
The Review Of Business Information Systems Volume 6, Number 4

 17

A User-Oriented Approach To

Data Modeling:

A Blueprint For Generating Financial

Statements And Other

Accounting-Related Documents

And Reports
Ting J. (TJ) Wang (E-mail: tjwang@uwm.edu), University of Wisconsin-Milwaukee

Hui Du (Email: huidu@bryant.edu), Bryant College

Hur-Li Lee (Email: hurli@uwm.edu), University of Wisconsin-Milwaukee

Abstract

In contrast to traditional and innovative data models in the database design process, such as the

Entity-Relationship (E-R) and Resource Event Agent Location (REAL) models, respectively, a us-

er-oriented approach to the data modeling of a relational database to satisfy users’ information

needs is presented. Although relational database management systems (RDBMS) are powerful for

organizing, manipulating, and retrieving data, they are inadequate if the needed data elements are

not captured and included, required relationships are not identified and implemented, or incorrect

relationships are identified in the data model because the needs of information users were neg-

lected or identified incorrectly during the data modeling. Using the case of an accounting infor-

mation system (AIS) for a simple merchandising enterprise, this paper illustrates how user infor-

mation needs can be met when a user-oriented approach is followed in the data modeling. Specif-

ically, it provides a blueprint for generating financial statements and other accounting-related

documents and reports from a relational database that utilizes user perspectives.

1. Introduction

he inability of accounting information systems (AIS) to provide non-financial statements informa-

tion has been acknowledged for more than six decades (Goetz 1939; Firmin 1966; Hollander, Den-

na, and Cherrington 2000). During this period, and concurrent with advances in information tech-

nology, innovative models have been proposed (e.g., events accounting, database accounting, and REA accounting)

to address the problem (Johnson 1970; Everest and Weber 1977; McCarthy 1982). As compared to earlier AIS, re-

cent models concentrate more on modeling the broad conceptual essence underlying the business artifacts (business

processes and events and their related agents, resources, and locations) (Denna, Jasperson, Fong, and Middleman

1994) and less on generating information artifacts such as accounting documents and reports. Consequently, to the

detriment of many users, specific information in accounting documents and reports has become sketchy and ignored

in the design process. Sometimes this lack of attention to user requirements can be overcome by the power of the

information technology, but, in other instances, a system‘s ability to deliver specific information (artifacts) is limited

or non-existent because required data was not captured in the first place (e.g., Perry and Schneider 2001)
1
.

 This problem in AIS can be addressed by a user-oriented approach to data modeling that supplements exist-

ing data models such as the Entity-Relationship (E-R) or Resource Event Agent Location (REAL) so that all infor-

mation required by users is provided. For example, both E-R and REAL usually follow a traditional process of

Readers with comments or questions are encouraged to contact the authors via email.

T

mailto:tjwang@uwm.edu
mailto:huidu@bryant.edu
mailto:hurli@uwm.edu

The Review Of Business Information Systems Volume 6, Number 4

 18

system requirements analysis which results in a system that satisfies its database and business process designers. In

contrast, a user-oriented approach to data modeling starts with the traditional system requirements analysis process

but concludes with a ―verification‖ process that utilizes the views of the system‘s users to arrive at their satisfaction

with the final product. The particular needs of information users are specified, documented, and completely verified

in the data modeling to insure the system‘s subsequent relevance and usefulness to users.

 In the case chosen for this paper, the user-oriented approach will be applied to routine accounting informa-

tion needs within an organization
2
. Every business has routine accounting procedures to handle general operations

and meet the laws and regulations mandated by local, state, and federal agencies. Information needs of this type are

constant and standard. On the other hand, businesses also need accounting information for managerial decisions that

are dependent on internal and external situations. Information needs of this second type are highly variable and less

predictable. While the user-oriented approach can be used with either information type, we chose routine account-

ing information needs for demonstration because the user information needs are pre-defined and can be verified in

the data modeling. In addition, a blueprint (Fig. 2) is provided to design an accounting information system that in-

corporates specific user requirements for generating routine financial statements information and other accounting-

related documents and reports which may be needed.

 We begin by reviewing the architecture of a traditional AIS in Section I and the architecture of E-R based

AIS in Section II to demonstrate the differences in viewpoint between accounting information users and database

designers: a communication problem that is often reflected in the subsequent system design. In Section III, we dis-

cuss the problems in the system requirements analysis process. In Section IV, we present the case of an accounting

information system for a simple merchandising enterprise designed using the verification process. Our summary is

presented in Section IV.

