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Abstract 
 

The failure or success of the banking industry depends largely on the industry’s ability to properly 

evaluate credit risk.  In the consumer-lending context, the bank’s goal is to maximize income by 

issuing as many good loans to consumers as possible while avoiding losses associated with bad 

loans.  Mistakes could severely affect profits because the losses associated with one bad loan may 

undermine the income earned on many good loans.  Therefore banks carefully evaluate the 

financial status of each customer as well as their credit worthiness and weigh them against the 

banks’ internal loan-granting policies.  Recognizing that even a small improvement in credit 

scoring accuracy translates into significant future savings, the banking industry and the scientific 

community have been employing various machine learning and traditional statistical techniques to 

improve credit risk prediction accuracy. 
 

This paper examines historical data from consumer loans issued by a financial institution to 

individuals that the financial institution deemed to be qualified customers. The data consists of the 

financial attributes of each customer and includes a mixture of loans that the customers paid off 

and defaulted upon.  The paper uses three different data mining techniques (decision trees, neural 

networks, logit regression) and the ensemble model, which combines the three techniques, to 

predict whether a particular customer defaulted or paid off his/her loan.  The paper then com-

pares the effectiveness of each technique and analyzes the risk of default inherent in each loan and 

group of loans.  The data mining classification techniques and analysis can enable banks to more 

precisely classify consumers into various credit risk groups.  Knowing what risk group a consum-

er falls into would allow a bank to fine tune its lending policies by recognizing high risk groups of 

consumers to whom loans should not be issued, and identifying safer loans that should be issued, 

on terms commensurate with the risk of default. 
 

 

1. Introduction 
 

n the last several years, the financial services industry has experienced a rapid growth with significant 

increases in single-family mortgages, auto-financing, and home equity loans to name a few.  With this 

growth, however, there have been mounting losses for delinquent loans.  For example, in 1991, $1 

billion of Chemical Bank's $6.7 billion in real estate loans were delinquent and the bank held $544 million in 

foreclosed property.  Manufacturers Hanover's $3.5 billion commercial property portfolio was burdened with $385 

million in non-performing loans (Rosenberg and Gleit, 1994).  In response, many financial services institutions are 

developing new credit scoring models to support their credit decisions.  The ultimate objective of these models is to 

increase accuracy in loan-granting decisions, so that more creditworthy applicants are granted credit, thereby 

increasing profits, and non-creditworthy applicants are denied credit, thus decreasing losses.  A slight improvement  

in accuracy translates into significant future savings.  
 

Determining whether a particular consumer should receive a loan is an inherently complex and unstruc-

tured process.  A financial institution must examine many independent financial attributes of each loan candidate in, 

___________________ 
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an accurate prompt, and cost effective manner.  The financial institution approximates the risk of default by the 

candidate, and weighs that risk against the benefit of potential earnings on the loan.  Due to the difficulty of credit 

risk assessment, the financial institution that provided data for this paper experienced a default rate of about nine 

percent (9%), even though the financial institution must have used some credit scoring model to eliminate “bad 

loans”.  Some of the defaults can be attributed to unforeseen events (i.e. divorce, death, loss of employment) or 

governed by factors that may be difficult or impossible to reflect in the financial attributes of the consumer (i.e. 

stability of marriage, health, job stability).  However, some of the “bad loans” could be avoided by using more 

discriminating credit risk assessment techniques.  Any improvement in making a reliable distinction between those 

who are likely to repay the loan and those who are not would allow the bank to reject the riskiest loans and to adjust 

the terms of the granted loans according to the risk of default.    

 

The volume and complexity of raw data inherent in credit-risk assessment can be tackled by several 

knowledge discovery and data mining tools.  Knowledge discovery is defined as the process of identifying valid, 

novel, and potentially useful patterns in data (Fayyad et al., 1996).  Knowledge discovery relies on many well-

established technologies, such as machine learning, pattern recognition, statistics, neural networks, fuzzy logic, 

evolutionary computing, database theory, artificial intelligence, and high performance computing. All of these 

technologies are applied to find knowledge in very large databases. The knowledge discovery process is typically 

composed of the following phases: understanding the overall problem; obtaining a data set; cleaning, preprocessing, 

and reducing data; data mining; interpreting mined patterns; and consolidating discovered knowledge.   

 

Data mining is an important phase in the knowledge discovery process. The most prominent examples of 

data mining tools include: regression and discriminant analysis, neural networks, decision trees, fuzzy logic and sets, 

rough sets, genetic algorithms, association rules, and k-nearest neighbor. These tools are suitable for the tasks of 

classification, prediction, clustering, and optimization.  Classification and prediction are the most common and 

perhaps the most straightforward data mining tasks. Classification consists of examining the features of a newly 

presented object and assigning it to one of a predefined set of classes or outcomes (“loan defaulted upon” or “loan 

paid off”). A data mining model employing one of the data mining tools must be trained using pre-classified 

examples. The goal is to build a model that will be able to accurately classify new data based on the outcomes and 

the interrelation of many discrete variables (income, length of employment etc.) contained in the training set.       

