The Review of Accounting Information Systems

Volume 5, Number 1

Using SAS® For Data
Extraction And Analysis

Robert W. Ingram (E-mail: ringram@cba.ua.edu), University of Alabama

Abstract

Data extraction and analysis are common uses of computers-by accountants and audi-

tors.

This paper provides an introduction to SAS® and a tutorial exercise in using

SAS for data extraction and analysis purposes. It provides example programs for ex-
tracting data from a relational database and for such common accounting purposes
as computing and aging receivables, computing accounting ratios, grouping, output-
ting, describing, and filtering data, identifying duplicate and missing observations,
and identifying dollar unit samples. The exercise can be used to introduce students to
SAS and to data extraction and analysis techniques.

Introduction

common use of technology by
% accountants is for accessing and

evaluating computerized account-
ing data. Large databases are repositories of
accounting data in many organizations. Conse-
quently, the ability to extract, combine, and ana-
lyze these data efficiently is important for many
accounting related tasks. The extraction and
analysis tasks often are complicated by the need
to access data from a variety of computer plat-
forms and operating systems. Accordingly, ac-
countants need tools that are capable of handling
large amounts of data without having to expend
significant resources to retrieve and reformat the
data.

The SAS®' package of programs from the
SAS Institute provides a widely-used and rela-
tively simple solution for the extraction and
analysis problem. This paper provides a class-
room exercise for introducing accounting stu-
dents to SAS programs and how they can be

Readers with comments or questions are encour-
aged to contact the authors via email.

17

used for data extraction and analysis. The exer-
cise can be used as a tutorial for students to gain
experience in using the computer to extract, ma-
nipulate, and analyze data for tasks commonly
encountered by accountants.’

The next section of this paper describes
some advantages of using SAS for data extrac-
tion and analysis. The second section explains
basic components of the SAS language. The
third section provides an exercise that uses SAS
to access a relational database, to merge files
from the database, and to perform a series of
data analysis tasks, typical of those performed by
auditors. The last section provides a brief sum-
mary and suggestions for future research.

Reasons for U;ing SAS

SAS is used in a variety of business and
education settings. It is readily available to stu-
dents in many colleges, as well as to auditors
and managers in many firms and companies. It
is used by 3.5 million users at over 31,000 sites
in over 120 countries (Delwiche and Slaughter,

The Review of Accounting Information Systems

Volume 5, Number 1

1998). Consequently, accountants can use soft-
ware that already exists in many organizations or
can load core programs on a laptop, link to a
client network, and read client data without hav-
ing to recomputed, reformat, or otherwise ma-
nipulate the data.

SAS is capable of reading almost any data
from almost all operating systems and platforms,
from spreadsheets to relational databases, with-
out the need to convert the data to an intermedi-
ate form. It is capable of handling unlimited
numbers of observations, subject only to the
memory capacity of the computer used for the
analysis task. Programs written in SAS for one
operating system are portable to other systems.
SAS runs off of laptops, client-server systems,
and mainframes. In addition, SAS is a common
application in business environments.

SAS provides a large number of pre-
programmed procedures that are easily imple-
mented for examining most types of data analysis
issues. These range from simple descriptive
statistics to complex comparisons. Most of the
analysis issues can be handled by a core set of
SAS programs that are easily learned. One of
the major advantages of SAS is that the user can
control many attributes of these programs rather
than having to rely on a limited set of predeter-
mined techniques. Accountants who discover
unexpected problems in a particular data envi-
ronment, often can create data manipulation and
analysis procedures on an ad hoc basis to deal
with those problems without the need to recollect
and reformat data.

SAS Basics

SAS can be run from a graphical interface in
Windows and Unix (x-windows) environments.
Nevertheless, the system relies on a simple pro-
gramming language that can be used in almost
any environment. The SAS language is not
complicated but provides programming capabil-
ity to meet a large variety of user needs. It is
this combination of being relatively simple but

18

enormously flexible that makes SAS a popular
tool.

SAS programs are composed of statements.
The statements are not case sensitive, are not
sensitive to word or line spacing, and each
statement ends in a semi-colon. SAS reads from
one line to the next until it encounters a semi-
colon. Most SAS statements fit into one of two
categories, DATA steps and PROC (procedure)
steps. DATA steps identify the location of data
files and define variables and their formats.
PROC steps describe how the data will be ma-
nipulated and analyzed. The first record is read
from the file and processed. Then, the next re-
cord is read and processed until the end of the
file is reached.