2. Traditional AIS Architecture

 In traditional AIS architecture, a chart of accounts and double-entry bookkeeping provide the primary

scheme for organizing, classifying, and aggregating financial information (McCarthy, 1979). In the process, data

about business activities is first identified and documented and then processed, based primarily on a firm‘s needs for

financial statements. As a result, the traditional AIS architecture is biased toward one primary aim: financial state-

ments (Hollander, Denna, and Cherrington, 2000). For example, after business activity data is captured and docu-

mented, it is recorded in one of the subsystems: general or specialized journals such as sales, purchase, cash receipt,

and cash disbursement, which are designed according to the firm‘s needs for specific, summarized information about

its business activities (see Fig. 1). Next, the data stored in the journals is re-organized through a periodic posting

procedure and then re-stored in the general ledger arranged by the accounts in the chart of accounts. Some of the

data are posted first to the accounts in the subsidiary ledgers created to show detailed information of the control ac-

counts in the general ledger, such as A/R and A/P. Adjusting entries are recorded in the general journal and then al-

so posted to the general ledger before the preparation of the financial statements. Finally, information about finan-

cial statements is gathered from the accounts stored in the general ledger. To end a specific accounting report period

and prepare for a new one, closing entries are recorded in the general journal and posted to the general ledger. Ad-

justing entries are then reversed at the beginning of the next new period.

 All data captured from business activities are documented and maintained in the traditional AIS architec-

ture, but to be processed, data must be classifiable by the chart of accounts designed for the financial statements. In

other words, data will not be processed if the existing chart of accounts cannot classify it or no new account can be

created to classify it. Debits and credits are used to represent increases and decreases in the accounts in the process

(double-entry system). In sum, the traditional AIS can be characterized as an account-oriented system that is biased

toward financial statements; many events and corresponding data are not recorded and data entries are redundant.

3. Entity-Relationship – (E-R) Based AIS Architecture

 E-R-based AIS architecture alleviates many problems associated with traditional AIS. In the conventional

data models such as E-R, all of the potential information that will be needed by information users, including finan-

cial and non-financial information about business activities, are first identified through a system requirements analy-

sis process (discussed in the Section III) and then organized using entities based on the business operating rules

adapted in the organization (see Fig. 1). Entities can be defined as any person, place, object, event, or concept

The Review Of Business Information Systems Volume 6, Number 4

 19

(McFadden, Hoffer, and Prescott, 1999). For example, entities defined as a person may include, but are not limited

to, customer, vendor, supplier, and employee. Next, relationships among entities are identified and established to

link the data stored in the entities. Thus, data about business activities are organized by, and stored in, the entities.

Information stored in two or more related entities, or related attributes in unrelated entities (or even unrelated

attributes with compatible data types), can be retrieved using a query language such as SQL and QBE. A contrast

between the traditional and E-R-based AIS architecture is illustrated in Figure 1.

 The advantages of using a database system include minimizing data redundancy, preventing anomalies of

inserting, updating, and deleting, and achieving task-data independence (Hall, 1998). To achieve these advantages,

certain forms (properties or constraints) must be imposed on the entities (or tables in DBMS). The least restrictive

constraint is called the first normal form, followed by the second, third, Boyce-Codd, fourth, fifth, and Domain/Key

forms. Most accounting systems require use of the first three normal forms (Perry and Schneider, 2001). The first

normal form imposes a very basic requirement on entities by restricting repeating attributes (or fields) and divisible

data in an attribute; the second normal form requires dependency of the non-key attributes on the key attribute(s);

and the third normal form eliminates transitive dependency, which means that non-key attributes cannot be depen-

dent on any other non-key attributes (for further discussion, see Gelinas, Sutton, and Oram, 1999).

 According to the first three normal forms, information about a specific business activity stored in the data-

base system will be totally disaggregated, which makes setting up correct relationships between entities a crucial

element in the data modeling. To establish relationships between entities, common attribute(s) must be included in

the entities, that is, the same data fields must be created in the related tables)—and for this reason, data redundancy

cannot be completely eliminated. Without the relationships between entities, for example, information about per-

sons, places, objects, events, and concepts (as entities) are all isolated from each other: not only between the types of

entities but also within the types of entities (e.g., purchase event and inventory, sales event and cash receipt event,

respectively). Consequently, information stored in more than one entity can be extracted only if relationships are

built between these entities
3
. For example, information about an ―event‖ involving an ―object‖ and carried out by a

―person‖ at a ―place‖ can be retrieved from the system only if relationships are created between these various enti-

ties.

 All data gathered from business activities are stored in the entities. Relationships between entities are iden-

tified and established, based on the user information needs and business rules. In sum, financial or non-financial in-

formation can be provided by the E-R-based AIS architecture.