 

This paper examines and compares the effectiveness of three data mining techniques and the ensemble 

model used in two scenarios to predict whether a consumer defaulted or paid off a loan.  In the first scenario, the 

data set (comprised of the training, validation, and test subsets) for each technique contained a large ratio of good 

loans to bad loans.  The data mining techniques were outstanding at identifying the good loans and adept at 

identifying some of the bad loans from the test set.  In the second scenario, the data set contained an equal mix of 

good loans and bad loans.  The data mining techniques proved proficient at identifying both good loans and bad 

loans in the test set.  The ensemble model which combined decision trees, neural networks, and logit regression 

techniques proved to be the most skillful at classifying the good loans and bad loans in both scenarios. The models 

were impressive at distinguishing good loans from bad loans given that the financial institution that provided the 

data considered all of the loans contained in the data set to be good loans warranting an extension of credit. The 

paper assesses and analyzes the probability of default on a single loan and a collection of loans.  It then discusses 

how financial institutions could use the probability of loan default to more precisely match their lending policies to 

existing credit risk.  

 

The paper is organized as follows: section 2 reviews the current knowledge discovery and data mining 

applications in the financial domain; section 3 explains the fundamentals of data mining tools -- decision trees, 

neural network, and logistic regression; section 4 explains the data sample used in this study; section 5 describes the 

Enterprise Miner nodes used for data analysis; section 6 describes the experiments and simulation results; and 

section 7 concludes the paper and provides some recommendations for future work.    

 

 

2. Literature Review 
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During recent years a plethora of articles have been published showing that data mining tools are very 

useful in supporting financial decisions. The articles mainly concerned bankruptcy prediction (Wilson and Sharda, 

1994; Lee et al., 1996; Back et al., 1996; Jo and Han, 1997; Olmeda and Fernandez, 1997; Zhang et al., 1999; Yang 

et al., 1999; Greenstein and Welsh, 2000), financial distress classification (Coats and Fant, 1993; Altman et al., 

1994; Lacher et al., 1995, Zurada et al., 2001), going concern status (Koh and Tan, 1999), business failure 

predictions (Tam and Kiang, 1992; Boritz and Kennedy, 1995; Dimitras et al., 1999), and prediction of the success 

or failure of new ventures (Jain and Nag, 1997).  Data mining techniques have also been successfully applied to 

credit-risk assessment problems.     

 

The initial research focused on determining the usefulness of data mining tools, such as neural networks 

and decision trees, and examining how these tools should be applied in a credit-risk assessment context.  In one of 

the early papers, McLeod et al. (1993) discussed general features of neural networks and their suitability for the 

credit-granting process.  Glorfeld and Hardgrave (1996) presented a comprehensive and systematic approach to 

developing an optimal architecture of a neural network model for evaluating the creditworthiness of commercial 

loan applications.  The neural network developed using their architecture was capable of correctly classifying 75% 

of loan applicants and was superior to neural networks developed using simple heuristics. 

 

Tessmer (1997) examined credits granted to small Belgian businesses using a decision tree-based learning 

approach.  Tessmer focused on the impact of Type I credit errors (classifying good loans as bad loans), and Type II 

credit errors (classifying bad loans as good loans), on the accuracy, stability and conceptual validity of the learning 

process.  Tessmer argued that near misses have the ability to nudge the learning process towards a more accurate 

definition of the boundary between positive and negative examples. Tessmer recommended the procedure called 

"the dynamic updating process", which relocates the boundary between Type I and Type II errors, to define a more 

informed credit granting decision.   

 

Subsequent authors built on the existing research by comparing the performance of various data mining 

techniques in various credit risk assessment contexts.  Desai et al. (1996) analyzed the usefulness of neural networks 

and traditional techniques, such as discriminant analysis and logistic regression, in building credit scoring models 

for credit unions.  Desai studied data samples containing 18 variables collected from three credit unions and showed 

that neural networks were particularly useful in detecting bad loans, whereas logistic regression outperformed neural 

networks in the overall (bad and good loans) classification accuracy.    

 

Barney et al. (1999) compared the performance of neural networks and regression analyses in identifying 

the farmers who had defaulted on their Home Administration Loans and those farmers who paid off the loans as 

scheduled.  Using an unbalanced data, Barney found that neural networks outperform logistic regression in correctly 

classifying farmers into those who made timely payments and those who did not.  Jagielska et al. (1999) 

investigated credit risk classification abilities of neural networks, fuzzy logic, genetic algorithms, rule induction 

software, and rough sets and concluded that the genetic/fuzzy approach compared more favorably with the 

neuro/fuzzy and rough set approaches.   

