#]; 

 

Applied the default join operation, natural join. 
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Figure 4 

Outer and Natural Joins: An Inventory Subsidiary Example 

 

 

Product# Name Cost Price … 

1101 T-Shirt $4.00 $6.00 … 

2201 Coffee $1.00 $2.00 … 
3301 Sneakers $7.00 $10.00 … 

4401 Sugar $1.00 $2.00 … 

… … … … … 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: 

 

A Union of two result tables from four join operations is required to obtain information of Inventory Subsidiary from 

five tables, such as tblGoodsReceiving, tbleProduct, tblGRProd, tblGoodsShipping, and tblGSProd. Both tblGRProd and 

tblGSProd are relationship tables. 

 

A natural join, marked as A, is performed on tblGoodsShipping and tblGSProd. The information of shipping date and 

others from tblGoodsShipping is merged with the information in tblGSProd based on the referenced values stored in BL#. A 

natural join (or an outer join based on tblProduct), marked as B, is performed on tblProduct and the result table from the previous 

join based on the referenced values stored in Product#. The result table will contain information about goods shipping. 

 

A natural join, marked as C, is performed on tblGoodsReceiving and tblGRProd. The information of receiving date 

and others from tblGoodsReceiving is merged with the information in tblGRProd based on the referenced values stored in RR#. 

An outer join based on tblProduct, marked as D, is performed on tblProduct and the result table from the previous join based on 

the referenced values stored in Product#. The result table will contain information of ALL goods receiving or not. Finally, a Un-

ion operation is performed to combine both result tables. 

RR# Date … 

00001 3/4/2003 … 

00002 3/5/2003 … 

00003 3/7/2003 … 

00004 3/12/2003 … 

… … … 

RR# Product# Qty 

00001 1101 2 

00001 5501 2 

00002 2201 4 

00002 4401 3 

00003 3301 4 

00003 6601 2 

00004 2201 4 

… … … 

BL# Date … 

10053 3/9/2003 … 

21124 3/17/2003 … 

22146 3/19/2003 … 

… … … 

BL# Product# Qty 

10053 1101 1 

10053 2201 1 

21124 2201 1 

21124 3301 2 

22146 1101 1 

22146 2201 3 

22146 5501 2 

… … … 

Product# Name Date QtyRecd QtyShip … 

1101 T-Shirt 3/4/2003 2 0 … 

1101 T-Shirt 3/9/2003 0 1 … 

1101 T-Shirt 3/19/2003 0 1 … 

2201 Coffee 3/5/2003 4 0 … 

2201 Coffee 3/12/2003 4 0 … 

2201 Coffee 3/9/2003 0 1 … 

2201 Coffee 3/17/2003 0 1 … 

… … … … … … 

tblProduct (Resource) 
tblGoodsReceiving 

tblGoodsShipping 

1 

∞ 

1 

The Result Table of the Union 

1 

∞ 

∞ 

∞ 

∞ 

Natural Join 

Left Outer Join 

Natural Join 

A 

B 

C 

D 

Natural/Outer 

Join 

tb
lG

S
P

ro
d
 

tb
lG

R
P

ro
d
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Figure 5 

Outer and Natural Joins: A/R Aging Report Example 

 

 

 

 

Invoice# Name Date InvTotal … 

21110 Mary 3/10/2003 8.00 … 

21111 John 3/18/2003 22.00 … 

21112 John 3/20/2003 12.00 … 

21113 Cherry 3/22/2003 10.00 … 

21114 Cherry 3/25/2003 6.00 … 

…  … … … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: 

 

The result table of Invoice Summary information was obtained using aggregate functions  (GROUP BY and SUM) 

based on the Invoice#, on the result of three natural joins on tblCustomer, tblSalesInvoicing, tblSIProd, and tblProduct (shown in 

Figure 2).   

 

The result table of Collection Summary information was obtained using aggregate functions based on the Invoice#, on 

the result of a natural join on tblCustomer and tblSalesCollecting.   

 

The A/R aging report by invoice is generated using an outer join on the previous result tables with the Invoice Sum-

mary table serving as the basis for the join since it contains all invoices issued so far. All invoices in the Invoice Summary are 

included, whether it is participative or non-participative in the join with the Collection Summary table, in the final result table. 

Invoice# CkAmt … 

21110 6.00 … 

21111 22.00 … 

21112 6.00 … 

21114 6.00 … 

…  … 

Invoice# Name Date InvTotal CkAmt … 

21110 Mary 3/10/2003 8.00 6.00 … 

21111 John 3/18/2003 22.00 22.00 … 

21112 John 3/20/2003 12.00 6.00 … 

21113 Cherry 3/22/2003 10.00  … 

21114 Cherry 3/25/2003 6.00 6.00 … 

… … … … … … 

The Result Table of Invoice Summary Information 

The Result Table of Collection Summary Information 

 

The Result Table of the Left Outer Join 

∞ 

Left Outer  

Join 
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Notes 