4. System Requirements Analysis Process

 To ensure that user information needs are satisfied, database designers (or system analysts) must identify

and determine the user information needs before the conception of a new database system takes place. The database

design literature has long recognized the necessity of the system requirements analysis process as the very first step

in the design process (e.g., Allen, 1996; Carlis and Maguire, 2001; Fidel, 1987; Hernandez, 1997). During this

process, a number of tools are commonly used to identify users‘ needs, such as interviewing users, observing

processes that involve users, analyzing existing systems and examining their utilization. In addition, a list of items

is assembled including basics such as descriptions of all processes and data elements, data structure, copies of sys-

tem inputs and outputs, and documentation (Romney and Steinbart, 2000).

 Regardless of the tools used and items obtained, database designers may still encounter difficulties in iden-

tifying and determining user information needs. Some of the possible obstacles include: 1) users may have difficul-

ty in expressing or articulating their needs or even correctly identifying them; (2) designers may have difficulty in

understanding users‘ needs and/or business processes and rules because they lack necessary knowledge and expe-

rience; and (3) serious communication gaps may exist between users and designers due to their different back-

grounds or other reasons (Krasner, Curtis, & Iscoe, 1987; Long et al., 1983, Sonnenwald, 1995). Ultimately, system

requirements are usually defined by the database designers based on their own understanding of user information

needs, existing systems, and business processes and rules, whether this understanding is correct or not. As a result,

problems with the database can be discerned by users only after the system is built and they attempt to use it.

The Review Of Business Information Systems Volume 6, Number 4

 20

5. A Simple Case

 We propose an effective database design approach that will guarantee to correctly and comprehensively

capture both routine and ad hoc user information needs. Using a simple case, we will demonstrate how the user-

oriented approach assures the inclusion of user information needs through a verification process at the end of the da-

ta modeling. We will avoid lengthy descriptions of the system requirements analysis process in order to stay fo-

cused on the verification process.

 Briefly stated, the system designer (employing an E-R model) first uses specifications gathered from the

system requirements analysis process to identify the entities and the relationships between entities. Next, the de-

signer utilizes a verification process with users to confirm that: 1) the needed data elements for the information arti-

facts such as documents and reports are included in the entities or can be derived; 2) correct relationships between

entities are established in the design; and 3) the required information (such as financial statements and other ac-

counting related documents and reports) actually can be obtained from the database—this latter by constructing spe-

cific queries which are verified by the users.

 To demonstrate the user-oriented approach, the data modeling of an accounting information system for a

simple merchandising enterprise will serve as a case. Assume that the system designers have already defined the

system requirements with their best knowledge, correct or not, based on the information acquired in the system re-

quirements analysis process. Table 1 shows entities identified within specific business processes using the E-R (or

REAL) model. We have simplified the case by limiting the types of business activities involved. In the Acquisi-

tion/Payment process, we include only: Events such as Purchase Ordering, Goods Receiving, Purchase Invoicing,

and Purchase Payment Disbursing; Person (Agent) such as Vendor and Employee; Place (Location) such as Ware-

house; and Object (Resource) such as Inventory and Cash. In the Sales/Collection process, we include: Events such

as Sales Ordering, Product Shipping, Sales Invoicing, and Sales Payment Collecting; Person (Agent) such as Sales-

person and Customer; Place (Location) such as Warehouse; Object (Resource) such as Inventory and Cash.

 In Figure 2, we present a simplified E-R
4
 diagram based on the entities recognized in Table 1 and the sys-

tem designers‘ understanding of the user information needs and business rules. Although actual business poli-

cies/practices should be the basis upon which the relationships required are established, we set up the relationships

based on standard business practices with less restrictive rules in order to avoid the coverage of specific business

policies/practices. The E-R diagram is discussed later in the paper when the verification process is applied.

 Table 2 presents some general types of information needed by the accounting information users which cor-

respond to the business activities assumed in the case. They are the routine and standard types of documents and re-

ports users need to carry out business activities in business processes under the traditional AIS architecture. For ex-

ample, in the Acquisition/Payment process, users require documents such as Purchase Order, Receiving Report, and

Check, and reports such as Purchase Journal, Cash Disbursement Journal, Inventory Subsidiary, and Accounts Pay-

able Subsidiary. In the Sales/Collection process, users require documents such as Sales Order, Bill of Lading, Ship-

ping Order, and Sales Invoice, and reports such as Sales Journal, Cash Receipt Journal, and Accounts Receivable

Subsidiary. In addition, accounting information users must periodically generate financial statements. To simplify

the case, we include only account information required for the balance sheet and income statement, such as Cash,

Accounts Receivable, Inventory, Accounts Payable, Sales, and Cost of Goods Sold (see Table 3).