 

Piramuthu (1999) analyzed the beneficial aspects of using both neural networks and nuerofuzzy systems for 

credit-risk evaluation decisions.  Piramuthu used three real-world applications data that involved credit-risk 

evaluation in various forms: credit approval, loan default, and bank failure prediction. Neural networks performed 

significantly better than neurofuzzy systems in terms of classification accuracy, on both training as well as testing 

data.  However, the neural network cannot explain the rationale behind its credit granting/denial decision, unlike the 

neurofuzzy systems that explain decisions using simple if-then rules.     

 

In a very comprehensive study, West (2000) investigated the credit scoring accuracy of five neural network 

architectures and compared them to traditional statistical methods. The neural architectures and traditional models 

included multilayer perceptron, mixture-of-experts, radial basis function, learning vector quantization, and fuzzy 

adaptive resonance; and discriminant analysis, logistic regression, k nearest neighbor, kernel density estimation, and 

decision trees, respectively. Using two real world data sets and testing the models using 10-fold crossvalidation, the 

author found that among neural architectures the mixture-of-experts and radial basis function did best, whereas 
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among the traditional methods regression analysis was the most accurate.  

 

In other recent publications focusing on loan risk assessment, Thomas (2000) surveyed the techniques for 

forecasting financial risk of lending to consumers; Yang et al. (2001) examined the application of neural networks to 

an early warning system for loan risk assessment; and Zurada (2001) reported some preliminary results comparing 

the performance of data mining techniques in predicting the credit worthiness of customers. 

 

3. Decision Trees, Neural Network, And Logit Regression Fundamentals 

 

This section gives a very brief overview of decision trees, neural networks, and logistic regression and 

discusses their fundamentals. Decision trees and logistic regression are well-established traditional statistical 

techniques, whereas neural networks are relatively new data mining tools that have been successfully used for 

classification and prediction.   

 

3.1. Decision Trees 

 

Decision trees are particularly useful for classification tasks. Like neural networks, decision trees learn 

from data. Using search heuristics, decision trees are able to find explicit and understandable rules-like relationships 

among independent and dependent variables. Search heuristics use recursive partitioning algorithms to split the 

original data into finer and finer subsets, or clusters. The algorithms have to find the optimum number of splits and 

determine where to partition the data to maximize the information gain. The fewer the splits, the more explainable 

the output is (there are less rules to understand). 

 

Decision trees are built of nodes, branches and leaves that indicate the variables, conditions, and outcomes, 

respectively. The most predictive variable is placed at the top node of the tree. The operation of the decision tree is 

based on the ID3 or C4.5 algorithms (Quinlan, 1993; Mitchell, 1997). The algorithms make the clusters at the node 

gradually purer by progressively reducing disorder (impurity) in the original data set. Disorder and impurity can be 

measured by the well-established measures of entropy and information gain borrowed from information theory. We 

briefly introduce these measures below.  

 

Given a collection S, containing the positive (yes) and negative examples (no) of some target concept, the 

entropy of S relative to this Boolean classification is 

 

nonoyesyes ppppSEntropy 22 loglog)(   

 

where pyes is the proportion of positive examples in S and pno is the proportion of negative examples in S. If the 

target attribute can take on k different values, then the entropy of S relative to this k-wise classification is defined as  

 





k

i

ii ppSEntropy
1

2log)(  

 

The information gain, Gain(S,A) of an attribute A, relative to a collection of examples S, is defined as 
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where Values(A) is the set of all possible values for attribute A, and Sv is the subset of S for which attribute A has the 

value v (i.e.,  vsASsSv  )(| . 

 

One of the greatest advantages of decision trees is the fact that knowledge can be extracted and represented 
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in the form of classification if-then rules. Each rule represents a unique path from the root to each leaf.  In addition, 

at each node one can measure the number of records entering the node, the way those records would be classified if 

these were leaf nodes, and the percentage of records classified correctly.  

 

3.2. Artificial Neural Networks 

 

Artificial neural networks are one of the most common data mining tools. Neural networks have attracted 

the attention of researchers because they are particularly useful for the tasks of classification, prediction, and 

clustering in business applications. Neural networks try to emulate biological neurological systems. In other words, 

they try to mimic the way the human brain functions and processes information. Neural network models are 

characterized by three properties: the computational property, the architecture of the network, and the learning 

property (Hagan et al., 1996).  

 

Computational property. Neural networks are built of neurons or nodes, which are simple processing 

elements. Each neuron contains a summation node and often a nonlinear sigmoidal activation function of the form 

 

ne
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1
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where n=Wp is the output from a summation node;  is the steepness of the activation function; W is a weight 

matrix and p is an input vector. Because a single neuron has a limited capability, neurons (sometimes hundreds) are 

organized in layers and are interconnected between layers using connections called weights. Each weight carries a 

numerical value that represents the strength of connection or expresses the relative importance of each input to the 

neuron. 

 

Architecture. Neural networks come in several architectures. One of the most common architectures used in 

financial applications is a two-layer feed-forward network with error back-propagation. This network typically has 

only two layers, a hidden layer and an output layer. Signals propagate through these layers from input to output. 