Figure 1 provides a screen view of the SAS
interface from a Windows environment. The
view is separated into sections, identified by tabs
at the bottom. Clicking on a tab makes that view
active. The primary sections that users work
with are the Program Editor, Log, and Output
windows. The Program Editor and Log win-
dows are visible in Figure 1. Individual win-
dows can be maximized on the screen and the
tabs can be used to toggle among the windows.

The Program Editor is used to enter SAS
programs. Programs can be keyed into the win-
dow, opened from existing files, are copied from
a word processor or other source. Programs are
run by clicking on the Submit Button at the top
of the window.

Once a program is executed, the output ap-
pears in the Output Window. It can be saved to
file or copied to the clipboard and pasted into a
word processor. The Log ‘Window lists each
step in the program and any errors that occurred
in the processing of that step. Accordingly, it is
a valuable tool in discovering programming or
data problems and should always be examined
when a program is executed.

The Results Window provides a tree dia-

The Review of Accounting Information Systems Volume 5, Number 1

Figure 1
SAS Program Entrv Window

Submit Button

872 LIBNAME mydblib ODBC USER=r ingram DﬁTﬁSHC—SﬁSD,

[Results 2
- HOTE: Libref MYDBLIB was successfully assigned as follows:

3 Print: Merged Data Set

Engine: ODBC

EJ{@ Frint: Accounts Recei

,45 Print. Accounts Recev.

3 Print: Accounts Receiv

& Means: Accounts Rec

@ Univariate: Descriptive
=) Print: Sales » 1000

(=) Print. CustomerlDs Out

873

real time
cpu time

3 Print Duplicate Sales
) Print: Missing Sales Nu
= Means: Accounts Rec
B Print: Starting Paint for
3 Print: Dollar Unit Sampl

Program Editor - SASDB.sas

DATA Check; Set Missing;

UN;

DATA Count; SET AccountsReceivable;
0C SORT DATA = Count; BY CustomerID;

PROC MEANS SUM DATA = ficcountsReceivable; VAR fccopntsReceivable;

TITLE 'Accounts Receivable by Customer’;

Results
— Window

gram that identifies output for each of the proce-
dures in a program. The user can click on any
of the items to examine output for that proce-
dure, which appears in the Output Window.
This window is useful if a program contains sev-

Physical Hame: 5A5DB

874 DATA Sales; SET mydblib.tb18ales;

: There were 1175 observations read from the data set MYDBLIB.tb1Sale
. The data set WOBRK.SALES has 1175 observations and 4 variables.
. DATA statement used:

0.14 seconds
0.02 seconds

PROC SORT DATA = Missing; BY SalesNumber;

LagSalesNumber = LAG(SalesNumber);

NextSalesNumber = LagSalesNumber+1;
SalesNunber NE HextSalesNumber;

PROC PRINT DATA = Check; VAR SalesMNumber ;

TLE 'Missing Sales Numbers';

Program Log
Editor —— Window
Window

19

eral procedures and the user needs to refer to the
output in non-sequential order. The Explorer
Window provides access to SAS files and pro-
grams created by the user, much like Windows
Explorer.

The Review of Accounting Information Systems

Volume 5, Number 1

A Data Extraction and Analysis Exercise

The exercise described in this section was
developed on a Windows NT 4.0 operating sys-
tem and a SQL Server 7.0 database.> The data-
base contains two tables of interest for the exam-
ple. One is a Sales table containing a Sales
Number (the primary key), a Customer ID, a
Sales Date, and a Sales Amount. The other is a
Cash Receipts table containing a Cash Receipts
Number (the primary key), a Sales Number (a
foreign key for the Sales table), a Cash Receipts
Date, and a Cash Receipts Amount. The tables
contain data for a hypothetical company for the
fiscal year beginning January 1, 2000.

Extracting Data

Data extraction is a simple task. The Win-
dows version of SAS reads directly from native
Windows programs such as Excel and Access
and from ODBC (Open Database Connectivity)
linkable databases. ODBC is beyond the scope
of this paper, but connections can be made easily
for most database systems by creating data
source connection files using the Data Source
Administrator in Control Panel. Figure 2 pro-

vides a program for extracting and merging the
data in the Sales and Cash Receipts tables. Pro-
gram lines are numbered for ease of reference.