 The verification process starts when the system designers complete the E-R diagram--the data model in Fig.

2. In the verification process, the system designers must ensure that data items in each of the documents and reports

(in Table 2 and 3): 1) are included in the entities; 2) can be derived from other items in the related entities; or 3) can

be generated from the system. This is a very important step because the system cannot provide the information if it

has not been captured. In the case presented here, all of the documents listed in Table 2, e.g., Purchase Order or Re-

ceiving Report, are used to capture and carry out business activities in the events, such as Purchase Ordering and

Goods Receiving, respectively, recognized by the E-R and REAL models in Table 1. Data in these documents must

be stored and producible directly from the corresponding ―event― entities in the database system as indicated in the

―Entity‖ column in Tables 2 and 3. In our sample case, data in some of the reports are also directly based in specific

event entities. Similarly, data in these reports also must be stored and producible from the corresponding event enti-

ties. For example, a Purchase Journal contains a list of purchasing records for activities that occurred in the Pur-

chase Invoicing event, and a Cash Disbursement Journal in the Purchase Payment Disbursing event, as well as Sales

The Review Of Business Information Systems Volume 6, Number 4

 21

and Cash Receipt Journals. The system designers can ensure that they have included data from documents and re-

ports by going through the documents and reports themselves and/or by involving users‘ assistance.

 The system designers must verify with users that all the needed attributes (data fields) are included in the

entities in order to generate specific reports, such as Accounts Payable Subsidiary, Accounts Receivable Subsidiary,

and Inventory Subsidiary, as well as Balance Sheet accounts such as Cash, Accounts Receivable, Inventory, Ac-

counts Payable, and Cost of Goods Sold (Fig. 3). Verification of attributes by the users themselves is crucial, espe-

cially if the system designers lack accounting knowledge.

 For reports that are not directly based in any one specific business event, queries involving two or more

entities must be constructed to ensure that all of the information needed on the reports can be obtained from the da-

tabase. In our sample case, the system designers must ensure that relationships have been established correctly be-

tween related entities in the data model so that information for needed reports actually can be generated. In looking

at the simplified E-R diagram in Figure 2, for example, we see that the Inventory Subsidiary report requires the in-

volvement of entities such as Inventory, Goods Receiving, and Product Shipping. Given the many-to-many rela-

tionships between Inventory and Goods Receiving and between Inventory and Product Shipping, we know that in-

formation required for the Inventory Subsidiary report is obtainable. However, the database designers must con-

struct an actual query for an Inventory Subsidiary report to guarantee that the report can be retrieved. (Sample de-

tailed queries using SQL are included in the Appendix with the corresponding reference numbered in Tables 2 and

3).

 If any required attributes are omitted or any incorrect relationships are set up between entities, the ability of

the database system to meet users‘ needs will be limited. For example, accounts receivable by invoice number (or

accounts payable by due date) cannot be generated without a relationship between Sales Invoicing (Purchase Invoic-

ing) table and Sales Payment Collecting (Purchase Payment Disbursing) table linked by the sales invoice number

(purchase invoice number) attribute (see Endnote 1).

5. Conclusion and Suggestions For Future Research

 The proposed user-oriented approach containing a verification process makes a significant contribution to

relational database design in AIS by articulating systematic steps for developing an accounting information system

that meets users‘ needs. Explicit strategies in the approach are crucial for ensuring the inclusion of specific entities

and attributes, the establishment of required relationships between related entities, and the production of needed in-

formation. Future research is needed to further evaluate the effectiveness of this approach and to expand the model

to incorporate other considerations for ad hoc decision-making. 

Endnotes

1. Based on their modeling of revenue cycle (p. 271), reports regarding accounts receivable can be con-

structed only through the attribute ―customer account.‖ As a result, this data model cannot generate an ac-

counts receivable aging report by invoice--the most commonly used information for managing cash flow--

because the invoice number was not captured in the Cash Receipt table.

2. The information needs in ad hoc decision making are unpredictable and should be a special consideration

within the context of each decision, but they are applicable.

3. Some information may be retrievable without proper relationships being established between entities, but

special cares need to be taken. These tasks usually are performed by database specialists who have ad-

vanced knowledge about the query language.

4. To simplify, we include only entities and cardinalities in the diagrams.

References

1. Allen, Bryce L. Information Tasks: Toward a User-Centered Approach to Information Systems. San Diego:

Academic Press, 1996.