 

Learning. Neural networks use a variety of learning modes. These are supervised learning, unsupervised 

learning, and reinforcement learning. During supervised learning, which is the most common for the mentioned 

feed-forward networks, weights are initialized at small random values and training patterns are presented to the 

network one pattern at a time. The output produced by the training pattern is compared with the actual response 

provided by a teacher. The differences modify the weights of the network to make them closer to the actual output. 

This process is repeated for all training patterns contained in a training set until the cumulative error between the 

actual outputs and the network's output is reduced to a small value. Weights are crucial to the operation of the neural 

network because through their repeated adjustment the neuron (or network) learns. Knowledge of the network is 

encoded in its weights. 

 

Neural networks can be implemented as simple computer programs that build models or relationships from 

data by trial and error. Software that implements different learning architectures and learning algorithms is widely 

available on the market and became an integral part of the software packages used for data mining. The most 

attractive features of these networks are their ability to adapt, generalize, and learn from training patterns. These 

features are not present in modern conventional computers whose processing is based on precise algorithms 

converted to computer programs. One of the main drawbacks of neural networks is the fact that they produce black 

box outcomes. In other words, the results generated by a network cannot easily be explained or converted to if-then 

rules. Although neural networks can approximate very complex nonlinear functions, the explicit equation of these 

functions that the network learns to classify data is unknown.  

 

3.3.  Logit Regression Model 
 

The purpose of the logistic regression model is to obtain a regression equation that could predict in which 

of two or more groups an object could be placed (i.e. whether a loan should be classified as a good loan or a bad 



The Review of Business Information Systems                                                                              Volume 6, Number 3 

 70 

loan). The logistic regression also attempts to predict the probability that a binary or ordinal target will acquire the 

event of interest (e.g. loan payoff or loan default) as a function of one or more independent variables (i.e. amount of 

loan, borrower job category, reason of loan). The logit model is represented by the logistic response function P(y) of 

the form: 
 

 

The function P(y) describes a dependent variable y containing two or more qualitative outcomes. z is the 

function of m independent variables x called predictors, and b represents the parameters. The x variables can be 

categorical or continuous variables of any distribution. The value of P(y) that varies from 0 to 1 denotes the 

probability that a dependent variable y belongs to one of two or more groups. The principal of maximum likelihood 

can commonly be used to compute estimates of the b parameters. This means that the calculations involve an 

iterative process of improving approximations for the estimates until no further changes can be made. (For a more 

detailed explanation see Afifi and Clark, 1990; Manly, 1994; Christensen, 1997). 
 

Unlike neural networks, logistic regression models are designed to predict one dependent variable at a time. 

On the positive side, one can note that logistic regression output provides statistics on each variable included in the 

model. Researchers then can analyze these statistics to test the usefulness of specific information.   
 

4. Data Set Used In The Study 
 

Because the amount and quality of useful credit assessment data is limited, researchers have used data 

derived from various loan-granting contexts.  Desai et al. (1996) used 18 predictor variables and three data sets of 

about 900 observations describing the ordinary customers of three credit unions. West (2000) used German credit 

scoring data that contained 24 predictor variables and consisted of 700 examples of creditworthy applicants and 300 

examples of non credit worthy applicants. The Australian scoring data (Quinlan, 1987) were similar but more 

balanced with 307 and 383 examples of each outcome. 
 

In our study we used qualitative variables that are similar to the ones used in the previous studies. We used 

a sample data provided by a money lending institution.  The data set contains financial information about 3364 

consumers allocated among 13 variables. The financial institution extended loans to all of the applicants in the data 

set. Out of the 3364 applicants, 3064 had paid off their loans and 300 defaulted on the loans, resulting in a default 

rate of approximately 9%. There were no missing values in the data set. Out of these 13 variables, there were 12 

independent variables (loan and consumer characteristics) and one dependent/target variable (loan default or loan 

repaid) that we were going to predict. Using this data set, we built a decision tree model, neural network model, 

logistic regression model, and combined (ensemble) model to predict whether a future applicant will default on a 

loan. The data set contains the following variables: 
 

1. Loan_Status takes values of 1 (client defaulted on loan or seriously delinquent) or 0 (loan repaid) - target 

variable. 

2. Loan_Amt - Amount of the current loan request. 

3. Mort_Due - Amount due on existing mortgage. 

4. Prop_Value - Value of current property. 

5. Debt_To_Inc - Debt-to-income ratio. 

6. Years_On_Job - Years on current job. 

7. Derog_Rep - Number of major derogatory credit reports. 

8. Crd_Ln - Number of credit lines. 

9. del_crd_ln - Number of delinquent credit lines. 

