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ABSTRACT 
 

In this paper we present a new heuristic procedure to solve the degree constrained minimal 

spanning tree problem. This procedure uses Lagrangian relaxation of the integer programming 

formulation of the problem to get a lower bound for the optimal objective function value. A 

subgradient optimization method is used to find multipliers that give good lower bounds. A branch 

exchange procedure is used after each iteration of the subgradient optimization to generate a 

feasible solution from an infeasible Lagrangean solution. Computational results are given for 

problems with up to 300 nodes. The heuristic procedure presented here gives optimal solutions in 

most instances. For problem sets that were not solved optimally, the gap between the lower bound 

and the feasible solution was less than 10
-2

 percent. 
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1.  INTRODUCTION 

 

he Degree Constrained Minimal Spanning Tree (DCMST) problem is frequently encountered in the 

design of communication and computer networks. It consists of finding transmission links to connect a 

set of geographically remote terminal sites to a central node. The number of ports available on a 

terminal node restricts the number of links incident on it. Garey and Johnson [5] have shown the DCMST problem 

to be NP-hard by reducing it to an equivalent symmetric Traveling Salesman Problem. Several methods for solving 

this difficult problem have been developed. A Lagrangian-based branch and bound algorithm was used by 

Volgenant [13] to find the optimal solution of this problem with up to 150 nodes. Gabow [4] used a branch exchange 

algorithm to find an approximate solution to the problem. Gavish [7] used a branch and bound heuristic to solve the 

problem with up to 200 nodes.  Narula and Ho [10] also used a branch and bound heuristic to solve the DCMST 

problem with up to 100 nodes, while Yamamoto [14] developed an algorithm based upon finding the minimum 

common basis of two matroids.  Other heuristic approaches suggested for solving this problem include a genetic 

algorithm by Zhou and Gen [15], a heuristic algorithm by Bolden, Deo, and Kumar [1] that was implemented on 

parallel processors, and a branch & bound method based on Lagrangean relaxation used by Savelsbergh and 

Volgenant [12] to solve problems with up to 150 nodes. 
 

 In this paper, we present a Lagrangean relaxation based heuristic to find a good feasible solution of the 

DCMST problem. We relax the DCMST problem using Lagrangean relaxation method. The solution to the relaxed 

problem gives a lower bound to the optimal solution value of the DCMST problem. This technique to get a lower 

bound of the DCMST problem has been used very successfully in [7], [12], and [13]. These lower bounds were used 

in the branch & bound procedures to get good heuristic solution to the DCMST problem. In this paper, we use a very 

different approach than used by [7], [12], and [13]. We use subgradient optimization method to get Lagrange 

multipliers that give good lower bounds. We use a new branch exchange procedure after each iteration of the 

subgradient procedure to get a feasible solution from the infeasible Lagrangean solution. The best lower bound and 

the best feasible solutions are retained when the subgradient method terminates. The lower bound value is used to 

estimate the quality of the solution given by the branch exchange procedure. We found that the gaps between the 

feasible solution and the lower bound using our algorithm are tighter than reported previously. Additionally, we 

have provided results for much larger networks. 

T 
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The outline of the paper is as follows: In Section 2, we present the integer-programming formulation of the 

DCMST problem. A Lagrangean relaxation of the problem and a subgradient optimization method to find a lower 

bound of the problem is described in Section 3. A branch exchange procedure embedded in the subgradient 

optimization method is also described in Section 3. The results of the experiment are presented in Section 4. Finally, 

some concluding remarks are presented in section 5. 

 

MODEL FORMULATION 
  

We use the following notation in the model: 

 

Cij = annual cost of the link directly connecting node i to node j; 

S =  [2,3.....N] is a set of terminal nodes to be connected to the central node (node 1); 

rj = limit on the maximum number of links that can end at a terminal node j; 

 

The decision variables are: 

 

Xij = 1, if there is a directed link from node i to node j; 0 otherwise; 

Yij = flow on the link directed from node i to node j; 

 

The integer programming formulation of the problem is given below.  
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In the above model, constraints (2) guarantee that there is exactly one link originating from each terminal. 

Constraints (3) are flow conservation constraints, where Yij is interpreted as the flow on the directed link from node i 

to node j. The central node has an aggregate demand of (N-1) units of a commodity, with a supply of 1 unit from 

each terminal node. Constraints (4) ensures that there would be traffic flowing directly from node i to node j only if 

there is a directed link from node i to node j. Constraints (5) are the degree constraints, which restrict the number of 

links terminating at each terminal node to a predetermined number. Constraint (6) guarantees that a total of (N-1) 

links will be installed in the network. Constraints (2), (3), (5)-(8) ensure that the Xij variables define a spanning tree 

rooted at node 1. 

 

SOLUTION PROCEDURES 

 

 In this study we use a Lagrangian relaxation approach to generate lower bounds for the DCMST problem. 

This approach has been used very successfully to obtain tight lower bounds for this problem in [7], [12], and [13]. 

For an application-oriented survey of Lagrangean relaxation, see Fisher [3]. 

 

 We form a relaxation of problem ZIP by multiplying constraint set (5) with a vector of non-negative 

Lagrangian multipliers µ = (µ 2, µ 3,.., µ N) and add it to the objective function. This results in the following problem. 
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Procedure for Evaluating L() 
  

The function L() is evaluated by solving a minimal spanning tree problem rooted at the central node, 

which for a given vector of Lagrange multipliers  can be accomplished very easily using Prim's algorithm [11].  