2. Carlis, John, and Joseph Maguire. Mastering Data Modeling: A User-Driven Approach. Boston: Addison-

Wesley, 2001.

3. Denna, Eric L., John Jasperson, Kenny Fong, and David Middleman. "Modeling Conversion Process

The Review Of Business Information Systems Volume 6, Number 4

 22

Events." Journal of Information Systems 8, no. 1 (1994): 43-54.

4. Everest, Gordon C., and Ronald Weber. "A Relational Approach to Accounting Models." Accounting Re-

view 52, no. 2 (1977): 340-359.

5. Fidel, Raya. Database Design for Information Retrieval: A Conceptual Approach. New York: John Wiley

& Sons, 1987.

6. Firmin, Peter A. "The Potential of Accounting as a Management Information System." Management Inter-

national Review (1966): 45-55.

7. Gelinas, Ulric J., Steve G. Sutton, and Allen E. Oram. Accounting Information Systems. 4th ed. Cincinnati,

OH: Southwestern College Publishing, 1999.

8. Goetz, B.E. "What's Wrong with Accounting." Advanced Management (1939): 151-157.

9. Hall, James A. Accounting Information Systems. 2nd ed. Cincinnati, OH: Southwestern Publishing, 1998.

10. Hernandez, Michael J. Database Design for Mere Mortals: A Hands-on Guide to Relational Database De-

sign. Reading, Mass.: Addison-Wesley Developers Press, 1997.

11. Hollander, Anita S., Eric L. Denna, and J. Owen Cherrington. Accounting, Information Technology, and

Business Solutions. 2nd ed. Burr Ridge, IL: Irwin/McGraw-Hill, 2000.

12. Johnson, O. "Toward an "Events" Theory of Accounting." Accounting Review 45, no. 4 (1970): 641-652.

13. Krasner, H., B. Curtis, and N. Iscoe. "Communication Breakdowns and Boundary Spanning Activities on

Large Programming Projects." In Empirical Studies of Programmers: Second Workshop, edited by G.M.

Olson, S. Shepard and E. Soloway, 47-64. Norwood, NJ: Ablex, 1987.

14. Long, J., N. Hammond, P. Barnard, J. Morton, and I. Clark. "Introducing the Interactive Computer at

Work: The Users' View." Behaviour & Information Technology 2, no. 1 (1983): 39-106.

15. McCarthy, William E. "An Entity-Relationship View of Accounting Models." Accounting Review 54, no. 4

(1979): 667-686.

16. ———. "The Rea Accounting Model: A Generalized Framework for Accounting Systems in a Shared Data

Environment." Accounting Review 57, no. 3 (1982): 554-578.

17. McFadden, Fred R., Jeffrey A. Hoffer, and Mary B. Prescott. Modern Database Management. 5th ed.

Reading, MA: Addison-Wesley, 1999.

18. Perry, James T., and Gary P. Schneider. Building Accounting Systems Using Access 2000. Cincinnati, OH:

Southwestern College Publishing, 2001.

19. Romney, Marshall B., and Paul John Steinbart. Accounting Information Systems. 8th ed. Upper Saddle Riv-

er, NJ: Prentice Hall, 2000.

20. Sonnenwald, Diane H. "Contested Collaboration: A Descriptive Model of Intergroup Communication in In-

formation System Design." Information Processing & Management 31, no. 6 (1995): 859-877.

The Review Of Business Information Systems Volume 6, Number 4

 23

Figure 1

Traditional vs. E-R-based AIS architecture

B
U

S
IN

E
S

S
 A

C
T

IV
IT

IE
S

General or Specia-

lized Journals

TRADITIONAL AIS ARCHITECTURE

General and Sub-

sidiary Ledgers

Financial State-

ments and Oth-

er Reports

IN
F

O
R

M
A

T
IO

N
 C

U
S

T
O

M
E

R
S

E-R BASED AIS ARCHITECTURE
Entities

Data are stored based on date

or special needs of informa-

tion users for financial in-

formation.

Data are then re-stored based

on accounts listed in the chart

of accounts and subsidiary ac-

counts established

Summarized account

information are re-

trieved

Queries

Data are stored according to

the entities designed in the

system

Information are retrieved ac-

cording to the needs of in-

formation users

Relationships

Relationships are established to

link information according to the

needs

The Review Of Business Information Systems Volume 6, Number 4

 24

Figure 2

A simplified E-R diagram of a merchandising enterprise

Acquisition/Payment Process Sales/Collection Process

Employee

Vendor

Purchase

Ordering

Goods Re-

ceiving

Inventory

Cash
#

Warehouse
#

Purchase

Invoicing

Purchase Pay-

ment Disburs-

ing

Salesperson

Customer

Sales

Ordering

Product

Shipping

Sales Pay-

ment Collect-

ing

Sales

Invoicing

(0,N)
(1,1)