10. Crd_Inq - Number of recent credit inquiries. 

11. Age_Trd_Ln - Age (in months) of oldest trade line. 

12. Reason_For_Ln - Reason for loan (debt consolidation or home improvement). 

13. Job_Cat - Applicants' job categories. 
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5. Description Of The Nodes Used For Data Analysis 

 

For data analysis we used the release 8.2 of the SAS Enterprise Miner software. Flowchart 1 presents the 

major nodes used in the workflow. In the Input Data Source node, we specified the name of a data set and details 

about the variables in the data set to be used as input for later processing. For one of the simulations, the Sampling 

node performed stratified random sampling to balance the data set so that it contained an equal number of 

observations representing good loans and bad loans. The Variable Selection node identified variables that are useful 

for predicting the target variable. We used an R-square selection criterion. The Transform Variable transformed 

variables and allowed us to create new ones. Using the Data Partition node, we partitioned the data set into training, 

validation, and test data subsets. The training subset was used for preliminary model fitting; the validation subset 

was used to tune the model parameters (i.e., neural networks weights) during estimation; the test subset was used for 

model final assessment.  

 

The Neural Network, Decision Tree, and Regression nodes enabled us to build various classifica-

tion/prediction models. Using the Neural Network node, we constructed, trained, and validated a multilayer feed-

forward network with error back-propagation. Here we used a neural network with 3 neurons in a hidden layer. The 

number of neurons in the hidden layer was determined experimentally from the number of observations in the data 

set and the number of weights in the network (Berry and Linoff, 1997). We used the Decision Tree node to classify 

observations by segmenting the data created according to a series of simple rules. We used the entropy gain 

reduction method to build the tree. The Regression node fitted the logistic regression model to the data. The 

Ensemble node combined the three models by averaging the posterior probabilities for the class target variable 

(BAD).  We used the Assessment and Reporter nodes to provide a common framework for assessing, comparing, 

and assembling the results from the four models used.   

 

Flowchart 1. Simplified workflow of the nodes used for data analysis. The dotted lines indicate optional 

nodes used in experiments two and three only.  

 

6. Experiments And Results 

 

We performed an extensive computer simulation divided into two scenarios. In the first scenario, we used 

the original, unbalanced data set containing a total of 3364 customers. This first data set contained 3064 good loans 
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and 300 bad loans. In the second scenario, we created a balanced data set by randomly selecting 300 loans from the 

3064 good loans and matching them with the 300 bad loans. This random sampling produced the second data set 

consisting of 600 cases divided evenly among good and bad loans.  

 

In each scenario, we performed three different experiments. In each experiment, we allocated the cases as 

follows: 60% for training, 20% for validation, and 20% for testing. In experiment one, we used the data set without 

any variable transformations or variable reduction. In experiment two, we used the original data set without any 

variable transformations, but we eliminated the variables that were weakly correlated with the target variable. In 

experiment three, we used the original number of 13 variables, but performed variable transformations-- such as 

bucketing for four variables that had highly skewed distributions-- in order to improve the model.  Furthermore, in 

each experiment, we employed three different data mining tools: neural networks, decision trees, and logistic 

regression. Finally, we combined the three tools into an ensemble model to increase the reliability of the 

classification accuracy by improving the stability of the three disparate non-linear models. The ensemble model 

averages the posterior probabilities for class target variable BAD from the three tools. Given the posterior 

probabilities, each case can be classified into the most probable class.    

 

 
Table 1 

 Experiment One Experiment Two Experiment Three 

Decision tree 

    “Overall” 

 

93.3% (628/673) 

 

93.6% (630/673) 

 

93.2% (627/673) 

    “Good” 99.0% (608/614) 98.5% (605/614) 99.5% (611/614) 

    “Bad”  33.9% (20/59) 42.4% (25/59)## $$ 27.1% (16/59)$$ 

    

Neural network 

   "Overall" 

 

94.0% (633/673) 

 

93.3% (628/673) 

 

93.8% (631/673) 

   "Good"  99.0% (608/614) 99.3% (610/614) 99.7% (612/614) 

   "Bad" 42.4% (25/59)** $ 30.5% (18/59)$ 32.2% (19/59)* 

    

Logistic regression 

    "Overall" 

 

93.2% (627/673) 

 

93.3% (628/673) 

 

99.6% (623/673) 

    "Good" 99.7% (612/614) 99.8% (613/614) 99.5 (611/614) 

    "Bad"  25.4% (15/59)** 25.4% (15/59)## 20.3 (12/59)* 

    

Ensemble model 

     "Overall" 

 

93.9% (632/673) 

 

93.6% (630/673) 

 

93.3% (628/673) 

     "Good" 99.8% (613/614) 100.0% (614/614) 100.0% (614/614) 

     "Bad"  32.2% (19/59) 27.1% (16/59)## 23.7% (14/59) 

Table I. Classification rates for the four models and three experiments used in scenario one. It shows the percentage and number 

of test cases classified correctly. ** Neural network used in experiment one classifies bad loans significantly better than logistic 

regression at =0.05.  ## Decision tree used in experiment two classifies bad loans significantly better than logistic regression at 

=0.05.  * Neural network used in experiment three classifies bad loans significantly better than logistic regression at =0.1.  $ 

Neural network used in experiment one classifies bad loans significantly better than the one used in experiment two at =0.1.  $$ 

Decision tree used in experiment classifies bad loans significantly better than the one used in experiment three at =0.05. 