Line 1 in the program creates a reference
name, “mydblib,” to identify the input data.
The remainder of line 1 identifies the source as
an ODBC connection. USER is the user name
required to access the database. A password
would be provided if needed. DATASRC is the

"data source name (DSN), Sasdb, used to identify

the ODBC connection to the SQL Server data-
base. This name was created by the user when
the ODBC connection was created. As men-
tioned earlier, SAS is not case sensitive. Terms
in all caps in the programs refer to SAS key-
words to differentiate them from user supplied
labels.

Lines 2 and 3 read data from the database
tables and save these as “Sales” and “Receipts”
respectively. The SET procedure reads an input
file (tblSales) from the mydblib database into a
SAS dataset, called “Sales.” The data are read
directly from the database and fields in the tables
are read to SAS using their database labels and
formats. There is no need to specifically identify

Figure 2
SAS Program to Extract and Merge Datasets

1 LIBNAME mydblib ODBC USER=ringram DATASRC=Sasdb;

2 DATA sales; SET mydblib.tblsales;

3 DATA Receipts; SET mydblib.tbTcCcashReceipts;

4 PROC SORT DATA = Sales; BY SalesNumber;

5 PROC SORT DATA = Receipts; BY SalesNumber;

6 DATA SalesReceipts; MERGE Sales Receipts; by SalesNumber;

7 DSalesDate = DATEPART(SalesDate);

8 DCashReceiptsDate = DATEPART(CashReceiptsbate);

9 PROC PRINT DATA = SalesReceipts (FIRSTOBS = 1000 oBS = 1010);
10 VAR SalesNumber CustomerID DSalesDate SalesAmount CashReceiptsNumber
11 DCashReceiptsDate CashReceiptsAmount;

12 FORMAT DSalesbDate DATE. DCashReceiptsDate DATE.;
13 TITLE 'Merged Data Set'; RUN;

The Review of Accounting Information Systems

Volume 5, Number 1

the variables or their locations in the data re-
cords.

Lines 4 and 5 sort each of the datasets by
SalesNumber. SAS requires that datasets be
sorted by the same fields before files can be
merged. Line 6 merges the two datasets, creat-
ing a dataset named “SalesReceipts”. Lines 7
and 8 format the date fields in the dataset so that
they are read as simple dates (for example,
01/01/00) rather than as datetime (including
hours, minutes, and seconds) fields that are na-
tive to SQL Server. Line 9 writes (using the
SAS procedure PROC PRINT) some of the re-
cords to the Output Window so the user can en-
sure that the data are consistent with expecta-
tions. FIRSTOBS identifies the starting point for
the records to be written, record 1,000. OBS
identifies the last record to be written. Lines 10-
11 list the variables (VAR) to be written to out-
put, and line 12 formats the date fields as dates
(DATE.) for the output. SAS stores dates as the
number of days since January 1, 1960. Format-
ting converts these dates to conventional values.
Line 13 provides an optional title for the output
and tells the program to begin execution.

Once the program is submitted, the log file
describes each step that was executed and
whether it executed properly. Figure 3 provides
an excerpt for the extraction program, indicating
the program steps executed properly.

The Output Window contains the data writ-
ten by the program, as illustrated in Figure 4.

The figure contains a limited set of observations
and records to illustrate the type of output pro-
vided.

The extraction example presented above
uses SAS program statements. SAS is also ca-
pable of using SQL statements to extract and join
files. The program in Figure 2 merged the data-
sets and created null fields for cash receipts that
did not match sales. This procedure would re-
quire an Outer Join in SQL but is easily accom-
plished by those adept at SQL.

Computing and Aging Accounts Receivable

As an example of a data analysis task, the
program in Figure 5 computes accounts receiv-
able as the difference between sales and cash
receipts and determines the age (in days) for
each receivable.