(1,1)

(0,N)

(0,N)

(1,1)
(0,N)

(1,N)*

(1,1)

(0,N)

(0,N)
(1,N)

(0,N)

(1,N)

(0,N)
(1,N)

(1,N)*

(0,1)

(1,N)*
(0,N)*

(0,1)

(1,1)

(0,1)

(1,1)

(0,N)
(1,1)

(1,1)

(0,N)

(1,1)

(0,N)

(0,N)

(1,N)*

(1,1)

(0,N) (1,N)

(1,N)

(0,N)

(0,N)

(1,N)
(1,N)*

(0,1) (0,N)

(1,N)*
(0,N)*

(0,1)

(1,1)

* Less restrictive rules.

Optional.

(1,N)

(0,N)

(1,N)

(0,N)

(0,N)

(0,N)

(1,1) (1,1) (1,1) (1,1)

(0,N)

(0,N)

A/P Subsidiary A/R Subsidiary

Inventory

Subsidiary

Inventory

and COGS

The Review Of Business Information Systems Volume 6, Number 4

 25

Figure 3

Database structure of a merchandising enterprise

The Review Of Business Information Systems Volume 6, Number 4

 26

Table 1

Business Process vs. Entity Type For A Simple Merchandising Enterprise

Business Process

Entity Type Based on E-R (REAL) Model

Person (Agent) Place (Location) Object (Resource) Event (Event)

Acquisition/

Payment

Vendor

Employee

Warehouse

Inventory

Cash

Purchase Ordering (Purchase Dept)

Goods Receiving (Shipping & Receiving Dept)

Purchase Invoicing* (Acctg Dept)

Purchase Payment Disbursing (Acctg Dept)

Sales/Collection

Salesperson

Customer

Warehouse Inventory

Cash

Sales Ordering (Sales Dept)

Product Shipping (Shipping & Receiving Dept)

Sales Invoicing (Acctg Dept)

Sales Payment Collecting (Acctg Dept)

* Matching of purchase order, receiving report, and vendor‘s invoice, and recording of purchase are involved in this event.

Table 2

Business Process, Information Type, And Entity

Business Process Information Type Entity SQL**

Acquisition/

Payment

Document

Purchase Order Purchase Ordering*

Receiving Report Goods Receiving*

Check Purchase Payment Disbursing*

Report

Purchase Journal Purchase Invoicing*

C/D Journal Purchase Payment Disbursing*

Inventory Subsidiary Inventory (●); Goods Receiving (+); Product Shipping (-) Query #1

A/P Subsidiary Vendor (●); Purchase Invoicing (+); Purchase Payment Disbursing (-) Query #2

Sales/Collection

Document

Sales Order Sales Ordering*

Bill of Lading Product Shipping*

Shipping Order Product Shipping*

Sales Invoice Sales Invoicing*

Report

Sales Journal Sales Invoicing*

C/R Journal Sales Payment Collecting*

A/R Subsidiary Customer (●); Sales Invoicing (+); Sales Payment Collecting (-) Query #3

* corresponding entity of the document or report.

** indicating query number in the Appendix.

(●) the key of the entity serves as a basis in the query with other entities;

(+) specific information in the entity is included in the query positively;

(-) specific information in the entity is included in the query negatively.

The Review Of Business Information Systems Volume 6, Number 4

 27

Table 3

Financial Statement Account And Entity

Financial State-

ment

Type

Account

Entity

SQL**

Balance

Sheet

Assets

Cash

Cash, or

Sales Payment Collecting (+)

Purchase Payment Disbursing (-)

Query #4

A/R
Sales Invoicing (+)

Sales Payment Collecting (-)

Query #5

Inventory

Inventory (●)

Purchase Invoicing (+)

Product Shipping (-)

Query #6

Liabilities A/P
Purchase invoicing (+)

Purchase Payment Disbursing (-)

Query #7

Income State-

ment

Revenue Sales Sales Invoicing* Query #8

Expense COGS

Inventory (●)

Sales Invoicing (-)

Purchase Invoicing (+)

Query #9

* corresponding entity of the document or report.

** indicating query number in the Appendix.

(●) the key of the entity serves as a basis in the query with other entities;

(+) specific information in the entity is included in the query positively;

(-) specific information in the entity is included in the query negatively.

Note: A ―master‖ entity consisting of the beginning balances for balance sheet accounts may be needed if the business is involved in a large volume of

activities. If so, this master entity must be included in the query to obtain correct information for balance sheet accounts.