 

 

Table I presents the classification accuracy for the unbalanced test data set containing 673 observations 

(614 good loans and 59 bad loans). This test set represents 20% of the cases which were extracted from the 

unbalanced data set composed of 3064 good loans and 300 bad loans (first scenario).  Because the training sample in 

the data set was overwhelmingly dominated by good loans, (1) the classification accuracy of good loans was almost 

perfect (close to 100%), (2) some bad loans were recognized as bad loans, and (3) the three methods and the 

ensemble method tended to classify a substantial amount of bad loans as good loans. Although the overall 

classification rate is excellent and averaged about 93%, the average classification accuracy of bad loans, which were 

underrepresented in the training sample, is relatively low and amounts to an average of about 30% for all the 

methods across all experiments. The neural network used in experiment one is the most efficient in the correct 
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classification of bad loans (42.4%) and logistic regression seems to be the worst (25.4%). Based on the data in Table 

I, we performed several 2-tailed proportional z-tests to determine whether the classification rates across the four 

models and the three experiments are significantly different from one another. The test revealed that there are 

statistically significant differences in classification accuracy rates, especially for bad loans (see Table I for details). 

 

The performance of the four methods can be best evaluated using a combination of the percent cumulative 

and non-cumulative response lift charts, and the receiver characteristics response charts. All of these charts reflect 

the performance of the four data mining tools on the test data sets.  

 

To properly interpret the cumulative percent response chart (Figure 1), one needs to consider how the chart 

is constructed. If the response of interest is loan defaults, a respondent is defined as an individual who defaults on a 

loan (BAD=1). For each individual, the fitted models predict the probability that the individual will default. The 

observations are sorted by the predicted probability of response from the highest probability of response to the 

lowest probability of response, and then grouped into ordered bins, each containing approximately 10% of the data. 

Using the target variable BAD, one can count the percentage of actual respondents in each bin. If the model is 

effective, the proportion of individuals with the event level that one is modeling (here those who defaulted on a 

loan) will be relatively high in bins in which the predicted probability of response is high. One sees that the first 

10% decile contains an enormous amount of defaulters -- the four models predict that between 37% and 47% of 

customers in the first decile will default on their loans (Figure 1). The ensemble model seems to be slightly better 

than the neural network, with 48% and 45% defaults in the top 10%, respectively.  The horizontal 9% response line 

represents the baseline rate of about 9% of defaulters that one would expect if one were to take a random sample. In 

a cumulative % response chart, the response rate for each decile of the score includes all of the responses for the 

deciles above it. 
 

 

Figure 1. The test set cumulative % response chart for the four methods 

for experiment one for scenario one.  Target event: 1 (bad loans). 
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Figure 2. The test set non-cumulative % response chart for the four methods for experiment one for scenario one. 

Target event: 1 (bad loans). 

 
 

Figure 3. The cumulative lift chart for the four methods for experiment one for scenario one. 

Target event: 1 (bad loans). 
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Figure 4. The non-cumulative lift chart for the four methods  

for  experiment one for scenario one.  Target event: 1 (bad loans). 

 
 

 

A cumulative response chart shows the overall strength of the model, but it obscures the model's perfor-

mance at each strata of the score. The test set non-cumulative percent response chart (Figure 2) shows the 

percentage of defaulters in each decile. The chart reveals that the percentage of defaulters declines very significantly 

in the second decile to about 6% to 11%, continues to decrease slightly between the second and seventh decile to 

about 3% and 6%, and remains at that level between the seventh and tenth decile.  According to the model, the 

customers between the fourth and tenth deciles are good because their projected default rate is below the baseline 

rate, while the last three deciles contain the very best customers with the lowest default rate. 

 

Figures 3 and 4 depict the cumulative and non-cumulative lift charts that plot the same loan default 

information on a different scale. The cumulative lift chart (Figure 3) shows that for the neural network and ensemble 

models, the percentage of defaulters in the first decile is over five times higher than the 9% default rate in the 

population. For example, for the ensemble model the lift value is about 5.3 (48% of defaulters / 9% baseline rate).  

The lift values drop significantly from the second decile on.  

 

The receiver operating characteristic (ROC) charts are graphical displays that give the global measure of 

the predictive accuracy of the models (Figures 5 and 6). They display the sensitivity against 1-specificity of a 

classifier for a range of cutoffs. Sensitivity is a measure of accuracy for predicting events that is equal to the true 

positive divided by total actual positive. 1-specificity is a measure of accuracy for predicting nonevents that is equal 

to the true negative divided by total actual negative. Each point on the curves represents a cutoff probability. Points 

closer to the upper-right corner correspond to low cutoff probabilities. Points in the lower left correspond to higher 

cutoff probabilities. The extreme points (1,1) and (0,0) represent no-data rules where all cases are classified into 

class 1 or class 0, respectively. The performance quality of the models is demonstrated by the degree to which the 

ROC curves push upward and to the left. The area under the curves can provide a quantitative performance measure. 