Line 1 creates a dataset labeled AccountsRe-
ceivable from the SalesReceipts dataset. Line 2
converts null values for cash receipts to zeroes.
Line 3 computes accounts receivable as the dif-
ference between sales and cash receipts amounts.
Line 4 formats the variable as a dollar value with
a maximum of 10 digits with 2 digits right of the
decimal point. Line 5 defines the date for aging
receivables as December 31, 2000 and identifies
it as a date (D) variable. Line 6 restricts analy-
sis to records for which accounts receivable exist
(> 0), and Line 7 computes the age of those
receivables relative to the analysis date. Lines 8-
13 place the records into groups based on the age

Figure 3
SAS Log Example

LIBNAME_mydb1'ib ODBC USER=ringram DATASRC=SASDB;
NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ObBC
Physical Name: SASDB
DATA Sales; SET mydblib.tblsales;

NOTE: There were 1175 observations read from the data set MYDBLIB.tblSales.

NOTE: The data set WORK.SALES has 1175 observations and 4 variables.
NOTE: DATA statement used:
real time
cpu time

0.14 seconds
0.02 seconds

21

The Review of Accounting Information Systems

Volume 5, Number 1

Figure 4
Merged Data Set
DSales

Obs SalesNumber CustomerID Date SalesAmount
1000 2001 05NOV00 $422.70
1001 2002 18 06NOVO0 $631.94
1002 2003 54 06NOVO0 $456.28
1003 2004 32 07Nov00 $379.24
1004 2005 64 07NOV00 $248.40

Figure 5

SAS Program to Compute and Age Accounts Receivable

1 DATA AccountsReceivable; SET SalesReceipts;

2 IF CashReceiptsAmount = . THEN CashReceiptsAmount = 0;

3 AccountsReceivable = SalesAmount - CashReceiptsAmount;

4 FORMAT AccountsReceivable DOLLAR10.2;

5 Analysisbate = '31DEC2000'D;

6 IF AccountsReceivable > 0 THEN AccountsReceivableAge =

7 AnalysisDate - DSalesDate;

8 1IF AccountsReceivableAge <= 30 THEN AgeGroup = 'Current';

9 IF AccountsReceivableAge > 30 AND AccounstReceivableAge <= 60

10 THEN AgeGroup = 'Over 30';

11 IF AccountsReceivableAge > 60 AND AccounstReceivableAge <= 90

12 THEN AgeGroup = 'Over 60';

13 IF AccountsReceivableAge > 90 THEN AgeGroup = 'Over 90';

14 PROC PRINT DATA = AccountsReceivable (FIRSTOBS = 1000 OBS = 1010);
15 VAR AccountsReceivable AnalysisDate DSalesDate AccountsReceivableAge;
16 FORMAT AnalysisDate date. DSalesDate date.;

17 TITLE 'Accounts Receivable Data';

18 RUN;

of the receivables. IF ... THEN statements per-
mit the user to group data or otherwise filter data
for analysis according to user defined criteria.
Lines 14-18 write some of the records to output
as described in Figure 2.

An example line of output from the program
appears below showing the observation number,
amount of the receivable, the analysis date, the
sales date, and the age of the receivable in days:

1002 $456.28 31IDEC00 06NOVO00 55

22

It is always useful to review output and log files
to ensure the program is performing according to
expectations.

Figure 6 provides a program to compute the
total amount of accounts receivable in each of
the age groups computed in Figure 5. Line 1
sorts the data by age group. Line 2 computes
the sum of accounts receivable in each age
group. The MEANS procedure is capable of
providing a variety of descriptive statistics for
variables. N and SUM identify the particular
statistics required in this analysis. N is the num-

The Review of Accounting Information Systems

Volume 5, Number 1

Figure 7
Accounts Receivable by Age Group

AgeGroup=Current

PROC PRINT DATA = Ratios;

N sum
1052 $34,774.28
AgeGroup=0ver 30
N sum
55 $26,091.35
AgeGroup=0ver 60
N sum
22 $12,928.85
AgeGroup=0ver 90
' N Sum
46 $27,796.53
Figure 8
SAS Program to Compute Receivables Ratios
1 PROC MEANS SUM DATA = AccountsReceivable NOPRINT;
2 VAR SalesAmount AccountsReceivable;
3 OUTPUT ouT=SumSalesReceivables suM=SumSales SumAccountsReceivable;
4 RUN:
5 DATA Ratios; SET SumSalesReceivables;
6 .DaysSalesinAR = SumAccountsReceivable/(SumSales/365);
7 ARTurnover = SumSales/SumAccountsReceivable;
8
9

ber of observations, and SUM is the total. The
BY command results in calculations being pre-
sented for each group in the BY statement. The
VAR statement indicates the variable to be ana-
lyzed.