The Review Of Business Information Systems Volume 6, Number 4

 28

Appendix - Queries For Generating Report Items Using SQL

Note: To fit the whole database structure on one page shown in Figure 3, we simplify some of the entity names;

for example, from Goods Receiving to Receiving, from Product Shipping to Shipping, from Purchase Pay-

ment Disbursing to Disbursing, and from Sales Payment Collecting to Collecting. Please refer the table

names below to Figure 3.

1. Subsidiary Reports

Query #1. Inventory

(SELECT ‗SHIP‘, I.Description, SI.InvNo ―INVNO‖, S.Date ―DATE‖, SI.Quantity

FROM Ship-Inv SI, Shipping S, Inventory I

WHERE SI.InvNo = I.InvNo AND SI.BillOfLandingNo = S.BillOfLandingNo)

UNION

(SELECT ‗RCV‘, I.Description, RI.InvNo, R.Date ―DATE‖, RI.Quantity

FROM RR-Inv RI, Inventory I, Receiving R

WHERE RI.InvNo = I.InvNo AND RI.RRNo = R.RRNo)

ORDER BY INVNO, DATE

Note: Information about sales order and customer can also be retrieved by involving other attributes or other

tables in the query.

Query #2. A/P

(SELECT ‗PI‘, V.Name ―VENDOR‖, V.VendorID, PI.Date ―DATE‖, PI.Inv-Amt, PI.PO-InvNo

FROM Purchase Invoicing PI, Vendor V WHERE PI.VendorID = V.VendorID)

UNION

(SELECT ‗PID‘, V.Name, V.VendorID ―VENDOR‖, D.Date ―DATE‖, PID.Amt-Paid, PID.PO-InvNo

FROM Disbursing D, Vendor V, PurInv-Disb PID

WHERE V.VendorID = D.VendorID AND D.CKNo = PID.CKNo)

ORDER BY VENDOR, DATE

Query #3. A/R

(SELECT ‗SI‘, C.Name, C.CustomerID ―CUSTOMER‖, SI.Date ―DATE‖, SI.Inv-Amt, SI.Sales-InvNo

FROM Sales Invoicing SI, Customer C WHERE SI.CustomerID = C.CustomerID)

UNION

(SELECT ‗SIC‘, C.Name ―CUSTOMER‖, C.CustomerID, CO.Date ―DATE‖, SIC.Amt-Rec, SIC.Sales-InvNo

FROM Collecting CO, Customer C, SalesInv-Coll SIC

WHERE C.CustomerID = CO.CustomerID AND CO.CRNo = SIC.CRNo)

ORDER BY CUSTOMER, DATE

2. Financial Statements Accounts

Query #4. Cash

SELECT SUM(Amount) FROM Cash, or

SELECT SUM(CK-Amt) ―Coll‖ INTO #Total_Coll FROM Collecting

SELECT SUM(CK-Amt) ―Disb‖ INTO #Total_Disb FROM Disbursing

SELECT Coll – Disb FROM #Total_Coll, #Total_Disb

Query #5. A/R

SELECT SUM(Amt-Rec) ―T_Coll‖ INTO #Total_Coll FROM Collecting

SELECT SUM(Inv-Amt) ―T_Inv‖ INTO #Total_SI FROM Sales Invoicing

SELECT T_Inv – T_Coll FROM #Total_Coll, #Total_SI

The Review Of Business Information Systems Volume 6, Number 4

 29

Query #6. Inventory

Calculation of the FIFO (LIFO) inventory will be performed as ‗FIFO‘(‗LIFO‘) in the procedure, End-

ing_Inventory_Proc. Procedure COGS_Per_Item_Proc and COGS_All_Item_Proc are auxiliary procedures for ge-

nerating COGS per inventory item and all inventory items.

--

CREATE PROC Ending_Inventory_Proc (@METHOD CHAR(4)) AS

IF @METHOD != ‗FIFO‘ AND @METHOD != ‗LIFO‘

 BEGIN

 PRINT ―Parameter must be either FIFO or LIFO‖

 RETURN

 END

EXEC COGS_ALL_ITEM_PROC @METHOD

SELECT InvNo, SUM(Quantity * UnitCost) ―Rcv_Amt‖ INTO #Rcv_Inventory FROM PurInv-Inv

GROUP BY InvNo

SELECT R.InvNo, R.Rcv_Amt – A.COGS FROM #All_Sold A, #Rcv_Inventory R WHERE A.InvNo = R.InvNo