The area will range from 50, for a worthless model, to 100, for a perfect classifier. The shapes of the ROC charts 
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indicate that the predictive power all four models (decision tree, neural network, regression analysis, and combined 

model) for predicting bad and good loans is fairly good (Figures 5 and 6). Both the ensemble model and the neural 

network model stand out and appear to be better than the decision tree model and regression model at predicting 

both bad and good loans. 
 

 

Figure 5. Receiver operating characteristics (ROC) chart: Target event = 1 (bad loans). 

  
 

 

Figure 6. Receiver operating characteristics (ROC) chart: Target event = 0 (good loans). 
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Table II. Classification rates for the four models and three experiments used in scenario two. It shows the 

percentage and number of test cases classified correctly.  
**

 In experiment two ensemble model classified good loans 

significantly better than logistic regression at =0.05.  
*
 In experiments one and two ensemble model’s overall 

classification rate was significantly better than logistic regression at =0.1.  
##

 In experiment one decision tree 

classified good loans significantly better than logistic regression at =0.05.  

 

 
 Experiment One Experiment Two Experiment Three 

Decision tree 

     “Overall” 

 

76.7% (92/120) 

 

76.7% (92/120) 

 

76.7% (92/120) 

     “Good” 83.6% (51/61)## 83.6% (51/61) 83.6% (51/61) 

     “Bad”  69.5% (41/59) 69.5% (41/59) 69.5% (41/59) 

    

Neural network 

     "Overall" 

 

72.5% (87/120) 

 

75.8% (91/120) 

 

71.7% (86/120) 

     "Good"  73.8% (45/61) 77.1% (47/61) 72.1% (44/61) 

     "Bad" 71.2% (42/59) 74.6% (44/59) 71.2% (42/59) 

    

Logistic regression 

     "Overall" 

 

70.8% (85/120)* 

 

72.5% (87/120)* 

 

70.0% (84/120) 

     "Good" 68.9% (42/61)## 72.1% (44/61)** 72.1 (44/61) 

      "Bad"  72.9% (43/59) 72.9% (43/59) 67.8 (40/59) 

    

Ensemble model 

    "Overall" 

 

79.2% (95/120)* 

 

80.0% (96/120)* 

 

75.0% (90/120) 

     "Good" 78.7% (48/61) 85.2% (52/61)** 80.3% (49/61) 

     "Bad"  79.7% (47/59) 74.6% (44/59) 72.9% (41/59) 

 

 

Table II shows the classification rates for the test set containing 120 observations of the second scenario in 

which the good and bad loans are almost equally represented. Although the average overall classification accuracy, 

and the classification accuracy of good loans, dropped to about 74.8% and 77.6%, respectively, across all 

experiments and methods, the average classification accuracy of bad loans improved significantly to about 72.2% 

compared to Table I. It is worth noting that the ensemble model for experiment one yields the best classification 

accuracy for bad loans (79.7%). Generally, the regression model performed the worst. Two-tailed proportional z-

tests found some significant differences in the classification accuracy rates between the regression and ensemble 

models. The data in Table II reveal that the combined tool is effective in classifying bad loans as well as good loans. 

For example, in experiment two, the combined tool correctly classified 85.2% of good loans. Because one can 

extract simple and understandable if-then rules from a decision tree and a money lending institution has to explain 

the reasons for which the loan was denied to the customer, the output from the combined tool may be complemented 

by the rules generated by the decision tree created for experiment one. Some of the rules based on the training data 

set generated by this decision tree are as follows: 

 

1. IF (Debt-to-income ratio  42.625) THEN (The loan good and bad 6.2% and 93.8% of the time, 

respectively). 

2. IF (Value of current property < $47,546.50) AND (Number of delinquent trade lines < 0.5) AND (Debt-to-

income ratio < 42.625) THEN (The loan was good and bad 20.8% and 79.2% of the time, respectively). 

3. IF (Years on Current Job < 14.5) AND (Number of delinquent trade lines < 0.5) AND (Debt-to-income 

ratio < 42.625) THEN (The loan was good and bad 21.2% and 78.8% of the time, respectively). 

4. IF (Age of oldest trade line in months > 86.51) AND (Value of current property > $47,546.5) AND 

(Number of delinquent trade lines < 0.5) AND (Debt-to-income ratio < 42.625) THEN (The loan was good 

and bad 80.6% and 19.4% of the time, respectively). 

 

However, it may be especially difficult to explain a denial of a loan if the decision tree model identifies the 



The Review of Business Information Systems                                                                              Volume 6, Number 3 

 78 

loan as a good loan, but the other methods identify it as a bad loan. 