Output from the program is shown in Figure
7. Uncollectible accounts could be estimated by
multiplying by an expected collection rate for
each group.

Computing Ratios

Computing ratios is a simple matter of total-
ing variables and calculating ratios, as illustrated
in Figure 8. Lines 1-2 calculate the total amount
of sales and accounts receivable for the com-
pany. The NOPRINT command prevents the
data from being printed to output by the MEANS

TITLE 'Accounts Receivable Ratios';

RUN;

23

procedure. Output is stored instead in the Sum-
SalesReceivables dataset in line 3. Line 5 reads
the output file. Lines 6-7 calculate ratios, and
lines 8-9 write the ratios to output.

Output appears as follows:

Sum Sum Days AR

Sales Accounts Salesin Turnover
Receivable AR

$594,975.09 $101,591.01 62.32 5.857

The PRINT statement in Figure 8 does not re-
strict the variables to be written; so all variables
in the dataset are written to output.

Grouping and Outputting Data

The BY statement is a common means of
grouping observations. For example, Figure 9

The Review of Accounting Information Systems

Volume 5, Number 1

provides a program for computing the amount of
receivables by customer. Grouping requires data
to be sorted by the grouping variable, line 1.
Lines 2-3 calculate the total amount of receiv-
ables for each customer. If the NOPRINT op-
tion is not used, data for all customers will be
written to output. Using the NOPRINT option
and lines 4-6 to output the data permits the user
to restrict the number of observations written.

Output shows the Customer ID, number of
receivables items for each customer (FREQ)
and total amount of receivables:

Sum
Accounts
Obs CustomerID _FREQ_ Receivable
1 1 8 $718.15
2 2 12 $0.00
3 3 7 $1,614.76
4 4 15 $1,617.74
5 5 12 $560.17

The output from the Means procedure can
be written to a permanent file as shown in Figure

10. The FILE statement defines where the file
will be written, and the PUT statement identifies
the variables to be written to the file and their
format. Customer ID is written in columns 1-
10, and accounts receivable is written as a float-
ing point number with two decimal places. The
+1 format includes a space between the vari-
ables. The file can be read by a word processor
or a spreadsheet. ~Also, it can be read by SAS
for additional processing. The statements to
read the file would be identical to those for writ-
ing, except that INFILE would be substituted for
FILE and INPUT would be substituted for PUT.

Describing and Filtering Data

SAS provides several methods for obtaining
descriptive statistics. One of the simplest is the
Univariate procedure. Figure 11 contains a pro-
gram to execute this procedure. Running proce-
dures in SAS is a simple matter of calling the
procedure and identifying the variable to be-ana-
lyzed. Only one variable can be analyzed at a
time with PROC UNIVARIATE.

Figure 9
SAS Program to Compute Total Accounts Receivable by Customer

VAR AccountsReceivable;

o U~ WN =

PROC SORT DATA = AccountsReceivable; BY CustomeriD;
PROC MEANS SUM DATA = AccountsReceivable NOPRINT; BY CustomeriID;

OUTPUT OUT=SumAR SUM=SumAccountsReceivable; RUN;
PROC PRINT DATA=SumAR (OBS = 10);
TITLE 'Accounts Receivable by Customer'; RUN;

Figure 10
SAS Program to Write Output to a Permanent File

—_

DATA ARbyCustomer; SET SUumAR;

N

FILE 'c:\My Documents\AcctsRec.dat';