RETURN

--

CREATE PROC COGS_All_Item_Proc (@METHOD CHAR(4)) AS

CREATE TABLE #All_Sold (InvNo CHAR(15), COGS DECIMAL(12,2))

DECLARE Quan_Sold_Curs CURSOR FOR

SELECT InvNo, SUM(Quantity) FROM SalesInv-Inv GROUP BY InvNo

FOR READ ONLY

DECLARE

 @InvNo CHAR(15),

 @Sold_Count INT,

 @COGS DECIMAL(12,2)

OPEN Quan_Sold_Curs

FETCH Quan_Sold_Curs INTO @InvNo, @Sold_Count

WHILE (@@SQLSTATUS = 0)

 BEGIN

 EXEC COGS_Per_Item_Proc @METHOD, @InvNo, @Sold_Count,

 @COGS OUTPUT

 INSERT #All_Sold VALUES(@InvNo, @COGS)

 FETCH Quan_Sold_Curs INTO @InvNo, @Sold_Count

 END

CLOSE Quan_Sold_Curs

DEALLOCATE CURSOR Quan_Sold_Curs

RETURN

--

CREATE PROC COGS_Per_Item_Proc (@METHOD CHAR(4), @InvNo CHAR(15), @Sold_Count INT, @COGS

DECIMAL(12,2) OUTPUT) AS

IF @METHOD = ‗FIFO‘

 BEGIN

The Review Of Business Information Systems Volume 6, Number 4

 30

 DECLARE Quan_Rcv_Curs CURSOR FOR

 SELECT PII.Quantity, PII.UnitCost FROM PurInv-Inv PII, Purchase Invoicing PI

 WHERE PII.InvNo = @InvNo AND PII.PO-InvNo = PI.PO-InvNo

 ORDER BY PI.Date ASC

 FOR READ ONLY

 END

ELSE

 BEGIN

 DECLARE Quan_Rcv_Curs CURSOR FOR

 SELECT PII.Quantity, PII.UnitCost FROM PurInv-Inv PII, Purchase Invoicing PI

 WHERE PII.InvNo = @InvNo AND PII.PO-InvNo = PI.PO-InvNo

 ORDER BY PI.Date DESC

 FOR READ ONLY

 END

DECLARE

 @Quantity INT,

 @UnitCost DECIMAL(12,2),

 @OFFSET INT

OPEN Quan_Rcv_Curs

FETCH Quan_Rcv_Curs INTO @Quantity, @UnitCost

SELECT @OFFSET = @Sold_Count

WHILE (@@SQLSTATUS = 0)

 BEGIN

 IF (@OFFSET >= @Quantity)

 BEGIN

 SELECT @COGS = @COGS + @Quantity * @UnitCost

 SELECT @OFFSET = @OFFSET - @Quantity

 END

 ELSE

 BEGIN

 SELECT @COGS = @COGS + @OFFSET * @UnitCost

 BREAK

 END

 FETCH Quan_Rcv_Curs INTO @Quantity, @UnitCost

 END

CLOSE Quan_Rcv_Curs

DEALLOCATE CURSOR Quan_Rcv_Curs

RETURN

--- -------------

Query #7. A/P

SELECT SUM(Amt-Paid) ―T_Disb‖ INTO #Total_Disb FROM PurInv-Disb

SELECT SUM(Inv-Amt) ―T_Inv‖ INTO #Total_PI FROM Purchase Invoicing

SELECT T_Inv – T_Disb FROM #Total_Disb, #Total_PI

NOTE: #Total_Disb and #Total_PI are temporary tables, which do not need to be created.

The Review Of Business Information Systems Volume 6, Number 4

 31

Query #8. Sales

SELECT SUM(Inv-Amt) FROM Sales Invoicing SI WHERE SI.Date BETWEEN #1/1/01# AND #12/31/00#

NOTE: SI.Date must be specified.

Query #9. Cost of Goods Sold

Calculation of the FIFO (LIFO) cost of goods sold will be handled as ‗FIFO‘ (‗LIFO‘) in the procedure,

COGS_Proc. Procedure COGS_Per_Item_Proc and COGS_All_Item_Proc are auxiliary procedures for calculating

COGS per inventory item and all inventory items. They are also used in generating ending inventory reports.

--

CREATE PROC COGS_Proc

 (@METHOD CHAR(4)) AS

IF @METHOD != ‗FIFO‘ AND @METHOD != ‗LIFO‘

 BEGIN

 PRINT ―Parameter must be either FIFO or LIFO‖

 RETURN

 END

EXEC COGS_All_Item_Proc @METHOD

SELECT * FROM #All_Sold

RETURN

The Review Of Business Information Systems Volume 6, Number 4

 32

Notes