 

We know that for a given vector of Lagrange multipliers   0, L() is a lower bound to ZIP. However, we 

are interested in finding the tightest bound, which can be calculated, by finding 

 

L(*)=


max {L()}. 

 

 Computing * is very difficult; however, approximate values of these vectors can be found by using a 

subgradient optimization method [9]. In this method, we begin with an initial vector of multipliers 0, and at 

iteration p adjust the multipliers using the following rule: 
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 In the above equation 
2

 denotes the Euclidean norm, Z* is the best available overestimate of the 

optimal solution value, and  is a scalar multiplier which satisfies the condition 0<2. The value of  is initially 

set to 2 and is reduced during the course of the search. This method for adjusting the Lagrange multipliers has been 

used very successfully in [6-8]. The subgradient optimization procedure is terminated when the total number of 

iterations exceed a prespecified number or when a feasible solution is found with ZIP = L (*) or when the gap 

between the lower bound and the best upper bound is less than a specified value. 

 

A Branch Exchange Procedure 

 

 In this section we describe a branch exchange procedure, which is used after each iteration of the 

subgradient optimization procedure to generate a feasible solution to ZIP from the infeasible Lagrangean solution. 

The best feasible solution is retained when the subgradient optimization algorithm is terminated. 

 

For this procedure we define the following additional variables: 

 

linkij = a directed link from node i to node j; if linkij is added to the network, then Xij = 1; 

fi = termination node of the link directed away from node i, i.e., if Xij = 1, then fi = j; 
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Procedure A 

 

Step 1. If G , then STOP. 
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i f
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from the network and replace it with link
i j* * . Go to Step 1. 

 

NUMERICAL RESULTS 

 

 The effectiveness of the heuristic procedure was investigated by performing computational tasks on a series 

of test problems for N = 40 to N = 300. The data for the computational experiments for number of nodes in the 

network from N=40 to N=100 was taken from the CRD data set which is available from OR-Library [1]. There are 

10 CRD problems for each N = 40, 70, 100, thus giving 30 CRD problems in all. We selected the Euclidean 

distances between these points as the entries in the cost matrix. For networks with number of nodes N=200 and 

N=300 we took the data from the SYM data set available from Craig etal. [2]. For each N=200 and N=300, there are 

10 SYM problems, which gives us a total of 20 SYM problems.  The limit on the number of links incident on a 

terminal node was varied from 2 to 4. The overestimate of the objective function value was updated after each 

iteration of the subgradient optimization algorithm and set equal to the best feasible solution value found till that 

point.  After each iteration an upper bound Z  and a lower bound Z (the best-known heuristic solution and the 
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best-known Lagrangean relaxation, respectively) are maintained. The initial value of scalar  was set to 2, and 

halved whenever L() did not improve in 20 successive iterations.  

 

 The search for the optimal Lagrangean multipliers was terminated if the total number of iterations exceeded 

90 or if Z changed by less than 0.004 in 30 successive iterations or when the gap between Z  and Z  was less than 

0.01 percent of the value of Z . The subgradient optimization and the branch exchange procedures were coded in 

FORTRAN 77 and the experiments were performed on a VAX-4500 computer. The computational results are 

summarized in Table 1. In the table the lower bound and the heuristic solution reported for each set of Number of 

nodes and r parameter values represents the average of the lower bound and heuristic solution for the 10 problems 

solved for the set. 
 

 

Table 1:  Computation Results 

Number r Lower Heuristic Gap CPU time 

Of nodes  bound solution  (seconds) 

40 2 4215 4215 0.000% 1 

40 3 4214 4214 0.000%  

40 4 4214 4214 0.000%  

70 2 5634 5634 0.000% 3 

70 3 5627 5627 0.000%  

70 4 5627 5627 0.000%  

100 2 6713 6714 0.007% 8 

100 3 6710 6710 0.000%  

100 4 6710 6710 0.000%  

200 2 9564 9565 0.009% 184 

200 3 9556 9556 0.000%  

200 4 9556 9556 0.000%  

300 2 11534 11535 0.008% 684 

300 3 11522 11522 0.000%  

300 4 11522 11522 0.000%  

 

 

 The computational results indicate that the heuristic solution finds optimal solutions most of the time. For 

problem sets that could not be solved optimally, the gap between the heuristic solution and the lower bound is less 

than 10
-2

 percent. Our heuristic solution takes very little CPU time. However, the CPU time required by the heuristic 

grows exponentially with the number of nodes in the network. 

 

CONCLUSIONS 

 

 In this paper we presented a Lagrangean relaxation based heuristic to solve the degree constrained minimal 

spanning tree problem. We used a Lagrangean relaxation method to find a lower bound of the optimal solution value 

of the DCMST problem. Subgradient optimization method was used to find good estimate of the Lagrange 

multipliers that provide the best lower bound. A new branch exchange procedure was used after each iteration of the 

Lagrangean relaxation to generate a feasible solution from an infeasible Lagrangian solution. The best lower bound 

given by the Lagrangian relaxation method is used to estimate the quality of the best solution given by the branch 

exchange procedure. Results from our tests on networks with up to 300 nodes indicate that our heuristic solves the 

problem optimally most of the time. For non-optimal solutions, the gap between the feasible solution and the lower 

bound is less than 10
-2

 percent. 
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