3 PUT CustomerID 1-10 +1 SumAccountsReceivable 8.2;

Figure 11
SAS Program to Compute Descriptive Data

1 PROC UNIVARIATE DATA = AccountsReceivable; VAR SalesAmount;
2 TITLE 'Descriptive Analysis of Sales Amount'; RUN;

The Review of Accounting Information Systems

Volume 5, Number 1

Figure 12
Descriptive Analysis of Sales Amount

The UNIVARIATE Procedure

Moments
N 1175 sum wWeights 1175
Mean 506.361775 sum Observations 594975.085
Std Deviation 300.130909 variance 90078.5627
Skewness 0.5096936 Kurtosis 2.03348034
Basic Statistical Measures
Location variability
Mean 506.3618 Std Deviation 300.13091
Median 492.2133 variance 90079
Mode 887.8604 Range 2644
Quantile Estimate
100% Max 2644 .5888
99% 993.7520
95% 955.1337
90% 903.8239
75% Q3 757.3536
50% Median 492.2133
25% Ql 255.2973
10% 112.2561
5% 56.2436
1% 12.1221
0% Min 0.2463
Extreme Observations
Lowest) Highest
value Obs value obs
0.2463 558 997.655 925
2.4406 4 998.240 36
2.6460 452 998.429 910
5.2624 141 2382.013 1174
6.3377 231 2644.589 1175
Figure 13
Identifying the Largest Sales
1 DATA Extreme; SET AccountsReceivable;
2 IF SalesAmount > 1000;
3 PROC PRINT; VAR SalesNumber SalesAmount;
4 TITLE 'Sales > 1000'; RUN;

Figure 12 contains key results of the Uni-
variate procedure. The statistics describe the
distribution of the variable in terms of central
tendency, distribution about the mean, percen-
tiles, and lowest and highest values.

If the user wants additional information
about specific observations, such as the sales
numbers for the largest sales amounts, a simple
IF statement can filter those observations, as in

25

Figure 13. SAS permits IF statements only in
the DATA step. Thus, a DATA statement is
needed to identify the dataset that will receive
the filtered data, as in line 1.

Output of the program follows:

Obs SalesNumber SalesAmount
1 1587 $2,382.01
2 1960 $2,644.59

The Review of Accounting Information Systems

Volume 5, Number 1

Figure 14
SAS Program to Compute Out of Bounds Values

PROC PRINT DATA = OutofBounds;

a b wN =

DATA outofBounds; Set AccountsReceivable;
IF CustomerID < 0 OR CustomerID > 100;

VAR CustomerID SalesNumber SalesAmount CashReceiptsAmount;
TITLE 'CustomerIDs out of Bounds'; RUN;

Figure 15
SAS Program to Compute Negative Accounts Receivable

IF AccountsReceivable < 0;
PROC PRINT DATA = Negative;

O b whN =

DATA Negative; Set AccountsReceivable;

VAR SalesNumber SalesAmount CashReceiptsAmount AccountsReceivable;
TITLE 'Negative Accounts Receivable'; RUN;

Figure 16
SAS Program to Identify Potential Data Errors

PROC PRINT DATA = Incorrect;

OO WN =

A similar procedure can be used to identify
values that are outside of expected bounds. For
example, Figure 14 provides a program to iden-
tify Customer IDs that are smaller or larger than
those expected in the database.

The program identifies two observations
with unexpected Customer IDs. The amounts of
both observations are large and neither has been
collected.

Obs Customer Sales Sales Cash
ID Number Amount Receipts
Amount
1 102 1587 $2,382.01 $0.00
2 102 1960 $2,644.59 $0.00

A similar program can be used to identify
potential data entry errors, as in Figure 15. This
program identifies accounts receivable with
negative values.

26

DATA Incorrect; Set AccountsReceivable;
IF AccountsReceivable < .01 THEN DELETE;
IF AccountsReceivable NE SalesAmount;

VAR SalesNumber SalesAmount CashReceiptsAmount AccountsReceivable;
TITLE 'Possible Incorrect Receipts'; RUN;

Results of the program indicate a likely
transposition error in recording the cash receipt:

Obs Sales Sales Cash Accounts
Number Amount Receipts Receivable
Amount
1 1418 $466.37 $646.37 $-180.00

Other errors of this type can be identified by
comparing the accounts receivable and sales
amounts. If the user expects customers to pay
individual sales invoices in a single payment,
amounts shown as partial payments may result
from data entry errors as in Figure 16. Line 2
deletes accounts receivable with zero or negative
values from the file before a comparison is made
between receivables and sales amounts in line 3.