 

The cumulative lift charts contained in Figure 7 present Table II figures in a more useful format. The chart 

reveals that for the neural network, ensemble, and regression models, the percentage of defaulters in the first decile 

is over two times as high as the 50% default rate in the general population of the second scenario. For example, for 

the three models, the lift value is about 2.05 and it does not drop rapidly. The test set non-cumulative lift chart 

(Figure 8) shows the lift value for each decile. The chart reveals that the predicted power of four models drops to the 

50% baseline (lift 1) between the fourth and the fifth deciles. By the fifth decile the models permanently drop below 

the baseline's 50% default baseline and remain at roughly 0.5 lift value for the last four deciles.  The percent 

captured response chart (Figure 9) reveals the total number of defaulters in a particular bin. For example, if one 

wanted to eliminate the first and second deciles of customers, the total number of defaulters would drop by about 

35-40%. The straight response line represents the response rate that one would obtain by not using a model (or the 

rate of defaulters that one would expect if one were to take a random sample). For example, if one takes a random 

sample of 20% of the data, one would expect to capture 20% of the defaulters. The choice of the final model(s) may 

depend on the proportion of individuals that one has chosen for action. When comparing several models on the same 

proportion of the data, the model with the higher lift is often preferred.  The shapes of the ROC charts for the first 

scenario (Figures 5 and 6) and second scenario (Figures 10 and 11) indicate that the predictive power all four models 

(decision tree, neural network, regression analysis, and combined model), for differentiating between loans that will 

be paid off and loans that customer will default on, is good.   
 
 

Figure 7. The cumulative lift chart for the four methods 

for experiment two for scenario two.  Target event: 1 (bad loans). 

 
 



The Review of Business Information Systems                                                                              Volume 6, Number 3 

 79 

Figure 8. The non-cumulative lift chart for the four methods  

for experiment two for scenario two.  Target event: 1 (bad loans). 

 
 

 

Figure 9. The % captured response chart for the four methods  

for experiment one for scenario one.  Target event: 1 (bad loans). 
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Figure 10. Sensitivity as a function of 1-specificity for the four methods  

for experiment two for scenario two.  Target event - 1 (bad loans). 

 
 
 

Figure 11. Sensitivity as a function of 1-specificity for the four methods  

for experiment two for scenario two.  Target event - 0 (good loans). 
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7. Conclusion  

 

Of the four models used in the two scenarios, the neural network and the ensemble model were the best 

overall in classifying loans into good and bad loans.  In the second scenario, the four models proved efficient at 

identifying bad loans because they were trained and tested on a balanced data set containing an equal mix of good 

and bad loans.  Conversely, the four models in the first scenario were trained and tested on a more realistic 

unbalanced data set containing mostly good loans.  As a result, in the first scenario, the four models were superb at 

identifying the good loans but not nearly as good at identifying the bad loans.  However, one must keep in mind that 

all of the bad loans in the data set were close cases that were initially misclassified as good loans by the financial 

institution providing the data.  In practical application, faced with a mixture of clear-cut cases and close cases, the 

four models are likely to identify a much higher percentage of bad loans.  If the financial institution providing the 

data were to use these data mining models developed in the first scenario, the financial institution would be able to 

identify at least 30% of the bad loans and deny credit to those applicants, thus reducing the default rate from 9% to 

less than 7% without a noticeable reduction in the number of good loans granted. However, a group of consumers 

characterized by a high default rate may contain many close calls between good and bad loans making the 

classification process very difficult and ultimately insufficient to protect against defaults.  In addition to predicting 

whether a loan is good or bad, the data mining techniques also provided valuable information that would allow the 

financial institution to adjust its lending policies to avoid groups of high risk consumers.  If the results of the first 

stimulation were to be used, the financial institution would be wise to refuse loans to the bottom 10% of its 

customers because roughly one-third to one-half of these customers will default.  This first decile contains between 

one-third and five-ninths of the total number of defaulters in the data set.  By refusing credit to the bottom 10% of 

the customers, the financial institution could reduce the default rate by 3 to 5 percentage points at the cost of losing 

between 5-7% of the total number of non-defaulting customers.  The customers in the 20 through 69 percentile have 

a default rate at or below the 9% average and appear to be credit worthy.  The financial institution could extend 

loans to these customers on standard terms.  The customers in the 70 to 99 percentiles constitute the financial 

institution's prime customers because of their very low default rate. The financial institution could reward these 

customers by issuing loans to them on more favorable terms.  The classification properties of the data mining tools 

presented in this article are very useful in identifying good and bad loans.  Statistical information derived from these 

data mining techniques compliments the classification process and could allow financial institutions to fine tune 

their lending policies to avoid high risk groups that cannot be classified with great accuracy.  Further research 

should focus on refining the training and testing of the ensemble model and the neural network using various 

balanced and unbalanced data sets to improve the classification performance.  Once the data mining techniques are 

fine tuned, one could attempt to establish the most profitable lending policy from a credit risk perspective based on 

the projected profits on good loans, average losses on bad loans, and the fixed and variable costs of lending 

operations.     
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