A likely data entry error is indicated by the
output:

The Review of Accounting Information Systems

Volume 5, Number 1

Obs Sales Sales Cash Accounts
Number Amount Receipts Receivable
Amount
1 2028 $755.75 $575.75 $180.00

Duplicate and Missing Observations

Identifying duplicate and missing records is
relatively simple. Figure 17 provides a program
to search for duplicate sales amounts that might
indicate a sale was recorded more than once.
Data are first sorted by sales amount, the field of
primary interest. Thé TAG function in lines 3
and 4 identifies the value of the variable from the
previous iteration of the DATA step. Conse-
quently, if sales are sorted by amount and the
amount of the previous record is equal to that of
the current record, a potential duplication has
occurred. Identifying the current and previous
sales numbers and customer IDs can help in the
evaluation.

The program identifies a sale with a likely
duplication. The saleszaumbers are contiguous
and the customer IDs are the same, in addition to
the sales amounts being the same.

Obs

Sales Lag Cust- Lag Sales Lag
Num Sales omer Cust- Amount Sales
-ber Num ID omer Amount
-ber ID
1 1416 1415 93 93 $887.86 $887.86

A similar program can identify missing sales
numbers. In Figure 18, the LAG function again
is used to identify the value of the previous ob-
servation. In this case, the value of the previous
observation is incremented by one in line 3 and
then compared with the value of the current ob-
servation in line 4. Because the data are sorted
by sales number, the current sales number
should equal the previous number plus one.

The program identifies four missing sales
numbers:

Obs SalesNumber
1 1000
2 1159
3 1594
4 2092

'."{‘

27

($101,591.01/(n+1)).

Sampling

SAS can be used to select samples. As an
example, assume an accountant wanted to select
customers for a receivables confirmation using
dollar unit sampling. The sample would be se-
lected by sorting the data by customer, comput-
ing the total of accounts receivable, determining
a random starting point, and selecting a stratified
sample.

Figure 19 provides a program to sort the
data and compute the total amount of accounts
receivable.

The amount is computed to be $101,591.01.
Depending on the power of the test desired, the
accountant would select the number of records to
be sampled. If the accountant wants 50 observa-
tions in the sample, the sample each sampling
unit will be $1,992 greater than the previous unit
A random starting point
is then identified within the first sampling unit.
Because only a portion of the first and last sam-
pling units is used, the procedure requires n+1,
rather than n sampling units.

Figure 20 contains a program to determine a
random starting point. The UNIFORM function
returns a random value that is equally distributed
between 0 and 1. Multiplying by 1,992 results
in a random value in the desired range.

The random value identifies the dollar unit
that is the first observation. The customer asso-
ciated with this dollar unit then becomes the first
item in the sample. The next item will be the
customer associated with the receivable dollar
that is $1,992 greater than the first observation,
and so forth. Figure 21 contains a program for
identifying the sample, assuming the starting
point determined in Figure 20 is $672.

Line 1 reads data from the output file cre-
ated in Figure 8. This file contains the total
amount of receivables for each customer. Line 2
computes a cumulative variable, TotalAR, that
increases by the amount of the customer receiv-

The Review of Accounting Information Systems Volume 5, Number 1

OO~ WN =

Figure 17
SAS Program to Identify Duplicate Sales

PROC SORT DATA = AccountsReceivable; BY SalesAmount;

DATA Duplicate; Set AccountsReceivable;

LagSalesNumber = LAG(SalesNumber); LagCustomerID = LAG(CustomerID);

LagSalesAmount = LAG(SalesAmount); IF LagSalesAmount = SalesAmount;

PROC PRINT DATA = Duplicate;

VAR SalesNumber LagSalesNumber CustomerID LagCustomerID
SalesAmount LagSalesAmount;

TITLE 'Duplicate Sales'; RUN;

ONO U WN =

Figure 18
SAS Program to Identify Missing Sales Numbers

PROC SORT DATA = AccountsReceivable; BY SalesNumber;

DATA Missing; Set AccountsReceivable;

LagSalesNumber = LAG(SalesNumber); NextSalesNumber = LagSalesNumber+1;
IF SalesNumber NE NextSalesNumber;

PROC PRINT DATA = Check; VAR SalesNumber;

TITLE 'Missing Sales Numbers'; RUN;

Figure 19
SAS Program to Compute Total Accounts Receivable

DATA Select; SET AccountsReceivable;

PROC SORT DATA = Select; BY CustomeriID;

PROC MEANS SUM DATA = Select; VAR AccountsReceivable;
TITLE 'Total Accounts Receivable'; RUN;

AW N =

Figure 20
SAS Program to Identify Starting Value for Dollar Unit Sample

1 DATA Select; Select = UNIFORM(0)*1992; PROC PRINT DATA = Select;
2 TITLE 'Starting Point for Dollar unit Sample'; RUN;

Figure 21
SAS Program to Select Dollar Unit Sample

DATA TotalAR; SET SUmAR;

TotalAR + SumAccountsReceivable; ‘ -
Select = 672;

SampTeItem = 'no '; IF TotalAR >= Select THEN SampleItem = 'yes';

IF TotalAR >= Select THEN TotalAR = TotalAR - 1992;

IF SampleItem = 'yes'; PROC PRINT DATA = Read;

VAR CustomerID SumAccountsReceivable;

TITLE 'Dollar Unit Sample'; RUN;

ONOOTDA N =

28

The Review of Accounting Information Systems

Volume 5, Number 1

able each time a new customer record is read in
line 1. Line 3 defines the starting point. Line 4
selects a record when the cumulative value of
receivables is equal to or greater than the starting
point. Line 5 decreases the cumulative value by
the dollar value that is to be skipped before the
next observation is selected. Thus, the cumula-
tive value must increase by $1,992 before an-
other record is selected for the sample. Lines 6-
8 print the selected observations.

The prdgram results in 50 observations of
the following form:

Sum
Accounts
Receivable
$718.15
$1,617.74
$1,439.44
$751.79
$2,061.57

bs CustomerID

(0]
1
2
3
4
5

0 A~ —

t <
Customers with larée receivables are likely
to be included in the sample more than once,
because each dollar of receivables has an equal
chance of being selected. Sorting the sample by
customer and selecting the sample at equal in-
crements minimizes the number of duplicate ob-
servations in the sample.

Summary and Suggestions for Future Re-
search

Data extraction and analysis can be compli-
cated tasks. Tools like SAS can simplify these
tasks. Though SAS is very powerful software
and contains a large number of built-in proce-
dures, accountants often find that a relatively
small set of procedures _and commands meets
most of their needs. Once developed, SAS pro-
grams can be saved and recalled whenever they
are needed. Minor modifications usually are
sufficient to adapt existing programs for new
purposes or data environments. SAS provides
accountants with tremendous power for examin-
ing and understanding computerized data.

29

This paper describes advantages of using
SAS for data extraction and analysis, and it pro-
vides a brief overview of the SAS program.
Primarily, the paper provides an example exer-
cise that explores many of the basic features of
SAS as a data extraction and analysis tool.

SAS is an extremely powerful and flexible
tool. There are many extensions to the tasks
described in this paper that can be explored in
more detail. Some of these include using SAS
for analytical review, for detailed analysis of
accounting data, and for use of accounting data
in management decisions.

Research also could explore the relative ef-
fect of SAS and other tools on decision making.
Examples of research questions that might be
considered include: Are students, accountants,
and managers who are capable of working with
SAS and similar tools, more capable of under-
standing and using business data than other indi-
viduals? Are particular tools more useful for
developing these skills than others, SAS versus
Excel, for example. Other data analysis and
extraction tools are available commercially, such
as ACL®, Audit Command Language. Com-
parisons among these tools are another possibil-
ity for future research.]

Endnotes

1. SAS is a registered trademark of the SAS
Institute, Inc., Cary, NC.

2. A more detailed introduction to basic SAS
commands is provided by Delwiche and
Slaughter, 1998. An introduction to SAS
statistical procedures is provided by Cody
and Smith, 1997. The SAS Institute pub-
lishes a large variety of user manuals and
provides workshops for user training.

3. The data are available from the author as an
Excel file that can be imported into most
standard relational database management
systems.

4. ACL is a registered trademark of ACL Ser-
vices Ltd., Vancouver, BC, Canada.

The Review of Accounting Information Systems Volume 5, Number 1

References ed., Prentice-Hall, Upper Saddle River, NJ,
1997.
1. Cody, R. and J. Smith, Applied Statistics 2. Delwiche, L. and S. Slaughter, The Little
and the SAS Programming Language, 4™ SAS Book: A Primer, 2™ ed., SAS Institute,

Cary, NC, 1998.

Notes

30

